
SOME THEOREMS ON FOURIER COEFFICIENTS

WALTER RUDIN1

I. Trigonometric polynomials with coefficients +1. Consider the

trigonometric polynomial

N

(1.1) P(eie) = zZ *neini
71=1

where e»= ±1. If we set ||p||00 = max« |P(0i(,)|, the Parseval theorem

shows that ||-P||«,^iV1/2, and the following problem arises: does there

exist an absolute constant A with the property that for each N one can

find ei, ■ ■ ■ , 6/v, equal to +1, so that

(1.2) \\P\U^AN"2,

where P is given by (1.1)?

If one allows the coefficients e„ to be complex numbers of absolute

value 1, an affirmative answer to the question is furnished by the

partial sums of the series 2^i e'"logBc*'"'; this example is due to Hardy

and Littlewood [4, pp. 116-118]. A theorem of Salem and Zygmund

[2, pp. 270, 278] shows, roughly speaking, that (N log AT)1'2 is the

"most probable" order of magnitude for ||P||» if en= ± 1.

During the summer of 1958, Salem drew my attention to the prob-

lem stated in the first paragraph. It turns out that an affirmative

answer can be given by a construction which uses nothing more

sophisticated than the parallelogram law

(1.3) |a + /3|2+  |a -/3|2 = 2|a|2 + 2|/5|2.

After I found this construction I learned that the problem had been

solved earlier, by essentially the same method, in the 1951 Master's

Thesis of H. S. Shapiro [3]. Since the result is needed in Part II of

this paper, I am publishing the proof here, with Shapiro's consent.

As in the Hardy-Littlewood example, the polynomials (1.1) may

actually be taken as the partial sums of a fixed series zZl eneine:

Theorem I. There exists a sequence {en} (n=l, 2, 3, • • • ), with

e„ = 1 or — 1, such that

N

(1.4) zZ tneine   < 5N1'2 (0 g 6 < 2t;N = 1,2, 3, • • • )•
n-l
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Proof. Set Po(x) =Qo(x) =x, and define polynomials Pk and Qk in-

ductively by

(1.5) (Pk+iix) = Pk(x) + xJ(x),     ^

\Qk+x(x) = Pk(x) - x2kQk(x),

Then Pk(eie) is of the form (1.1), with N = 2k, and Pk is a partial

sum of Pk+X. Hence we can define a sequence {e„} by setting e» equal

to the nth coefficient of Pk, where 2k>n; this sequence will be shown

to have the desired properties.

For |x| =1, (1.3) and (1.5) imply

I Pk+i(x) \2+\ Qk+i(x) \2 =  | Pk(x) + x2kQk(x) \2+\ Pk(x) - x2"Qk(x) \2

= 2\Pk(x)\2+2\Qk(x)\2,

and since |P0(x)| 2+| (?o(x)| 2 = 2, we conclude that

(1.6) \Pk(eie)\2+ \Qk(eiB)\2= 2k+\

Hence

(1.7) | Pk(eie)\   ^ 2"2-2k>2,

which proves (1.4) for N=2k.

If now sn(Pk) and sn(Qk) denote the nth partial sums of Pk and Qk

respectively, where l^n^2k, then

I s (Pk)(ei$) I 1
<J • 8> n       •*  It  = <2 + 21/2>2*'2 (* - 0, 1, 2, • • • ) ■

I sn(Qk)(e'9) I )

This is obviously true if k = 0. Suppose (1.8) holds for some k, and

consider sn(Pk+x) and sn(Qk+x), with l^n^2k+1. If n^2k, (1.5) shows

that

| sn(Pk+x) |   =  | sn(Qk+i) |   =  | sn(Pk) |   < (2 + 21/2)2«+»'2.

If 2k<n^2k+\ (1.5) and (1.7) show that

| sn(Pk+x) \   ^ \Pk\  + \ sL2(Qk) |

<; 2(*+im + (2 + 21/2)2*/2 = (2 + 2I/2)2(t+1)/2.

The same estimate holds for | sn(Qk+x) |, and (1.8) is proved by induc-

tion.

To complete the proof of (1.4), suppose 2k~1^N^2k. By (1.8), we

have

| sN(Pk)(eu) |   ^ (2 + 21'2)2*/2 ^ 2(1 + 21'2)N1'2 < 5N1'2.

II. Transformations of Fourier coefficients. In this section, p and
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q will always denote conjugate exponents, i.e., l/p + l/q=l. For

1 ̂ p < oo, Lp denotes the usual Lebesgue space of complex functions

on the unit circle, normed by

( 1   r * 1 1/p

(2.D 11/11, = {-J J/(«")!><»}    •
L°° is the space of all essentially bounded measurable functions on the

circle. The Fourier coefficients of any f EL1 will be denoted by

(2.2) f(n) = — f f(eie)e-Mdd (» = 0, ±1, ±2, • • • ).
2w J_T

If F is a complex function defined in the plane, we say that F maps

A into B, where A and 5 are function spaces on the circle, if to every

fEA there corresponds a gEB (we shall write: g = Fof) such that

g=F(f). In other words, it is required that the series zZF(cn)ein>

should be the Fourier series of a function in B whenever zZcneitt$ is

the Fourier series of a function in A.

The functions F which map L1 into L1 have recently been deter-

mined [l]; they are precisely those which are real-analytic near the

origin (i.e., in some neighborhood of the origin); of course we must

also have F(0)=0. For the other Lebesgue spaces, the situation is

quite different. We first state some sufficient conditions:

Theorem II. Suppose Kp^2, and suppose there is a constant A

such that | F(z) \ ^=A | z\9/2 near the origin. Then F maps Lp into L2.

Proof, ll fELp, the Hausdorff-Young theorem [4, p. 190] shows

that 23l/(»)|'<°°. so that zZ\ F(f(n)) \ 2< <*>■

Theorem III. Suppose l^p^2. If \ F(z)\ ^A\z\2lp near the origin,
then F maps L" into L".

Proof, ll fEL", then zZ\f(n)\ 2< oo, so that JZ\ F(f(n))\p< °°,
and the Hausdorff-Young theorem implies that F of EL".

Remarks. 1. For g = 2, this condition is necessary as well as suffi-

cient.

2. For g= oo, the hypothesis of Theorem III is: | F(z)\ ^A\z\2. It

follows that F maps L°° (even L2) into the class of functions which

are sums of absolutely convergent trigonometric series.

3. If F is of the form

(2.3) F(z) = aiz+ atz+ \ z\2'pb(z),

where b is a function which is bounded near the origin, then F also

maps Lq into Lq. Note that no smoothness conditions are imposed on
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b (not even measurability is needed), in strong contrast to the results

in [1].

I do not know whether (2.3) holds whenever F maps L" into L".

However, if we restrict ourselves to even functions F, Theorem I

can be used to show that Theorem III states a condition which is nec-

essary as well as sufficient. In fact, the following stronger assertion

holds:

Theorem   IV.   Suppose  \^p<<x>,   F is  an even function,  and

\z\ ~2Ip\ F(z) I is not bounded near the origin. Then there is a continuous

function f on the circle to which corresponds no gEL" with g = F(J).

In other words, F does not map the space of all continuous func-

tions into Lq, hence it does not map L" into L".

Proof. The hypothesis implies the existence of numbers zm9^0

(m-1, 2, 3, ■ ■ ■ ), such that m2zm-*0 and \F(zm)\ >mi\zm\2'". De-

fine Nm= [m~4zm'2]. These choices produce the relations

oo

(2.4) £ \zm\Nli2 < *
m=l

and

(2.5) | F(zm) | #!'*-» oo  as w-^ co.

Now choose integers nm so that

(2.6) nm+ Nm < nm+i — Nm+X

and define

(2.7) Tm(eie) = zmein^(txeie + ■ ■ ■ + ew.e"-'),

where {e„} is the sequence of Theorem I. The series

(2.8) /(««) = £ Tm(e<°)
m=X

converges uniformly, by (2.4) and Theorem I, so that/is continuous.

Define the kernels Km by

2Nm / \n\\

(2.9) Km(eie) = e'(n"*+*™>1'    £    min ( 1, 2 - -—-)eM.
n—2ff„ V Nm /

Suppose there is a function gEL" such that g = F(J), i.e., g = Fof.

Our choice of {nm} implies that g * ifm = Fo Tm, where

(2.10) (g * KmW) = — f ^g(e^-*^)Km(e^)d^
2tJ-t
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«

Since ||A7,||i<3, we see that

(2.11) ||For-||,<3y, («= 1,2,3, ■••)•

On the other hand, the assumption that F( — zm) = F(zm) shows that

(2.12) (FoTm)(eiS) = F(zm)ein^(eii + ■ ■ ■ + eiN^),

so that

. . .sin (NJS/2)
(2.13) | (FoTm)(e«) \   = \ F(zm) | ■      \   J   ■

sin (6/2)

An easy computation now yields

(2.14) ||Fo 77||9 > Ca| F(zm) | nI!",

where Cq is a positive constant, depending only on q. By (2.5), (2.14)

implies that ||Fo 77,||,,—>oo as m—>«>, and this contradicts (2.11).

The theorem follows.
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