
CONVERGENCE OF RANDOM FOURIER SERIES

MITCH HILL

Abstract. This paper will study Fourier Series with random coefficients. We begin with an
introduction to Fourier series on the torus and give some of the most important results. We

then give some important results from probability theory, and build on these to prove a variety
of theorems that deal with the convergence or divergence of general random series. In the final

section, the focus is placed on random Fourier series, and we combine results from the previous

sections to prove our main theorem. The main result of this paper gives a simple condition for the
almost-everywhere convergence or divergence of a random trigonometric series, and proves that

divergence implies that the coefficients cannot be the Fourier series of any function.
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1. Introduction

The goal of this paper will be to study the behavior of the random trigonometric series

(1.1)
∞∑

n=−∞
Yn e

int

where the Yn’s are independent (but not necessarily identically distributed) complex-valued random
variables for t ∈ [0, 2π). The partial sums of this series represent random functions on the torus T,
and we are interested in exploring when these partial sums converge for some, almost all, or all t.
In particular, if these partial sums converge almost-everywhere, then (1.1) represents a function on
T whose Fourier coefficients are given by the Yn.

To simplify the problem, we will focus on the series

(1.2)
∞∑
n=0

Xn cos(nt+ Φn)

where Xn and Φn are real-valued and Xne
iΦn are independent, and the results obtained for this

case can be translated to the general case with a few minor modifications.
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The main result of this paper comes in the form of the Paley-Zygmund Theorem, which gives a
simple condition for the almost-sure convergence or divergence of (1.2). It is stated below.

Theorem 1.3. (Paley-Zygmund)

If
∑∞
n=0 E(X2

n) <∞, (1.2) converges almost-surely almost-everywhere to a function f(t) such that
f ∈ Lp(T) for 1 ≤ p <∞.

If
∑∞
n=0 E [X2

n] = ∞, (1.2) diverges almost-surely almost-everywhere, and the sequence {Xn}
almost-surely does not represent the Fourier coefficients of a function in Lp(T) for 1 ≤ p <∞.

This theorem divides random Fourier series into two different convergence classes. If the Xn’s
satisfy the conditions of the Paley-Zygmund Theorem, (1.2) converges to a function which is in Lp

for arbitrarily large p, but not necessarily to a bounded function. Once boundedness is satisfied,
however, the continuity of the function immediately follows, although we will not prove that result
in this paper.

2. Fourier Series

We start with some fundamental results about Fourier series.

Throughout this paper we will restrict ourselves to complex-valued functions on T, the one-
dimensional torus. Recognizing that T can be thought of as the group R/2πZ under addition, we
define the Lebesgue measure on T in the natural way.

Definition 2.1. The integral of a function f : T→ C is defined as∫
T
f(t) dt =

1
2π

∫ 2π

0

f(x) dx

so that the Lebesgue measure dt is the restriction of the Lebesgue measure dx on R to the interval
[0, 2π). (The factor 1/2π is present so that

∫
T dt = 1)

The most important property of the measure dt is translation invariance, which means for any
t0 ∈ T, we have

(2.2)
∫

T
f(t− t0) dt =

∫
T
f(t) dt

This can easily be seen by recognizing that a function on T can be thought of as a 2π-periodic
function on R.

We now define some important Banach spaces on T.

Definition 2.3. The following are Banach spaces:

• Lp(T) = {f : T→ C
∣∣ ∫

T |f(t)|p dt <∞} for 1 ≤ p <∞ with norm

‖f‖Lp =
(

1
2π

∫
T
|f(t)|p dt

)1/p
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• C(T) = {f : T→ C | f is continuous} with norm

‖f‖∞ = sup
t
|f(t)|

Note that, for p < q, we have C(T) ⊂ Lq(T) ⊂ Lp(T).

The above Banach spaces are important because they satisfy the following properties, which are
not necessarily true in the case of a general Banach space.

Lemma 2.4. Consider f ∈ B, where B is one of the Banach spaces above, and τ, τ0 ∈ T. Let
fτ (t) = f(t− τ). The following properties are satisfied:

‖fτ‖B = ‖f‖B Translation Invariance in Norm(2.5)
lim
τ→τ0

‖fτ − fτ0‖B = 0 Continuity of Translation in Norm(2.6)

Proof. (2.5) is a consequence of the translation invariance of the measure dt. (2.6) is obvious if f is
a continuous function. Now consider f ∈ Lp(T) for 1 ≤ p <∞. Recalling that continuous functions
are dense in Lp(T), take some ε > 0 and continuous function g such that ‖f − g‖B < ε/2. Then

‖fτ − fτ0‖B ≤ ‖fτ − gτ‖B + ‖gτ − gτ0‖B + ‖gτ0 − fτ0‖B
= ‖(f − g)τ‖B + ‖gτ − gτ0‖B + ‖(g − f)τ0‖B ≤ ε+ ‖gτ − gτ0‖B

Since ‖gτ − gτ0‖B vanishes as τ → τ0, and ε is arbitrary, (2.6) is proven. �

In this paper we will also refer to B(T), the space of bounded functions with norm
‖f‖∞ = supt |f(t)|. However, it is important to note that this space is not a Banach space because
it is not complete.

Next, we define an important family of functions on T that are closely related to Fourier series.

Definition 2.7. A trigonometric polynomial on T is a function P of the form

(2.8) P (t) =
N∑

n=−N
ane

int

The degree of P is the largest integer m such that |am|+ |a−m| 6= 0.

Definition 2.9. A trigonometric series on T is an expression of the form

(2.10) S ∼
∞∑

n=−∞
ane

int

Note that this definition makes no assumptions about the convergence of the series for any t.

Remark 2.11. Recall the random trigonometric series
∑∞
n=−∞ Yn e

int introduced at the beginning
of the paper. Using the well-known identity eit = cos t + i sin t and writing Yn = Zne

iΘn with Zn
and Θn real, we have

∞∑
n=−∞

Yn e
int =

∞∑
n=0

Zn e
i(Θn+nt) +

∞∑
n=1

Z−n e
i(Θ−n−nt)

=
∞∑
n=0

Zn cos(nt+ Θn) + i

∞∑
n=0

Zn sin(nt+ Θn)

+
∞∑
n=1

Z−n cos(−nt+ Θ−n) + i

∞∑
n=1

Z−n sin(−nt+ Θ−n)



4 MITCH HILL

So we see that determining the convergence of (1.1) depends on the convergence of four different
cases of (1.2), where Φn = Θn for the first term, Φn = Θn − π

2 for the second, Φn = −Θn for the
third, and Φn = −Θn + π

2 for the fourth.

The Fourier series of a function is a trigonometric series with the an chosen in such a way that
they “represent” the function in a certain sense. To motivate the correct choice of these coefficients,
observe that for a trigonometric polynomial P (t), we have

an =
1

2π

∫ 2π

0

P (t)e−intdt

because for j ∈ Z,

(2.12)
1

2π

∫ 2π

0

eijtdt =
{

1 if j = 0
0 if j 6= 0

Therefore, we define the n’th Fourier coefficient of a function f ∈ L1(T) by

(2.13) f̂(n) =
1

2π

∫
T
f(t)e−intdt

Definition 2.14. The Fourier series S[f ] of a function f ∈ L1(T) is given by the trigonometric
series

(2.15) S[f ] ∼
∞∑

n=−∞
f̂(n)eint

Again, no assumptions about convergence for any t are made.

We write SN (f, t) for the partial sums of (2.11) up to degree N . Formally,

(2.16) Sn(f, t) =
n∑

k=−n

f̂(k)eikt

This function is well defined for all t ∈ T.

Earlier we claimed that the translation invariance of the measure dt was important, and to show
why we define the convolution operation on T.

Definition 2.17. For two functions f and g in L1(T), their convolution is given by

(2.18) (f ∗ g)(t) =
1

2π

∫
T
f(t− τ)g(τ) dτ

It can be shown that f∗g ∈ L1(T), and that the convolution operation is commutative, associative,
and distributive with respect to addition of functions. The true importance of the convolution
operation, however, comes from its relation to the Fourier coefficients of functions.

Theorem 2.19. Consider f, g ∈ L1(T). Then for h(t) = (f ∗ g)(t), we have

(2.20) ‖h‖L1 ≤ ‖f‖L1‖g‖L1

and

(2.21) ĥ(t) = f̂(t)ĝ(t)
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Proof. Let F (t, τ) = f(t− τ)g(τ). Then we have

1
2π

∫
T

(
1

2π

∫
T
|F (t, τ)| dt

)
dτ =

1
2π

∫
T
|g(τ)| ‖f‖L1 dτ = ‖f‖L1‖g‖L1

By Fubini’s Theorem, 1
4π2

∫ ∫
F (t, τ)dtdτ = 1

4π2

∫ ∫
F (t, τ)dτdt, and using a well-known integral

inequality we get

‖h‖L1 =
1

4π2

∫
T

∣∣∣∣∫
T
F (t, τ)dτ

∣∣∣∣ dt ≤ 1
4π2

∫
T

∫
T
|F (t, τ)|dt dτ = ‖f‖L1‖g‖L1

which establishes (2.15). To prove (2.16), using Fubini’s Theorem once more, we get

ĥ(n) =
1

2π

∫
T
h(t)e−int dt =

1
4π2

∫
T

∫
T
f(t− τ)e−in(t−τ)g(τ)e−inτdt dτ

=
(

1
2π

∫
T
f(t)e−intdt

)(
1

2π

∫
T
g(τ)e−inτdτ

)
= f̂(n)ĝ(n)

�

3. Summability Kernels and the Convergence of Fourier Series

With the Fourier series of a function and the important convolution operation defined, the next
topic to consider is the convergence of Fourier series. Although we might hope that the Fourier
series of a function in L1(T) will converge to the function, either in the L1 norm or pointwise, this
is not the case in general. Below we define two important kernels, the Fejer kernel and the Dirichlet
kernel. These kernels are functions that, after convolution with some function f , give some insight
into the convergence of the Fourier series of f .

Definition 3.1. The n’th Dirichlet kernel Dn(t) is given by

(3.2) Dn(t) =
n∑

k=−n

eikt

The n’th Fejer kernel Kn(t) is given by

(3.3) Kn(t) =
1

n+ 1

n∑
k=0

Dk(t) =
n∑

k=−n

(
1− |k|

n+ 1

)
eikt

Observe that, because of (2.12),

(3.4)
1

2π

∫
T
Dn(t) dt =

1
2π

∫
T
Kn(t) dt = 1

Both of these kernels can be written in closed form, as the following lemma shows.

Lemma 3.5.

(3.6) Dn(t) =
sin(n+ 1

2 )t
sin 1

2 t

(3.7) Kn(t) =
1

n+ 1

(
sin(n+1

2 )t
sin 1

2 t

)2
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Proof. Recall the formula for finite sums of geometric sequences:
n∑
k=0

ark = a
1− rn+1

1− r

Therefore, we can write
n∑

k=−n

rk = r−n
2n∑
k=0

rk = r−n
1− r2n+1

1− r
=
r−n−

1
2

r−
1
2

1− r2n+1

1− r
=
r−n−

1
2 − rn+ 1

2

r−
1
2 − r 1

2

Here r = eit. Recalling that sin t = 1
2i (e

it − e−it), we get
n∑

k=−n

eikt =
e−i(n+ 1

2 )t − ei(n+ 1
2 )t

e−
1
2 it − e 1

2 it
=

sin(n+ 1
2 )t

sin 1
2 t

which proves (3.6). To prove (3.7), we write
n∑
k=0

sin(k + 1
2 )t

sin 1
2 t

=
1

2i sin 1
2 t

n∑
k=0

(
ei(k+ 1

2 )t − e−i(k+ 1
2 )t
)

=
1

2i sin 1
2 t

(
e

1
2 it

n∑
k=0

eikt − e− 1
2 it

n∑
k=0

e−ikt

)

=
1

2i sin 1
2 t

[
e

1
2 it

(
1− ei(n+1)t

1− eit

)
− e− 1

2 it

(
1− e−i(n+1)t

1− e−it

)]
=

1
2i sin 1

2 t

(
1− ei(k+1)t

e−
1
2 it − e 1

2 it
− 1− e−i(k+1)t

e
1
2 it − e− 1

2 it

)
=

1
2i sin 1

2 t

(
2− (ei(k+1)t + e−i(k+1)t)

e−
1
2 it − e 1

2 it

)
=

1
2i sin 1

2 t

(
2− 2 cos(n+ 1)t
−2i sin 1

2 t

)
=

1
2 (1− cos(n+ 1)t)

(sin 1
2 t)

2

Since cos 2t = 1− 2 sin2 t, this proves the lemma.
�

Since both kernels are functions on T (in particular, trigonometric polynomials), we can find their
Fourier coefficients, which have a simple form. They are

D̂n(m) =
{

1 if |m| ≤ n
0 otherwise K̂n(m) =

{
1− |m|

n+1 if |m| ≤ n
0 otherwise

The importance of the Dirichlet kernel can be seen as follows. By Theorem 2.15,

D̂n ∗ f(m) = D̂n(m)f̂(m) =
{
f̂(m) if |m| ≤ n

0 otherwise

Moreover,
1

2π

∫
T

n∑
k=−n

ein(k−τ)f(τ) dτ =
n∑

k=−n

eikt
(

1
2π

∫
T
f(τ)e−inτ dτ

)
which means

(3.8) (Dn ∗ f)(t) = Sn(f, t)

Therefore, the limit as n → ∞ of the convolution of the Dirichlet kernel and a function f is the
Fourier series of the function. Recalling that the convolution operation is distributive with respect
to addition, and writing σn(f, t) = (Kn ∗ f)(t), we also have

(3.9) σn(f, t) =
1

n+ 1

n∑
k=0

Sn(f, t)
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The convolution of a function and the Fejer kernel gives the mean of the partial sums of its Fourier
series up to order n.

Now we are in a position to prove some important results about the convergence of Fourier series.

Theorem 3.10. Let B be a Banach space from Definition (2.3), and consider some f ∈ B. Then

(3.11) lim
n→∞

Kn ∗ f = f

in the norm of B.

Proof. Choose ε > 0. It is easy to show that

Kn ∗ f =
1

2π

∫
T
Kn(τ)f(t− τ) dτ

in the norm of B. Now, for 0 < δ < π, using (3.4), we have

1
2π

∫
T
Kn(τ)f(t− τ) dτ − f(t) =

1
2π

(∫ δ

−δ
+
∫ 2π−δ

δ

)
Kn(τ)[f(t− τ)− f(t)] dτ

∥∥∥∥∥ 1
2π

∫ δ

−δ
Kn(τ)[f(t− τ)− f(t)] dτ

∥∥∥∥∥
B

≤ 1
2π

∫ δ

−δ
|Kn(τ)| ‖f(t− τ)− f(t)‖B dτ

≤ sup
|τ |≤δ

‖f(t− τ)− f(t)‖B‖Kn‖L1

By Lemma 2.4, we have limτ→0 ‖f(t− τ)− f(t)‖B = 0, so we can find δ > 0 such that
sup|τ |≤δ ‖f(t− τ)− f(t)‖B‖Kn‖L1 < ε. Using this same δ, we write∥∥∥∥∥ 1

2π

∫ δ

−δ
Kn(τ)[f(t− τ)− f(t)] dτ

∥∥∥∥∥
B

≤ sup
τ∈T
‖f(t− τ)− f(t)‖B

1
2π

∫ 2π−δ

δ

|Kn(τ)| dτ

By (3.7), for t ∈ (0, 2π), limn→∞ |Kn(t)| = limn→∞
1

n+1

(
sin(n+1

2 )t

sin 1
2 t

)2

= 0, so

lim
n→∞

1
2π

∫ 2π−δ

δ

|Kn(τ)| dτ = 0

which means we can bound supτ∈T ‖f(t− τ)− f(t)‖B 1
2π

∫ 2π−δ
δ

|Kn(τ)| dτ by ε as well, finishing the
proof. �

Corollary 3.12. (Uniqueness of Fourier Series)

If f̂(n) = ĝ(n) for all n ∈ N, then f = g.

Proof. Again writing (Kn ∗ f)(t) = σn(f, t), we have

σn(f − g, t) =
n∑

k=−n

(
1− |j|

n+ 1

)
(f̂(k)− ĝ(k))eikt = 0

for all n. Since σn(f − g)→ f − g, we have f − g = 0, or f = g. �

The Fejer sums of a function in a Banach space with certain important properties converge to
the function in the norm of the Banach space, and this is an important foundation for many of the
results that follow. Convergence of Dirichlet sums, however, is more problematic. We start with a
lemma that gives a condition for the convergence of Dirichlet sums.



8 MITCH HILL

Definition 3.13. A Banach space B in definition (2.3) admits convergence in norm if

lim
n→∞

‖Sn(f)− f‖B = 0

for all f ∈ B.

Lemma 3.14. A Banach space B admits convergence in norm if there exists some K > 0 such that

(3.15) ‖Sn(f)‖B ≤ K‖f‖B
for all f ∈ B and n ∈ N.

Proof. Choose ε > 0. Theorem (3.10) implies that trigonometric polynomials are dense in B, since
Kn ∗ f is a trigonometric polynomial for all n. So choose a trigonometric polynomial P (t) such that
‖f − P‖B < ε/2K. For n greater than the degree of P , Sn(P ) = P . Then we have

‖Sn(f)− f‖B = ‖Sn(f)− Sn(P ) + P − f‖B
≤ ‖Sn(f − P )‖B + ‖P − f‖B ≤ K

ε

2K
+

ε

2K
�

Recalling that Sn(f) = Dn ∗ f , we obtain the inequality

‖Dn ∗ f‖B ≤ ‖Dn‖L1‖f‖B
which means

(3.16)
‖Sn(f)‖B
‖f‖B

≤ ‖Dn‖L1

The numbers ‖Dn‖L1 = Ln are called the Lebesgue constants. If they were bounded, then any
Banach space from Definition (2.3) would admit convergence in norm, but as the next lemma shows,
this is not the case.

Lemma 3.17. Ln →∞ as n→∞

Proof.

Ln =
1

2π

∫ 2π

0

∣∣∣∣ sin(n+ 1
2 )t

sin 1
2 t

∣∣∣∣ dt =
1
π

∫ π

0

∣∣∣∣ sin(n+ 1
2 )t

sin 1
2 t

∣∣∣∣ dt
Let f(x) = x − sinx. f(0) = 0 and f ′(x) = 1 − cosx ≥ 0 for x ∈ [0, π/2] which means that
sin t/2 ≤ t/2 on [0, π]. So we have

1
π

∫ π

0

∣∣∣∣ sin(n+ 1
2 )t

sin 1
2 t

∣∣∣∣ dt ≥ 2
π

∫ π

0

∣∣∣∣ sin(n+ 1
2 )t

t

∣∣∣∣ dt ≥ 2
π

n−1∑
k=1

∫ (k+1)π

n+ 1
2

kπ

n+ 1
2

| sin(n+ 1
2 )t|

t
dt

Now, ∫ (k+1)π

n+ 1
2

kπ

n+ 1
2

| sin(n+ 1
2 )t|

t
dt =

∫ (j+1)π

jπ

| sinu|
u

du ≥ 1
π

1
j + 1

∫ (j+1)π

jπ

| sinu |du =
2
π

1
j + 1

Therefore,

Ln ≥
4
π2

n−1∑
k=1

1
j + 1

which can be made arbitrarily large as n→∞. �

We now prove that in the case of L1(T) and C(T), (3.16) becomes an equality, which means that
these spaces do not admit convergence in norm.

Theorem 3.18. L1(T) and C(T) do not admit convergence in norm.
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Proof. First consider L1(T). Recalling that ‖KN‖L1 = 1,

sup
f∈L1(T)

‖Sn(f)‖L1

‖f‖L1
≥ ‖Sn(KN )‖L1

‖Kn‖L1
= ‖KN ∗Dn‖L1

Since limN→∞KN ∗Dn = Dn,

sup
f∈L1(T)

‖Sn(f)‖L1

‖f‖L1
≥ ‖Dn‖L1 ⇒ sup

f∈L1(T)

‖Sn(f)‖L1

‖f‖L1
= ‖Dn‖L1

By the previous lemma, ‖Dn‖L1 = Ln can be made as large as we like, so by Lemma (3.14), L1(T)
does not admit convergence in norm. Now consider C(T). Consider a set of functions ψn ∈ C(T)
such that ‖ψn‖ ≤ 1 and ψn(t) = sgn(Dn(t)) except near points of discontinuity of sgn(Dn(t)). If
the sum of the lengths of the intervals where ψn(t) 6= ±1 is less than ε/2n, then

sup
f∈C(T)

‖Sn(f)‖∞
‖f‖∞

≥ |Sn(ψn, 0)| =
∣∣∣∣ 1
2π

∫
T
Dn(t)ψn(t) dt

∣∣∣∣ > Ln − ε

�

While these two important spaces do not admit convergence in norm, it can be shown that Lp(T)
does admit convergence in norm for 1 < p <∞. We will not prove this result, but the proof has to
do with the a properties of a function’s conjugate Fourier series in C.

4. Probability Theory

After establishing some fundamental properties of Fourier series, we now change gears and give
some basic results from probability theory that will be important later. We will use the usual
definition of probability space, random variables mapping outcomes from the probability space to
the real numbers, and the expected value of a random variable. We will use Ω to denote the set
of outcomes and ω to denote an element in Ω. For an event A ⊂ Ω, we write 1A for the random
variable defined so that

1A(ω) =
{

1 if ω ∈ A
0 if ω /∈ A

Note that E(1A) = P(A). We say an event that occurs with probability 1 occurs almost-surely.

Definition 4.1. A Rademacher sequence is a sequence of independent random variables {εn} such
that

P(εn = 1) =
1
2

P(εn = −1) =
1
2

Sometimes we will also use {εn} to refer to a sequence of constants with value 1 or −1.

Definition 4.2. A symmetric random vector X is a vector such that X and −X have the same
distribution. If {Xn} is a sequence of independent symmetric random vectors, then it has the same
distribution as {εnXn}.

The next three lemmas that we will prove deal with events that depend on an infinite number of
outcomes. These lemmas are very useful since we are trying to study the convergence or divergence
of a random series where each term in the series is determined by a random outcome. In particular,
these lemmas show that under certain conditions, an event that depends on an infinite number of
outcomes occurs either with probability 0 or with probability 1.

Lemma 4.3. Suppose {Xn} is a sequence of random variables with Xn ≥ 0 and
∑∞
n=1 E(Xn) <∞.

Then
∑∞
n=1Xn <∞ almost-surely.
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Proof. Since the random variables are positive, by Lebesgue’s Monotone Convergence Theorem the
sum of expected values is the expected value of the sum, so we have

E

( ∞∑
n=1

Xn

)
=
∞∑
n=1

E(Xn) < M

for some M > 0. Let Y =
∑∞
n=1Xn, so Y ≥ 0. Choose ε > 0 and take N > 1 large enough so that

M/N < ε.

E(Y ) =
∫ ∞

0

y µY (dy) < M ⇒
∫ ∞
N

y µY (dy) < M

Then
P(Y ∈ (N, ∞)) =

∫ ∞
N

µY (dy) <
1
N

∫ ∞
N

y µY (dy) <
M

N
< ε

Therefore 1− ε ≤ P(Y ∈ [0, N ]) ≤ 1. Since ε is arbitary, this proves the lemma. �

Definition 4.4. Consider an infinite sequence of events A1, A2, . . . , An, . . . Then

(4.5) limAn =
∞⋂
k=1

⋃
n≥k

An

Informally, limAn holds when infinitely many An occur.

Lemma 4.6. (Borel-Cantelli) Consider an infinite sequence A1, A2, . . . , An, . . . of independent
events.

• If
∑∞

1 P(An) <∞, then P(limAn) = 0
• If

∑∞
1 P(An) =∞, then P(limAn) = 1

Proof. Recall E(1An) = P(An). If
∑∞
n=1 P (An) =

∑∞
n=1 E(1An) < ∞, then by Lemma 4.3,∑∞

n=1 1An < ∞ almost-surely. Therefore, it is almost sure that only finitely many An hold, so
P(limAn) = 0.

Now suppose
∑∞

1 P(An) =∞.

1− P(limAn) = P

 ∞⋃
k=1

⋂
n≥k

Acn

 = lim
k→∞

P

⋂
n≥k

(1−An)


Since the An are independent, we have

P

⋂
n≥k

(1−An)

 =
∞∏
n=k

(1− P(An))

≤
∞∏
n=k

exp(−P(An))

= exp

(
−
∞∑
n=k

P(An)

)
= 0

which means P(limAn) = 1. �

Lemma 4.7. (Zero-One Law) Let X = 1A be a random variable defined on Ω =
∏∞
n=1 Ωn such

that
X(ω1, ω2, . . . , ωn, . . . ) = X(ω′1, ω

′
2, . . . , ω

′
n, . . . )

whatever the particular values of ω might be. (In other words, X is a tail event that does not depend
on any finite number of outcomes.) Then either P(A) = 1 or P(A) = 0.
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Proof. Write

En(X) =
∫

Ωn

· · ·
∫

Ω2

∫
Ω1

X(ω)P1(dω) · · ·Pn(dω)

Then for each n, En(X)En(1−X) = 0 for each n, so E(X)E(1−X) = P(A)(1− P(A)) = 0. �

We now give two inequalities which will be important later.

Lemma 4.8. For a > 1 and X ≥ 0,

P(X ≥ aE(X)) ≤ 1
a

Proof.

E(X) = E(X1X<aE(X) +X1X≥aE(X))
≥ 0 + E(aE(X)1X≥aE(X))
= aE(X)P(X ≥ aE(X))

�

Lemma 4.9. For 0 < λ < 1,

P(X ≥ λE(X)) ≥ (1− λ)2 E(X)2

E(X2)

Proof. First we define

X ′(ω) =
{
X(ω) if X(ω) ≥ λE(X)

0 if X(ω) < λE(X)
The Cauchy-Schwartz inequality gives

E(X ′)2 ≤ E(X ′2)P(X 6= 0)
≤ E(X2)P(X ≥ λE(X))

We also have E(X) ≤ E(X ′) + λE(X), so

(1− λ)2E(X)2 ≤ E(X2)P(X ≥ λE(X))

�

5. Series of Random Vectors

We now prove some results about general series of random vectors that will be needed to prove
results about random trigonometric series.

Definition 5.1. A summation matrix is an infinite scalar matrix S = (anm) with n, m ∈ N such
that

lim
n→∞

anm = 1 for all m ∈ N

An important summation matrix is anm = sup(0, 1 − m
n ). Note that this matrix is closely related

to the Fejer kernel defined earlier.

A series
∑∞

1 vn is S-summable if the sequence w1, w2, . . . , wn, . . . converges, where

wn =
∞∑
m=1

anmvm

A series is S-bounded if wn converges for all n and the sequence w1, w2, . . . , wn, . . . is bounded.
We define supn ‖wn‖ as its S-bound.
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Just as the Fejer kernel allowed us to study the Fourier series of a function even if the Fourier
series itself did not converge, summation matrices allow us to prove results about properties of ran-
dom series even when the series themselves are difficult to study.

We will soon prove that for a random sequence, S-summability implies almost-sure convergence
and S-boundedness implies almost-sure boundedness, but first we will prove some important lemmas.

Lemma 5.2. Let X1, . . . , X2, . . . , Xn, . . . be a sequence of symmetric random vectors. Let

Ym(ω) =
m∑
1

Xn(ω) and M(ω) = sup
m
‖Ym(ω)‖

and let Y (ω) =
∑∞

1 Xn(ω) if the series is convergent. Suppose
∑∞

1 Xn converges almost surely.
Then for each r > 0, we have

(5.3) P(M(ω) > r) ≤ 2P(‖Y (ω)‖ > r)

Proof. Let Ω0 be the set of ω such that Y (ω) is defined, and denote by A and B the subsets of Ω0

where M(ω) > r and ‖Y (ω)‖ > r respectively. A can be divided as follows

(5.4)

A1 : ‖Y1‖ > r
A2 : ‖Y1‖ ≤ r, ‖Y2‖ > r
A3 : ‖Y1‖ ≤ r, ‖Y2‖ ≤ r, ‖Y3‖ > r
...

so that
⋃∞
m=1Am = A and Am are disjoint. If ω ∈ Am, then at least one of the vectors

(5.5)
Z = Ym(ω) + (

∑∞
n=m+1Xn(ω))

Z ′ = Ym(ω)− (
∑∞
n=m+1Xn(ω))

lies outside the ball ‖x‖ ≤ r. Since the Xn are symmetric, Y and Y ′ have the same probability of
being outside the ball. The union of these two events is Am, which means that each has a probability
of at least 1

2P(Am) of occurring. Therefore, P(B ∩ Am) ≥ 1
2P(Am). Adding the probabilities over

all disjoint Am proves the lemma.
�

For the next lemma, we write Λ for an infinite set of integers and define

MΛ(ω) = sup
m∈Λ
‖Ym(ω)‖

Lemma 5.6. For each r > 0 and each set Λ, we have

P(M > r) ≤ 2P(MΛ > r)

Proof. Very similar to the proof above. Let A and B be the events M > r and MΛ > r. Let the
events Am be defined as in (5.4). For ω ∈ Am, consider

MΛ,m = sup
v∈Λ, v≥m

‖Zv‖

M ′Λ,m = sup
v∈Λ, v≥m

‖Z ′v‖

where Zv = Ym+
∑
v∈Λ, v≥mXv and Z ′v = Ym−

∑
v∈Λ, v≥mXv. Again, the subevents of Am defined

by MΛ,m and M ′Λ,m have the same probability, and their union is Am. Again, ω ∈ B ∩ Am ⇒
MΛ,m > r, so P(B ∩ Am) ≥ 1

2P(Am), and addition of probability of disjoint events proves the
lemma. �
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Theorem 5.7. Let X1, X2, . . . , Xn, . . . be random vectors in a Banach space B, and S be a sum-
mation matrix. If the series

∑∞
1 Xn is almost-surely S-summable, it converges almost-surely. If it

is almost-surely S-bounded, then it is almost-surely bounded.

Proof. Let S = (anm). By assumption, we have
∑∞
m=1 anmXm = Zn almost surely for some Zn ∈ B,

and limn→∞Zn = Z. Since limn→∞ anm = 1, there exists Np > 0 such that

P

∥∥∥∥∥∥
∑
m≤p

(1− anm)Xm

∥∥∥∥∥∥ > 2−p

 < 2−p

for n > Np. We may also suppose N1 < N2 < . . . . By assumption,
∑∞
m=1 anmXm converges almost

surely, so there exists Qp such that

P

(∥∥∥∥∥∑
m>q

(1− aNpm)Xm

∥∥∥∥∥ > 2−p
)
< 2−p

for q ≥ Qp. Now write

bpm =

 1 if m ≤ p
aNpm if p < m ≤ Qp

0 if m > Qp

This defines a new summation matrix, which we will call T . The finite sums

(5.8) Z ′p =
∞∑
m=1

bpmXm

satisfy ‖Z ′p−ZNp‖ < 2(2−p) for p = v, v+ 1, . . . . Therefore, Xn is almost-surely T -summable. Now
write p1 = 1, pj+1 = Qpj for j ∈ N. Assuming Xm = 0 when pj < m ≤ pj+1 gives

(5.9) Z ′pj =
pj∑
m=1

Xm =
pj+1∑
m=1

Xm

Therefore, if Xm = 0 for when pj < m ≤ pj+1 for an infinite set J of values j, (5.9) tends almost
surely to a limit when j →∞ in J .

Now we split
∑∞

1 Xn into two parts,
∑∞

1 X ′n and
∑∞

1 X ′′n , where

X ′n = Xn and X ′′n = 0 if p2j−1 ≤ n < p2j

X ′n = 0 and X ′′n = Xn if p2j ≤ n < p2j+1

Note that 2X ′n−Xn = ±Xn and 2X ′′n−Xn = ±Xn, both have the same distribution as Xn since the
Xn are symmetric, so

∑∞
1 (2X ′n−Xn) and

∑∞
1 (2X ′′n −Xn) have the same almost-sure properties as

Xn. Therefore
∑∞

1 X ′n and
∑∞

1 X ′n are almost-surely T -summable. For these series, (5.9) implies
the pj partial sums are convergent, so for

∑∞
1 Xn, the pj partial sums are also convergent almost

surely.

Now we use Lemma (5.2). Since the pj partials sums are convergent in probability, for each η > 0
there exists a j such that

P

∥∥∥∥∥∥
∑

pj<m≤pk

Xm

∥∥∥∥∥∥ > η

 < η

for k > j. According to lemma 1, for each j and k,

(5.10) P

 sup
pj<l≤pk

∥∥∥∥∥∥
∑

pj<m≤l

Xm

∥∥∥∥∥∥ > η

 < 2η
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Writing (5.10) for η = ηk = 2−k, j = j(ηk) = jk, and k = j(ηκ+1) = jκ+1, κ = µ, µ + 1, . . . , and
adding, we obtain

P

∥∥∥∥∥∥
∑

pj<m≤l

Xm

∥∥∥∥∥∥ ≤ ηk
 > 1− 4ηk

when pjκ < l ≤ pjκ+1 . Since the pjκ partial sums converge almost surely, the series
∑∞

1 Xm con-
verges with probabiliy as near to 1 as we please.

The case for boundedness is similar, and uses lemma 5.6 instead of lemma 5.2. We omit the
proof. �

As a consequence of this proof, if
∑∞

1 Xm is not almost surely convergent, then there exists an
η > 0 and sequences of integers m1, m2, . . . and m′1, m

′
2, . . . with m1 < m′1 < m2 < m′2 < . . . such

that

(5.11) P

∥∥∥∥∥∥
∑

mk<n<m′k

Xn

∥∥∥∥∥∥ > η

 > η for k ∈ N

We now go on to prove a variety of theorems that deal with the conditions under which the
random series converge or diverge almost surely. These theorems are the backbone upon which our
study of random Fourier series is built, and many of the results given for random Fourier series are
just special cases of these more general theorems.

Theorem 5.12. If ‖Xn‖ ∈ L2(Ω) and E(Xn) = 0 for each n, then

P
(

sup
n=1, 2, ··· , N

‖X1 +X2 + · · ·+Xn‖ > r

)
<

1
r2

(V(X1) + V(X2) + · · ·+ V(XN ))

Proof. Let Yn =
∑n
m=1Xm, and again consider the disjoint events

(5.13)

A1 : ‖Y1‖ > r
A2 : ‖Y1‖ ≤ r, ‖Y2‖ > r
A3 : ‖Y1‖ ≤ r, ‖Y2‖ ≤ r, ‖Y3‖ > r
...

with A =
⋃N

1 An. Our goal is to estimate P(A) =
∑N

1 P(An). By the definition of An, we have

r2P(An) ≤ E(1An‖X1 + · · ·+Xn‖2)

Now, we write X = 1An(X1 + · · · + Xn) and Y = (Xn+1 + · · · + XN ). The events X and Y are
independent, since they depend on the sum of sets of events independent from each other. Recall
that Cov(X, Y ) = E(X · Y ) − E(X)E(Y ). Therefore, Cov(X, Y ) = 0. Since X = 0 lies outside of
An, we also have Cov(X, Y ) = Cov(X,1AnY ) = 0. Therefore,

E(‖X + 1AnY ‖2) = E(‖X‖2) + E(‖1AnY ‖2) ≥ E(‖X‖2)

so that
r2P(An) ≤ E(‖X + 1AnY ‖2) = E(1An‖X1 + · · ·+XN‖2)

Adding over n = 1, . . . , N gives the desired inequality, since V(Xn) = E(‖Xn‖2) by the assumption
E(Xn) = 0. �

Theorem 5.14. Suppose Xn ∈ L2(Ω) and E(Xn) = 0 for all n and moreover
∑∞

1 V(Xn) < ∞.
Then the series

∑∞
1 Xn converges almost-surely. In particular, if

∑∞
1 ‖un‖2 < ∞, then

∑∞
1 εnun

converges almost surely.
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Proof. By the previous theorem, for each r > 0,

P
(

sup
j
‖Xm + · · ·+Xm+j‖ > r

)
<

1
r2

∞∑
n=m

V(Xn)

Since
∑∞

1 V(Xn) <∞, we have

P
(

lim
m→∞

sup
j
‖Xm + · · ·+Xm+j‖ > r

)
= 0

Since r > 0 can be made arbitrarily small, this proves the theorem. �

Theorem 5.15. (Paley-Zygmund Inequality) Suppose ‖Xn‖ ∈ L4(Ω), E(Xn) = 0, and E(‖Xn‖4) ≤
CV(Xn)2 for each n. Let 0 < λ < 1. Then

(5.16) P(‖X1 + · · ·+Xν‖ > λ(V(X1) + · · ·+ V(Xν))1/2) > η

where η = min( 1
3 , 1/C)((1− λ2)2 and ν is an arbitrary integer. In particular, if {un} is a sequence

of vectors and {εn} is a Rademacher sequence,

(5.17) P(‖ε1u1 + · · ·+ ενuν‖ > λ(‖u1‖2 + · · ·+ ‖uν‖2)1/2) >
1
3

(1− λ2)2

Proof. Consider the random variable X = ‖X1 + · · ·+Xν‖2. Using lemma (4.9), we have

P(X ≥ λ2E(X)) ≥ (1− λ2)2 E(X)2

E(X2)
Since the Xn are independent, we have E(X) = V(X1) + · · ·+ V(Xν). Manipulating the properties
of the inner products gives

E(X2) =
∑

n1, n2, n3, n4

E[(〈Xn1 , Xn2〉)(〈Xn3 , Xn4〉)]

If n1 6= n2 or n3 6= n4 then E[(〈Xn1 , Xn2〉)(〈Xn3 , Xn4〉)] = 0 by independence. So we can write

E(X2) =
ν∑

n=1

E(‖X‖4) + 2
∑

1≤n<m≤v

[
(Re E(〈Xn, Xm〉2)

+E(|〈Xn, Xm〉|2) + E(‖Xn‖2)E(‖Xm‖2)]

≤ C

ν∑
n=1

V(Xn)2 + 6
∑

1≤n<m≤v

V(Xn)V(Xm)

≤ sup(3, c)

(
ν∑

n=1

V(Xn)

)2

which proves the result. �

Theorem 5.18. Suppose ‖Xn‖ ∈ L4(Ω), E(Xn) = 0, and E(‖Xn‖4) ≤ CV(Xn)2 for each n. Given
a summation matrix S, suppose that

∑∞
1 Xn is S-bounded. Then

∑∞
1 V(Xn) < ∞. In particular,

if
∑∞

1 εnun is almost-surely S-bounded, then
∑∞

1 ‖un‖2 <∞.

Proof. Write S = (anm). Also write

Enν =


∥∥∥∥∥

ν∑
m=1

anmXm

∥∥∥∥∥ > λ

(
ν∑

m=1

a2
nmV(Xm)

)1/2


En = lim
ν→∞

Enν =
∞⋂
p=1

⋃
ν≥p

Enν

E = lim
n→∞

En



16 MITCH HILL

By the previous theorem, P(Enν) > η, so P(En) > η and P(E) > η. Since by assumption
∑∞

1 Xn

is S-bounded, there is some ω ∈ E and b > 0 such that
∞∑
m=1

anmXm(ω) converges and

∥∥∥∥∥
∞∑
m=1

anmXm(ω)

∥∥∥∥∥ < b

for n ∈ N. For each n with ω ∈ En, we also have ω ∈ Enν for infinitely many ν, so

λ2
∞∑
m=1

a2
nmV(Xm) < b2

which holds for infinitely many n. By the definition of a summation matrix, limn→∞ anm = 1, which
completes the proof. �

Theorem 5.19. Suppose that Un ∈ L2(Ω) and supn E(U2
n)/E(Un)2 < ∞. Then

∑∞
1 Un converges

or diverges almost-surely according to whether
∑∞

1 E(Un) converges or diverges.

Proof. When
∑∞

1 E(Un) <∞ we already know the result by lemma (4.3). If
∑∞

1 Un =∞, we use
lemma (4.9) and write

P(U1 + · · ·+ Uν > λE(U1 + · · ·+ Uν)) > (1− λ)2 E(U1 + · · ·+ Uν)2

E((U1 + · · ·+ Uν)2)

Since E(UnUm) = E(Un)E(Um) and by assumption, E(U2
n) ≤ CE(Un)2 for some C, E(U1+···+Uν)2

E((U1+···+Uν)2)

is bounded below as ν → ∞. Therefore P(
∑∞

1 Un = ∞) > 0, so it is true almost surely by the
Zero-One law. �

6. The Paley-Zygmund Theorem

We are finally in a position to prove the first of the two main results of this paper, the Paley-
Zygmund Theorem. Suppose you have a random sequence of independent random vectors {Xne

iΦn},
with Xn ≥ 0 and Φn ∈ [0, 2π). Consider the random trigonometric series

(6.1)
∞∑
n=0

Xn cos(nt+ Φn)

and the Fejer sums of this series, given by

(6.2) σN (t) =
N∑
n=0

(
1− n

N

)
Xn cos(nt+ Φn)

By Theorem (3.10), if (6.1) represents a function in Lp(T) then (6.2) converges to (6.1) in Lp(T).
Since the sums σN represent a summation matrix for each N , by Theorem 5.7 the convergence or
boundedness of (6.2) implies the convergence or boundedness of (6.1) almost surely. We state this
in the following proposition.

Proposition 6.3.

• (6.1) ∈ Lp(T) almost-surely ⇔ limN→∞ σN converges in Lp(T) for 1 ≤ p <∞ almost-surely
• (6.1) ∈ Lp(T) almost-surely ⇔ supN‖σN‖Lp <∞ for 1 ≤ p <∞ almost-surely

Lemma 6.4. If {xn} and {φn} are two real sequences and
∑∞

1 x2
n =∞, then

∑∞
1 x2

n cos2(nt+φn) =
∞ for almost every t.
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Proof. If the lemma is false, then there exists a set E of positive measure |E| where the series is
bounded, so we can can write

∞∑
1

x2
n cos2(nt+ φn) < b for t ∈ E

Integrating gives
∞∑
1

x2
n

∫
E

cos2(nt+ φn) dt < b|E|

Now, cos2(nt+ φn) = 1
4 (2 + e2i(nt+φn) + e−2i(nt+φn)), so∫

E

cos2(nt+ φn) dt =
∫
E

1
2
dt+

1
4

(∫
E

e2i(nt+φn) dt+
∫
E

e−2i(nt+φn) dt

)
For any set E, limn→∞

∫
E
eint dt = 0, so limn→∞

∫
E

cos2(nt+φn) dt = 1
2 |E|. Therefore, there exists

an N such that, for n ≥ N , ∫
E

cos2(nt+ φn) dt >
1
3
|E|

which means
∑∞
n=N xn < 3b, contradicting our assumption and proving the lemma.

�

The results of the following three lemmas will be based on the assumption that either
∑∞

0 X2
n =∞

almost surely or
∑∞

0 X2
n <∞ almost surely. We already know conditions under which the X2

n con-
verge or diverge by Theorem 5.19 of the previous section, and we will use these conditions in the
final proof of this section.

Lemma 6.5. If
∑∞

0 X2
n =∞ almost surely, (6.1) /∈ Lp(T) almost surely for 1 ≤ p <∞. Moreover,

the sequence {Xn} almost-surely does not represent a Fourier series of a function in Lp(T) for
1 ≤ p <∞.

Proof. Consider the Fejer sums

σN (t) =
N∑
n=0

(
1− n

N

)
εnXn cos(nt+ φn)

Writing

pN (t) =

(
N∑
n=0

(
1− n

N

)2

X2
n cos2(nt+ φn)

)1/2

and choosing 0 < λ < 1, η = 1
3 (1− λ2)2, the Paley-Zygmund inequality gives

P(σN (t) ≥ λpN (t)) ≥ η

By the previous lemma, there exists a sequence ρN → ∞ and a subset T of the circle such that∫
T
dt = π and pN (t) ≥ ρN for each t ∈ T . Consider some probability space Ω. Let E = EN be

the set of (ω, t) ∈ Ω × T such that |σN (t)| ≥ λρN . For fixed ω, let Eω by the set of t such that
(ω, t) ∈ E, and for fixed t let Et be the set of ω such that (ω, t) ∈ E. Let F = FN be the event
|Eω| ≥ η. Then we have

|E| =
∫
T

P(Et) dt ≥ πη

|E| =

(∫
F

+
∫

Ω\F

)
|Eω|P(dω)



18 MITCH HILL

Then we can write

πη ≥ πP(F ) + η(1− P(F )) ⇒ P (FN ) ≥ (π − 1)η
π − η

Also, ∫
T
|σN (t)| dt ≥

∫
Eω

|σN (t)| dt ≥ λρN |Eω|

Since P(FN ) > c for some c > 0 for all N , we have
∑∞

1 P (FN ) = ∞, so by Borel-Cantelli, limFN
happens almost surely. Therefore, we can write

limN→∞

∫
T
|σN (t)| dt =∞

Therefore by Proposition 6.3, we have (6.1) /∈ L1(T) almost surely, so (6.1) /∈ Lp(T) almost surely
for 1 ≤ p <∞.

To prove the second part of the lemma, assume that {Xn} represents the Fourier series of a
function f ∈ Lp(T). Then by Theorem 3.10, limN→∞ σN = f in the Lp norm, but we have already
seen that ‖limN→∞σN‖L1 = ∞, which means that it cannot converge to f in Lp(T), since by
definition ‖f‖Lp is finite.

�

Next we will show that
∑∞

0 X2
n =∞ almost surely implies divergence for almost every t.

Lemma 6.6. If
∑∞

0 X2
n =∞ almost surely, (6.1) diverges almost surely almost everywhere.

Proof. By lemma 6.4, we have almost surely that
∞∑
1

X2
n cos2(nt+ φn) =∞

Let anm = rmn for 0 < rn < 1, and limn→∞ rn = 1. Then S = (anm) is a summation matrix.
Since

∑∞
1 x2

n cos2(nt + φn) = ∞, by Theorem 5.18 we have
∑∞
m=1±rmNXm cos(mt + φm) = ∞

almost-surely for each rN . Taking the limit as N →∞ proves the result. �

Lemma 6.7. If
∑∞

0 X2
n < ∞ almost surely, then (6.1) converges almost surely almost everywhere

to a function in Lp(T) for 1 ≤ p <∞.

Proof. By Theorem 5.14, (6.1) converges almost surely for any given t, and therefore converges
almost-surely almost-everywhere.

Let F (t) be the function that (6.1) converges to. Then for λ > 0, we have

E(eλF (t) = E

(
exp

( ∞∑
1

λXnεn cos(nt+ φn)

))

=
∞∏
1

E(exp(λXnεn cos(nt+ φn)))

=
∞∏
1

cosh(λXn cos(nt+ φn))

Since cosh u ≤ eu2/2, we have
E(eλF (t)) ≤ eλ

2r/2
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where r =
∑∞

1 X2
n. By symmetry, we have E(F (2n+1)(t)) = 0 for n = 0, 1, 2, . . . , so

∞∑
n=0

λ2n

(2n)!
E(F (2n)(t)) ≤ eλ

2r/2

Choosing λ2 = 2n/r gives

E(F (2n)(t)) ≤ (2n)!
(

2n
r

)−n
en ≤ Cn!(2r)n

for some constant C. Therefore

E(eλF
2(t)) ≤ C

∞∑
0

(2λr)n <∞

whenever λ < 1/2r. Since this holds for almost every t, we have

E
(∫ 2π

0

eλF
2(t) dt

)
=
∫ 2π

0

E(eλF
2(t)) dt <∞

which means
∫

T e
λF 2(t) dt < ∞ almost surely whenever λ < 1/2r. This implies that F ∈ Lp(T)

almost surely for 1 ≤ p <∞, since the exponential function grows faster than any power of F (t). �

It is not possible to go further and claim that F (t) is bounded, which is shown as follows.

Construction 6.8. There exists a trigonometric series g(t) =
∑∞

0 pncos(nt+ φn) such that
g ∈ Lp(T) for 1 ≤ p <∞, but g is unbounded.

Let n1, n2, n3, . . . be an increasing sequence of integers such that, nj+1 > 6nj for some ε > 0,
and let φ1, φ2, . . . be a sequence of real numbers.

Claim: For k ∈ N, there exists a connected interval Ik ⊂ T such that meas Ik = 3π
4nk

and
cos(nkt+ φk) > α for t ∈ Ik for some small α > 0.

Proof. We will use a proof by induction. Clearly this is true for k = 1. Assume the claim is true for
some j ∈ N. Consider gj+1(t) = cos(nj+1t+ φk+1).

Period(gj+1) =
2π
nj+1

<
π

3nj
<

1
2
|Ij |

Therefore, gj+1 completes two entire periods on Ik, and the conclusion follows from the properties
of cosine. �

Taking the limit as k →∞ shows that there is some t0 such that cos(nkt0 +φk) > α for all k ∈ N.
Letting pk = 1/k, it follows that

∑∞
1 pk cos(nkt0 +φk) =∞ even though

∑∞
1 p2

k <∞, which shows
that

∑∞
1 pk cos(nkt + φk) is not bounded even though it is almost surely in Lp(T) for 1 ≤ p < ∞

by Lemma 6.7.

Now we combine all the results from this section into our main result, the Paley-Zygmund Theo-
rem.

Theorem 6.9. Suppose that supn E(X4
n)/E(X2

n) <∞. Then,

• If
∑∞

0 E(X2
n) <∞, (6.1) converges almost surely almost everywhere to a function F (t) such

that F (t) ∈ Lp(T) for 1 ≤ p <∞.
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• If
∑∞

0 E(X2
n) =∞, (6.1) diverges almost surely almost everywhere and {Xn} almost surely

does not represent the Fourier series of a function in Lp(T) for 1 ≤ p <∞.

Proof. If
∑∞

0 E(X2
n) < ∞, then by Theorem 5.19

∑∞
0 X2

n < ∞ almost surely, and the conclusion
follows from Lemma 6.7.

If
∑∞

0 E(X2
n) = ∞, then by Theorem 5.19

∑∞
0 X2

n = ∞ almost surely, and the conclusion follows
from Lemma 6.5 and Lemma 6.6. �
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