
Littlewood’s conjecture on exponential sums

Let T denote R mod 2π. We are interested in functions on T of the form

f(θ) = eia1θ + eia2θ + · · ·+ eianθ (1)

where a1 < a2 < · · · < an are distinct integers (positive, negative, or zero).

We have f(0) = n, and the L2 norm of f is
√
n. A conjecture credited to

Littlewood [2], concerning the L1 norm of a function f of the form (1), was

finally proved in 1981 [3].

Theorem 1 There exists an absolute positive constant C such that if f is

any function of the form (1), then

1

2π

∫ 2π

0

|f(θ)| dθ ≥ C log n.

We will follow the proofs appearing in [3] and in Section 9.6 of [1]. Before

proving Theorem 1, we give some definitions and facts about Fourier series.

We let L2(T) denote the set of all square-integrable functions on T (that

is, functions φ : T → C such that
∫ 2π

0
|φ(θ)|2 dθ is finite). Technically, the

elements of L2(T) are equivalence classes of functions (two functions are

equivalent if they agree almost everywhere) but there are certain subtleties

we will not explore in detail.

For φ ∈ L2(T), we define the Fourier coefficients

φ̂(k) =
1

2π

∫ 2π

0

φ(θ)e−ikθdθ

where k ∈ {. . . ,−2,−1, 0, 1, 2, . . .}. If we let `2 denote the set of two-sided

sequences {ck}∞−∞ of complex numbers such that
∑∞
−∞ |ck|

2 converges, we

then have a one-to-one correspondence between L2(T) and `2.
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That is, given φ ∈ L2(T), its Fourier coefficients satisfy
∑∞
−∞ |φ̂(k)|2 < ∞,

and given complex numbers {ck}∞−∞ satisfying
∑∞
−∞ |ck|

2 < ∞, the series∑∞
−∞ cke

ikθ converges in the L2 norm to a function in L2(T).

We define the usual inner product on L2(T):

〈φ, ψ〉 =
1

2π

∫ 2π

0

φ(θ)ψ(θ)dθ.

The norm induced by this inner product is the usual L2 norm:

√
〈φ, φ〉 = ‖φ‖2 =

(
1

2π

∫ 2π

0

|φ(θ)|2 dθ
)1/2

.

We have the Cauchy-Schwarz inequality,

|〈φ, ψ〉| ≤ ‖φ‖2 ‖ψ‖2 ,

and we can also express the inner product and norm in terms of the Fourier

coefficients:

〈φ, ψ〉 =
∞∑
−∞

ckdk, (2)

‖φ‖2 =

(
∞∑
−∞

|ck|2
)1/2

, (3)

where ck = φ̂(k) and dk = ψ̂(k). Also useful to us is a fact about Fourier

coefficients of products of functions. Observe that

φ̂ψ(k) =
1

2π

∫ 2π

0

φ(θ)ψ(θ)e−ikθdθ = 〈φ(θ), ψ(θ)eikθ〉

so, by Cauchy-Schwarz, we have

|φ̂ψ(k)| ≤ ‖φ(θ)‖2‖ψ(θ)eikθ‖2

or equivalently,

|φ̂ψ(k)| ≤ ‖φ‖2 ‖ψ‖2 . (4)
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In general, we say φ ∈ L2(T) has “nonpositive support” if φ̂(k) = 0 for all

positive k (loosely, if φ is a combination of nonpositive powers of eiθ). We

note that if φ and ψ have nonpositive support, then φ+ψ, φψ, eφ, and e−φ

all have nonpositive support. To see this, observe that if we have

φ(θ) = c0 + c1e
−iθ + c2e

−i2θ + · · ·
ψ(θ) = d0 + d1e

−iθ + d2e
−i2θ + · · ·

then we have

φ(θ) + ψ(θ) = (c0+d0) + (c1+d1)e
−iθ + (c2+d2)e

−i2θ + · · ·
φ(θ)ψ(θ) = (c0d0) + (c0d1+c1d0)e

−iθ + (c0d2+c1d1+c2d0)e
−i2θ + · · ·

and we also have

eφ = 1 +
φ

1!
+
φ2

2!
+
φ3

3!
+ · · ·

e−φ = 1− φ

1!
+
φ2

2!
− φ3

3!
+ · · ·

both of which are sums of functions with nonpositive support. (To state these

results precisely involves convergence questions which we do not discuss in

detail.) We now state and prove some lemmas. One fact we will use is that

Re(z) ≥ 0 implies |e−z| ≤ 1 (because |e−x−iy| = |e−xe−iy| = |e−x| = e−x).

Lemma 2 Suppose g ∈ L2(T) is real-valued and nonnegative. Then there

exists h ∈ L2(T) such that:

• Re(h) = g,

• h has nonpositive support,

• e−h has nonpositive support,

•
∣∣e−h∣∣ ≤ 1,

• ‖h‖2 ≤
√

2 ‖g‖2.
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Proof. Let g(θ) =
∑∞
−∞ cke

ikθ. Since g is real-valued, it follows that ck = c−k.

We have

g(θ) = · · ·+ c2e
−i2θ + c1e

−iθ + c0 + c1e
iθ + c2e

i2θ + · · ·
= c0 + 2c1 cos θ + 2c2 cos 2θ + · · ·
= c0 + 2c1 cos(−θ) + 2c2 cos(−2θ) + · · · .

If we choose

h(θ) = c0 + 2c1e
−iθ + 2c2e

−i2θ + · · ·

then Re(h) = g, and h has nonpositive support. It then follows from an

earlier remark that e−h has nonpositive support, and it follows from another

earlier remark that
∣∣e−h∣∣ ≤ 1. Finally, we note that

‖h‖22 = |c0|2 + 4 |c1|2 + 4 |c2|2 + · · ·
≤ 2(|c0|2 + 2 |c1|2 + 2 |c2|2 + · · · ) = 2 ‖g‖22 .

This completes the proof of Lemma 2.

Lemma 3 If w is a complex number with Re(w) ≥ 0, then |e−w − 1| ≤ |w|.

Proof. Consider the integral ∫
γ

−e−zdz (5)

where γ is the line segment from z = 0 to z = w. We can parametrize γ by

z = wt where 0 ≤ t ≤ 1. Then dz = w dt, and we have∫
γ

−e−zdz =

∫ 1

0

−e−wtw dt =
[
e−wt

]t=1

t=0
= e−w − 1.

So the absolute value of the integral (5) is |e−w − 1|. But also, the integrand

satisfies |−e−z| ≤ 1 since Re(z) ≥ 0, and we are integrating over a line

segment of length |w|. This completes the proof of Lemma 3.
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Corollary. If h ∈ L2(T) satisfies Re(h) ≥ 0, then
∥∥e−h − 1

∥∥
2
≤ ‖h‖2.

Proof.

∥∥e−h − 1
∥∥2

2
=

1

2π

∫ 2π

0

∣∣e−h(θ) − 1
∣∣2 dθ ≤ 1

2π

∫ 2π

0

|h(θ)|2 dθ = ‖h‖22 .

Proof of Theorem 1. As in the statement of the theorem, let

f(θ) = eia1θ + · · ·+ eianθ

with integers a1 < · · · < an. Choose m so that

4m+1 − 1

4− 1
= 1 + 4 + 42 + · · ·+ 4m ≤ n < 1 + 4 + 42 + · · ·+ 4m+1 =

4m+2 − 1

4− 1

which implies m = blog(3n+ 1)/ log 4c − 1. Then define

S0 = {a1}
S1 = {a2, . . . , a5}, so |S1| = 4

S2 = {a6, . . . , a21}, so |S2| = 16

and in general, if Sj−1 = {ak, . . . , a`}, we define Sj = {a`+1, . . . , a`+4j} for

j ≤ m (so |Sj| = 4j). Also, let T = {a1, . . . , an} \ (S0 ∪ · · · ∪ Sm). Define

q0(θ) = eia1θ

q1(θ) =
1

4

(
eia2θ + · · ·+ eia5θ

)
q2(θ) =

1

16

(
eia6θ + · · ·+ eia21θ

)
and in general, qj(θ) = 1

4j

∑
a∈Sj

eiaθ, for all j ≤ m. We note that |qj(θ)| ≤ 1,

and it is routine to verify that ‖qj‖2 = 1/2j.

Here is a sketch of the proof. We will construct a function φ that satisfies

|φ(θ)| ≤ 1 and whose Fourier coefficients satisfy the following. If a ∈ T , we
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will have φ̂(a) = 0, and if a ∈ S0 ∪ · · · ∪ Sm, then φ̂(a) will be “close” to

ψ̂(a), where

ψ(θ) =
1

5

(
q0(θ) + q1(θ) + q2(θ) + · · ·+ qm(θ)

)
. (6)

Using (2), we would then have

1

2π

∫ 2π

0

φ(θ)f(θ)dθ = 〈φ, f〉 =
m∑
j=0

∑
a∈Sj

φ̂(a)f̂(a) =
m∑
j=0

∑
a∈Sj

φ̂(a) (7)

but also∣∣∣∣ 1

2π

∫ 2π

0

φ(θ)f(θ)dθ

∣∣∣∣ ≤ 1

2π

∫ 2π

0

|φ(θ)||f(θ)|dθ ≤ 1

2π

∫ 2π

0

|f(θ)| dθ,

implying

1

2π

∫ 2π

0

|f(θ)| dθ ≥

∣∣∣∣∣∣
m∑
j=0

∑
a∈Sj

φ̂(a)

∣∣∣∣∣∣ . (8)

Note that we have not yet used the assumption that φ̂(a) is “close” to ψ̂(a).

So we have shown that (8) holds for any φ that satisfies |φ| ≤ 1 and satisfies

φ̂(a) = 0 for a ∈ T .

If we furthermore have φ̂(a) “close” to ψ̂(a), then in (8), we would have

m∑
j=0

∑
a∈Sj

φ̂(a) ≈
m∑
j=0

1

5

∑
a∈Sj

1

4j
=

1

5
(m+ 1) ∼ C log n.

What remains, of course, is to actually construct φ, as well as to quantify

how “close” we can make φ̂(a) to ψ̂(a).

To this end, for each j ∈ {1, . . . ,m}, we let hj(θ) be the function obtained

from g(θ) = 1
4
|qj(θ)| as in Lemma 2. That is, we have

• Re(hj) = 1
4
|qj|,
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• hj has nonpositive support,

• e−hj has nonpositive support,

•
∣∣e−hj

∣∣ ≤ 1,

• ‖hj‖2 ≤
√

2 · 1
4
‖qj‖2 =

√
2 · 1

2j+2 .

We then define φ0 = 1
5
q0, and for j ∈ {1, . . . ,m}, we define

φj = φj−1 · e−hj +
1

5
qj. (9)

We can prove by induction that |φj| ≤ 1 for each j. Notice |φ0| = 1
5
|q0| = 1

5
.

Assuming |φj−1| ≤ 1, then (9) implies

|φj| ≤ |φj−1|
∣∣e−hj

∣∣+
1

5
|qj|

≤
∣∣e−hj

∣∣+
1

5
|qj|

= e−Re(hj) +
1

5
|qj|

= e−|qj |/4 +
1

5
|qj| .

This is bounded above by 1 because the inequality e−x/4 + 1
5
x ≤ 1 holds for

all x ∈ [0, 1]. Now, from (9), we have

φ0 =
1

5
q0

φ1 =
1

5

(
q0e
−h1 + q1

)
φ2 =

1

5

(
q0e
−h1−h2 + q1e

−h2 + q2

)
...

φm =
1

5

(
q0e
−h1−···−hm + q1e

−h2−···−hm + · · ·+ qm−1e
−hm + qm

)
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Note that each function of the form e−hj−···−hm has nonpositive support.

It follows that qj−1e
−hj−···−hm is the product of qj−1 and a combination of

nonpositive powers of eiθ. But all powers eiaθ appearing in the Fourier series

for qj−1 satisfy a ∈ Sj−1. This implies that all powers eiaθ appearing in the

Fourier series for qj−1e
−hj−···−hm satisfy a /∈ Sj ∪ · · · ∪ Sm ∪ T .

We now take φ = φm. Note that if a ∈ T , then φ̂(a) = 0. We now consider

a ∈ Sj for some j ∈ {0, . . . ,m} and try to show that φ̂(a) is “close” to ψ̂(a),

where ψ is as defined in (6).

For a ∈ Sj, our earlier remarks imply that the coefficient of eiaθ in φ = φm is

the same as the coefficient of eiaθ in

p1 :=
1

5

(
qje
−hj+1−···−hm + qj+1e

−hj+2−···−hm + · · ·+ qm−1e
−hm + qm

)
.

We want to show that this is “close” to the same as the coefficient of eiaθ in
1
5
qj, or equivalently, the coefficient of eiaθ in

p2 :=
1

5

(
qj + qj+1 + · · ·+ qm−1 + qm

)
.

Observe that we have

p1−p2 =
1

5

(
qj(e

−hj+1−···−hm−1)+qj+1(e
−hj+2−···−hm−1)+· · ·+qm−1(e

−hm−1)
)

and we also have

p̂1(a)− p̂2(a) = p̂1 − p2(a) =
1

5

(
{qj(e−hj+1−···−hm − 1)}̂(a)

+ {qj+1(e
−hj+2−···−hm − 1)}̂(a)

+ · · ·

+ {qm−1(e
−hm − 1)}̂(a)

)
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and therefore

|p̂1(a)− p̂2(a)| ≤ 1

5

( ∣∣{qj(e−hj+1−···−hm − 1)}̂(a)
∣∣

+
∣∣{qj+1(e

−hj+2−···−hm − 1)}̂(a)
∣∣

+ · · ·

+
∣∣{qm−1(e

−hm − 1)}̂(a)
∣∣ ).

We now observe that if ` ∈ {j, . . . ,m− 1}, then (4) implies∣∣{q`(e−h`+1−···−hm − 1)}̂(a)
∣∣ ≤ ‖q`‖2 ∥∥e−h`+1−···−hm − 1

∥∥
2

≤ 1

2`
‖h`+1 + · · ·+ hm‖2

where we have used the corollary to Lemma 3. Continuing, we have∣∣{q`(e−h`+1−···−hm − 1)}̂(a)
∣∣ ≤ 1

2`

(
‖h`+1‖2 + · · ·+ ‖hm‖2

)
≤ 1

2`

( √2

2`+3
+ · · ·+

√
2

2m+2

)
<

1

2`

( √2

2`+2

)
=

√
2

4
· 1

4`
.

It follows that we have

|p̂1(a)− p̂2(a)| < 1

5

(√2

4
· 1

4j
+

√
2

4
· 1

4j+1
+ · · · +

√
2

4
· 1

4m−1

)
=

√
2

20

( 1

4j
+

1

4j+1
+ · · ·+ 1

4m−1

)
<

√
2

20
· 4

3
· 1

4j

That is, we have |p̂1(a)− p̂2(a)| < (
√

2/15) · (1/4j). We also have p̂2(a) =

(1/5) · (1/4j). It follows that p̂1(a) is a complex number of the form

p̂1(a) =
1

5
· 1

4j
+ δa

where δa is a complex number satisfying |δa| < (
√

2/15) · (1/4j). That is, we

have shown that for a ∈ Sj, we have

φ̂(a) =
1

5
· 1

4j
+ δa
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where δa is as described above. Applying this to (8), we note that we have∑
a∈Sj

φ̂(a) =
∑
a∈Sj

(1

5
· 1

4j
+ δa

)
=

1

5
+
∑
a∈Sj

δa

and we note that εj :=
∑

a∈Sj
δa is a complex number whose modulus is

bounded above by 4j · (
√

2/15) · (1/4j) =
√

2/15. We then have

m∑
j=0

∑
a∈Sj

φ̂(a) =
m∑
j=0

(1

5
+ εj

)
=

1

5
(m+ 1) +

m∑
j=0

εj =
3

15
(m+ 1) +

m∑
j=0

εj

and we note that
∑m

j=0 εj is a complex number satisfying∣∣∣∣∣
m∑
j=0

εj

∣∣∣∣∣ ≤
√

2

15
(m+ 1).

It follows that
∑m

j=0

∑
a∈Sj

φ̂(a) is a complex number satisfying

3−
√

2

15
(m+ 1) ≤

∣∣∣∣∣∣
m∑
j=0

∑
a∈Sj

φ̂(a)

∣∣∣∣∣∣ ≤ 3+
√

2

15
(m+ 1)

From (8), it then follows that 1
2π

∫ 2π

0
|f(θ)| dθ is bounded below by a constant

multiple of log n.
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