The Development of the Modern Integration Theory from Cauchy to
Lebesgue: a Historical and Epistemological Study with Didactical
Implications

Georgeana Bobos-Kristof

A Thesis
in
The Department
of

Mathematics and Statistics

Presented in Partial Fulfillment of the Requirements
for the Master of Science (Mathematics) at
Concordia University
Montréal, Québec, Canada

August 2007

(©Georgeana Bobos-Kristof, 2007



UMI Number: MR34615

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform MR34615
Copyright 2008 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, Ml 48106-1346



ABSTRACT
The development of the modern integration theory from
Cauchy to Lebesgue: a historical and epistemological study
with didactical implications

Georgeana Bobos-Kristof

In this thesis, we describe the historical development of the modern integration theory
by presenting the key ideas and insights that led to its shaping, from the first rigorous
definition of the definite integral given by Cauchy in 1823, to Lebesgue’s theory as
it first appeared in his doctoral thesis of 1902. In the final part we also present
recent approaches in integration theory. We show that various problems motivated
the enrichment of the notion of integral, while one in particular constituted the most
important trigger of this development from the beginnings well into the 20th century:
the search for a better understanding of Fourier series.

For our study, we principally look at original sources, and we provide detailed
proofs for important results, often by elaborating on the authors’ sketchy or heuristic
arguments, making thus the original results accessible to the modern reader.

We then use this historical and epistemological analysis to raise some issues
related to the teaching of integration at various levels at university, i.e., in calculus,
analysis and measure theory courses. For this, we look at some typical textbooks
and, inspired by the historical analysis, we give some suggestions for teaching. Our
findings show that there might be some conceptual gaps between subsequent levels

that are not necessarily insuperable, but require careful didactical analysis.
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Chapter 1

INTRODUCTION

1.1 Scope of the thesis

The foundations of the modern theory of integration were laid by the French math-
ematician Henri Lebesgue at the beginning of the 20th century. Around the 1850’s,
Riemann’s interest in integrable functions was at the start of what was to become,
with the work of Lebesgue about a half a century later, a greatly generalized and
abstract theory of integrals. The major breakthrough of Riemann’s theory was that,
in variance with the earlier work in integration, he considered the class of functions
to which the process of integration can be applied. In other words, he was the first
mathematician to ask the question: When can we integrate? He used a definition of
the integral that was very close to the earlier one of Cauchy, but, unlike Cauchy, he
not only considered continuous functions, but also attempted — and succeeded — to
establish a necessary and sufficient criterion for integrability, significantly weakening
the assumptions on the function to be integrated. At the time, the class of func-
tions that fell under his definition of integrable seemed to have comprised all known
functions, and, indeed, seemed to assure the largest generality possible.

It was not until the full development of a measure theoretic point of view and

by complete withdrawal from the classical definition of the integral, which involved



the Cauchy sums, that a further generalization of the integral could be afforded, and
ultimately realized by Lebesgue.
In Riemann’s theory, the integral of a function f on an interval [a,b] can be

approximated by sums of the form:

n

Z f(x:) 1(L;)

i=1
where I, I, .. ., I, are intervals such that | J]_, I; = [a,b], I(L;) is the length of the
interval I;, and x; is an arbitrary value in I;. Now, Lebesgue’s theory generalizes the

notion of length to that of measure, the class of sets I; to measurable sets, and the class

of functions to which this process is applicable to the class of measurable functions.

Countable unions and intersections of measurable sets are also measurable and a
{positive) measure is countably additive, that is, if {I,} is a countable collection of

pairwise disjoint measurable sets then:

l(U ) = Zl(ln)

The general aim of this project is to the describe the mathematical develop-
ments that took place historically to allow the generalization of the notion of definite
integral. As is the case for other concepts and theories in mathematics, these devel-
opments were not, by far, as natural as it may appear from the above paragraphs.
Integrals were known and used for centuries before the developments we have de-
scribed. But it took Cauchy’s preoccupation with rigor to provide a definition of
the definite integral, Riemann’s acceptance of the modern concept of function to in-
troduce the concept of integrability, Cantor’s new radical approach to lay convenient
conceptual foundations for the definitions of measure related notions, a formalization
of geometric intuitions of the integral undertaken by Peano and Jordan through the

notions of content, and finally, Borel’s insight to provide the desired properties of a



generalized measure, before Lebesgue took the apparently distinct perspectives and
put them together to create a new theory of integration.

These series of insights were not motivated solely by mathematicians’ desire to
create a more general theory of integration. The results mentioned above have often
been obtained in the context of seeking solutions to very different problems, sometimes
without realizing their usefulness for a general theory of integration. For example,
commenting on his own notion of measure, Borel [5], goes so far as to state that
it is totally unrelated to integration. We will show that various problems/interests,
of philosophical, mathematical, or physical nature motivated the enrichment of the
notion of integral, and one, in particular, constituted the most important trigger of
this development: the search for a better understanding of Fourier series. Fourier’s
original work was fraught with contradictions, but it contained bold and broad in-
sights whose exploration kept mathematicians busy for a century and more. This
historical fact illustrates well the view, expressed in the following citation from Davis
and Hersh’s The Mathematical Experience [19] , “How completely inadequate it is to
limit the history of mathematics to the history of what has been formalized and made
rigorous. The unrigorous and contradictory play important parts in this history” (see
also Byers, How mathematicians think: using ambiguity, contradiction, and paradoz
to create mathematics [7]).

Another aim of the study is to explain the significance of Lebesgue’s work,
beyond the elegant generalization it provided. As Lebesgue stated ([37], p. 194):
”[...] a generalization made not for the vain pleasure of generalizing but in order to
solve [...] problems is always a fruitful generalization”. Our argument will be based
on the application of the Lebesgue integral in Fourier analysis.

Finally, we attach a didactical value to our study. Integration is one topic
that recurs at all levels in university mathematics: once taught in Calculus courses, it

is then “re-taught” in undergraduate analysis, undergraduate and graduate measure



theory courses, using different mathematical and didactic organizations of the content
taught (see Chevallard [14]). In the thesis, we want to examine these organizations in
more detail, and, by drawing inspiration from the gradual enrichment of the notion of
integral in history, to call attention to the objectives that the teaching of integration
has or should have and to the problems that may arise in this context at the different

levels.

1.2 Context and originality of our study

In the previous section we presented an abridged “story” of the key developments
that paved the way to Lebesgue’s theory of integration. In the study, we will develop
this story in more detail: the relevant mathematical results will be presented in full.
However, in our approach we will try to bring out the great ideas that emerged from
each author’s work to come together in the new theory.

On the other hand, we will try not to give the impression that the development
of the theory has been taking place in a straightforward, natural and cumulative
way. In fact, Lebesgue’s inspiration came from apparently incompatible perspectives,
which he brought together to create a new, more powerful theory. We will therefore
also draw attention to the motivations that led to the discovery of the presented
mathematical results.

Thus we will focus more on the conceptual enrichment of the notion of integral,
and on the problems of various nature that triggered it, and not so much on providing
a chronicle of actual historical facts and events.

A similar approach is undertaken by Hawkins [27] in his book Lebesgue’s theory
of integration. Its origins and development. He underlines the fact that the results
obtained by Lebesgue’s predecessors had a great significance for the development

of what he terms as “the first genuine theory of integration” ([27], p.ix.), because



they provided Lebesgue both with a useful set-theoretic support and with unresolved
problems that would allow and motivate the new theory. His historical account
comprehensively traces these contributions and the problems that triggered them
and, in that, it served as a guide for us. Our study is certainly of a narrower breadth
in the sense that it is less concerned with the historical aspects largely portrayed by
Hawkins. Given the scope of the thesis we cannot give justice to the many aspects
that were part of the historical context, and which have certainly contributed to
the development of integration theory as we know it today. We will focus on only
a few ideas, that we have considered to be the key concepts in the advancement
of the theory, but we will provide, for these results, a more detailed mathematical
exposition, by principally looking at the original sources. In most instances, however,
we will “enhance” the original proofs, which were often quite succinct and heuristic
in nature, by providing more details and thus making them readable by the modern
audience.

In that we are closer to Pesin’s [42] approach, who comprises a higher level
of mathematical detail, with complete definitions, theorems and proofs from original
papers and treatises. His book, however, is closer to a survey of the body of mathe-
matical results obtained historically, being less concerned with the various motivations
that constituted the driving forces behind the mathematical results presented.

Van Dalen and Monna’s study [38] gives an overview of the developments in
set theory and integration in two separate sections of the book, also by giving a
chronological presentation of the relevant mathematical results. To some extent, this
approach does not illustrate the fact that the two are inextricably linked. Neverthe-
less, their book was an important source for our account of the development of the
measure-theoretic support for integration theory.

In this context, with our approach, we endeavor to address a larger audience:

our study is detailed enough mathematically to be interesting for mathematicians and



mathematics students interested in the development of classical mathematical ideas,
without, however, obscuring the reading with too many historical factual details.
Besides, as we have mentioned earlier, we will also provide some didactical reflections,
and thus appeal to readers interested in the teaching of the subject: mathematics

educators or instructors of calculus or analysis.

1.3 Outline of the thesis

We begin the second chapter with a short overview of the existing knowledge in the
domain of integration, with the advent of calculus by Newton and Leibniz. The
main body of this chapter, however, is devoted to the contributions of Cauchy and
Riemann, as we believe that the beginning of integration as a theory is marked by the
definition of the definite integral introduced by Cauchy. An essential section in this
chapter describes the Fourier series problem, that initiated Riemann’s motivation to
look more closely at the notion of integration. We also include here the convenient
reformulation of Riemann’s definition and criterion of integrability provided by Peano
and Darboux. Another section is aimed at describing the importance of Riemann’s
insight in the subsequent development of the theory of integration. We conclude this
chapter by reviewing the drawbacks of Riemann’s theory that became evident by the
end of the century.

The third chapter addresses the development of measure-theoretic notions and
their relation to integration. Here, we highlight the insights provided by the works
of Cantor, Peano, Jordan, and Borel, which made the generalizability of Riemann’s
definition of the integral more apparent.

In the fourth chapter we describe Lebesgue’s notion of integral and measure,
as introduced in his doctoral thesis. We will also include, in this chapter, a section

that illustrates the significance of this new integration theory.



In the final chapter we look at mathematical and didactic organizations of
integration theories in a few modern textbooks used in calculus, analysis and measure
theory courses. Our critical reflection on these organizations is inspired by our study
of the historical development of these theories. We conclude the thesis with some

thoughts at the end of this journey through the insights that shaped the modern

integration theory.



Chapter 2

THE CAUCHY AND RIEMANN INTEGRALS: THE
BEGINNINGS OF AN INTEGRATION THEORY

In this chapter we look at the development of modern integration theory, the be-
ginnings of which, we will show, were marked by the first rigorous definition of the
definite integral, given by Cauchy at the beginning of the 19th century. We describe
in detail the mathematical results obtained by Cauchy and Riemann on the topic of

integration, focusing on the gradual enrichment of the concept of integral.

2.1 Introduction

Integration goes back far more than the above-mentioned 19th century mark. It
first arose as a method for finding areas. Its roots can be found in the work of
Archimedes (3rd century BC), when a given area was approximated by dividing it
into rectangles or other shapes of known area, which were made smaller and smaller
— as to approximate the desired area closely — through some sort of limiting process
(see, for example, [38]).

In the 17th century, in The Mathematical Principles of Natural Philosophy
[39], Newton studied the computation of areas through the problem of “quadrature”,

i.e. the problem of finding a square whose area is equal to a given area. He gave a
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procedure of calculating areas under curves, and justified it by an argument that may

not satisfy the modern requirements of rigor, but is certainly sound. We summarize

it below:

To approximate the area in the figure, Newton divides the domain into equal
subintervals (see Figure 2.1). To each subinterval there correspond two rectangles:
one whose height is the maximum value of the function on that interval and the other
whose height is the minimum value of the function on the same interval. The desired
area is between the sum of the areas of the circumscribed rectangles and the sum of
the areas of the inscribed rectangles. The difference between these two areas is the
sum of the areas of the rectangles aKbl, bLcm, cMdn, dDFEo. Now, if these rectangles

were all aligned under the upper most rectangle, aKbl, it’s easy to see that the sum



of their areas is equal to the change in height of the function multiplied by the length
of any subinterval. Therefore, the difference in the areas can be made to approach
zero, by taking smaller and smaller subintervals. According to Newton, all these areas
approach the same value as the length of the subinterval approaches 0.

Newton also considers the case where the subintervals are of different length by
drawing the dotted line fF' (see Figure 2.1). He notes that the sum of the differences
of the areas is still less than the change in height multiplied by the length of the
longest subinterval. This means that one will get the same limit for the ratio if the
length of the longest subinterval approaches 0.

For Leibniz these small increments existed as a special kind of numbers: n-
finitesimals (see [15]). He came up with the notation dz to stand for the difference
between two infinitely close values of x, dy for the difference of two infinitely close
values of y, and dy/dx for their ratio. He eventually used the following notation to
denote the total area under the curve, obtained as a sum (an elongated S) of the

increments in the area:

/ydx

As Cooke [15] shows, this notation, although lacking a logical basis, was very
productive at the time. The fundamental theorem of calculus followed somewhat more
intuitively from his approach and notation: “Leibniz could argue that the ordinates
to the points on a curve — summing all the lines in the figure — amounted to summing
infinitesimal differences in area dA, which collapsed to give the total area. Since it
was obvious that on the infinitesimal level dA = ydz, the fundamental theorem of
calculus was an immediate consequence” ([15], p. 470).

The dual understanding of the integral — as a limit of sums of products and
as the inverse of differentiation — that came about with Newton’s and Leibniz’s work,

is what lies at the heart of calculus. Until the 19th century this understanding
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was certainly held and exploited by the scientific community, but a definition of the
integral as the sum of products of f(x) times the infinitesimal dx was avoided, because
this would have required a precise definition of the notion of ”infinitesimal”. Instead,
it became customary to define integration as the inverse of differentiation, in other
words, [ applied to a function f(z) is an operator that returns the function(s) whose

derivative is f.

2.2 Problems with calculus

By the turn of the 18th century, much of what is today is called Calculus was already
well known and included in the period’s textbooks. The rules for differentiating and
integrating elementary functions, the expansion of functions into power series or the
solving of simple differential equations were used as powerful tools of Newton and
Leibniz’s calculus for a century thercafter. However, several pressing mathematical
and foundational questions started to arise, in particular in relation to the notion of
integral. The most obvious one was the problem of nonelementary integrals: one could
differentiate functions by an algorithmic procedure, but that was not the case for in-
tegration [{15]. Functions arising in fairly basic physical situations, such as sinz/z
or e=*, turned out not to be the derivatives of elementary functions (an elementary
function is defined as a function that can be obtained by addition, multiplication, di-
vision and composition from the rational functions, the trigonometric functions and
their inverses, and the exponential and logarithmic functions). Another set of prob-
lems came up in relation to the subject of differential equations, where integration had
become the main tool. Here, in more and more cases, again, modeling physical, and
especially mechanical, phenomena, the equations were not reducible to a form where
the solution could be obtained by integrating both sides to eliminate the derivatives.

Finally, the foundational difficulties related to the introduction of the “infinite” in

11



mathematics, specifically through the use of “infinitesimal” methods, first raised in

1734 by Berkley, were the source of many a debate during the eighteenth century [15].

2.3 Cauchy: the definition of the definite integral

Cauchy managed to address some aspects of these problems, in particular those re-
garding the foundational aspects of calculus. He is largely recognized to be the first
mathematician who succeeded in providing the much needed rigor in calculus, by
finding a way to avoid infinitesimals, and thus making the passage from calculus
(“a technology” in terms of Chevallard’s praxeology theory, [14]) to a theory of this
calculus, now called mathematical analysis. Limiting processes had been used as a
technique long before Cauchy, but he is generally credited with having constructed
the notion of limit as a fundamental concept of analysis. In his Cours d’Analyse [11]
he also gave a definition of continuity that was virtually the same as the one we are
using today: ”[...] la fonction f(x) sera, entre les deux limites assignées & la variable
x, fonction continue de cette variable, si, pour chaque valeur de z intermédiaire entre
ces limites, la valeur numérique de la différence f(x + a) — f(x) décroit indéfiniment
avec celle de a 7.

With Cauchy, integration knew an important theoretical advancement: in
1823, he defined the definite integral of a continuous function using finite approxi-
mating sums [12]:

Let f : [a,b] — R be a continuous function. Let P = {x;}?, be a partition
of [a,b],ie. a=x9 < Ty < -+ < Tp_y < T, = b, and define the norm of the partition

P as the number

12



The Cauchy sum, associated to f and a partition P, is defined by

S(P) = Z(ﬂﬂi — Ti1) f(@i1).

The sums S posses a limit as the norm of P approaches 0, which is called the definite
integral, and denoted by fab f(z) dx.

Using various theorems of his Cours d’Analyse [11], Cauchy proved the exis-
tence of this limit, by showing that for any two partitions P, the corresponding sums
approach the same limit, i.e.: the difference between them can be made arbitrarily
small by restricting the length of the subintervals they form. Although his proof is
somewhat vague by today’s standards — for instance, Cauchy uses uniform continuity
without distinguishing it from continuity — it contains the essential ideas of the proof
we provide below:

Define, first, for every 4 > 0, the modulus of continuity (a term which was

introduced later by Lebesgue [56]):

ws(f) =sup {|f(x) = F@W)| : m,y € [a,b], |z —y| < 6} (2.1)

and note that the following equality describes the property of uniform continuity of

f:
lim ws(f) = 0. (2.2)

80

At the time, this fact was unknown — or at least it wasn’t as clear as it is to
us today — but Cauchy seemed to have intuited this property and he used it somehow
between the lines.

Assume that P’ = {y;}72, is a partition of [a,b], which is finer than P, i.e.

{z;} C {y;}. Then, for two consecutive points of P, a < x;_; < x; < b, we have:

Tt = Yip, < Yipt1 < Yipap = Ty,

13



where y;,, . .., ¥i.4p belong to P'. Then

(@ — zim1) F(@i-1) = D Winks = Yonbs—1)f(@im1),

hence:

(@; = zi1) f@ie1) — X:(yim = Yiprs—1) [ Wir4s-1)
= i(yim = Yiprs—1)f (Xim1) — ‘é(yim = Yirs—1) J Yirs—1)
= é(yms — Yinrs—1) (F(@iz1) = f(Ukts—1))
< g(yik-i—s — Yirs—1) | [(@i1) = f (Yhits-1) |
< (i;(yik+s = yim_l)) sup { |f(x) — f(y)] : 2,y € @iy, 2] }

= (xi—xi—)sup{|f(x) — fW)| : =,y € [wi1, 2] }-

The above supremum actually defines the oscillation of f in [x;—1,2;]. But if

we take into account the definition of the norm of P, and 2.1, we have

sup { |f(x) = f(W)l = 2,y € [@ien, 2] } Swar)(f)

and the above computation amounts to:

(i — 24-1) f(2-1) — Z (Ys — Ys—1) F(Ys-1)| < (@5 — 2im1) wapy (f),

ZTi—1<Ys-1<;

14



which gives:

IS(P) = S = |3 (@ = 2im) aums) = D05 = 950 ()

= Z (x,- - xi_l)f(l'z'—l) - Z (ys - ys—l)f(ys—l)

i=1 2 1%Ys-1<%5

i — Ti1) f(@i1) — Z (¥s — Ys—1)f (ys—1)

i=1 Ti—15Ys—1<%;

IN
£}

3

n

(@: — zim1) wap)(f) = (Z(xi - xz’—l)) wa(p)(f)

= (b~ a)wawr)(f), .

IA

hence

|S(P) = S(P")| £ (b~ a) wacp)(f), (2.3)

which holds for every P’ finer than P.

Let now (P,).>1 be a sequence of partitions such that

Poy1 isfiner than F, and A(F,)+— 0. (2.4)

Then (2.3) is equivalent to

|S(Prip) — S(Po)| < (b—a)wap)(f) forevery n,p>1,

therefore the sequence of reals (S(F,)),>, is a Cauchy sequence, hence it has a limit,
say L.
Now, let (P.),>1 be another sequence of partitions verifying (2.4), having the

limit, say L'. To show that L = L', let Q, = P, U P.. Then @, is a new partition of

15



la, b], which is finer than both P, and P., therefore, by (2.3),
1S(Fn) = S(Qn)] < (b= a)wapa)(f) , [S(Fr) — S(@Qn)] < (b~ a) wacey(f),
and

IL—=L < |L=SEP)|+1S(Fa) — S(Qn)l +S(Qn) — S(B)] + |S(P) — I|

< L= S(B)| + (b — a) war () + (b = a)wapy (F) +S(F) = L]

for every n > 1. Passing to the limit, as n — +o0, gives L = L'.

If follows that L depends only of f, and this number is Cauchy’s definition for
Jof (@) da.

It should be noted that during Cauchy’s time even the concept of real number
was rather blurry and, in fact, Cauchy was the first to define a real number as a limit
of sequences now called Cauchy sequences (see [31]).

Jourdain [31] points out that, by providing this definition for the definite in-
tegral, Cauchy reinstated the sum-conception of integral as the fundamental notion
of integral calculus. While Leibniz conceived the integral calculus as calculus sum-
matorius, in further development of the process of integration, in Euler’s work for
instance, the notion the integration as antidifferentiation became prevalent. In his
Institutionum calculi integralis of 1768, Euler defined integral calculus as a method of
finding, from a given relation of differentials, the relation of the quantities themselves
(see [31]). On the other hand, the sum-conception was used for the approximate
evaluation of integrals. Cauchy’s essential contribution to integration theory is best
captured in the following quote by Jourdain ([31], p. x): “|...] the existence of a
limit - an arithmetical translation of the geometrical “area” — of certain sums formed
with the aid of a continuous function f(x) was proved to exist and called |[...] def-

inite integral [...]. Cauchy’s manner of founding the integral calculus showed, by

16



construction, the existence of the class of functions F(z) which admit for derivative a
given continuous function f(x). Before Cauchy, such integrals were found, and thus
shown to exist, for many f(z)’s; but Cauchy proved the general proposition.”

We would like to add a final remark here: the original Cauchy sum

requires a particular intermediate point in every interval [z;_1, x;], namely the left end-
point z;_;. Now, if we choose an arbitrary system of intermediate points §; € [x;_1, 2],
and set
n

e

— Z — Ti— l ),
then for continuous functions:

n

IS(P) = R(P)| = |) (& — 1) (f(@ie1 — £(&))] <

1=1

< Z — Zim1) |[f(@im1) = f(&)] < (b= a)war)(f)-

It follows that, as A(P) —— 0, R(P) approaches the integral of f on [a, b], as defined
by Cauchy. Riemann’s step forward was to keep the R(P) sums in his definition, but

to drop the assumption of continuity.

2.4 The Fourier series problem

In 1822, in his paper on heat conduction, Fourier [24] studied the possibility of rep-
resenting functions by trigonometric series. A trigonometric series is a series of the

form:
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1 o0
500 + Z(an cos nx + b, sinnx), (2.5)

n=1
where ag,a;,...,b1,bs,... are real numbers.
One can easily observe that it is enough to study trigonometric series in an
interval of length 27, since, if the above series does converge to a sum S(z), then we

have, for any natural number:
Sz + 2nm) = S(x)

The question that interested Fourier was whether a given arbitrary function
can be represented by a trigonometric series. In other words, when can we have, for
a function f(x) defined, say, on [—m, 7]:

1 oo
flz) = 500 + Z(an cos nx + by, sin nx)? (2.6)

n=1

If this were true, i.e., if there exist sequences (a,) and (b,) of real numbers
such that a series of the form (2.5) does converge to f(x), we can use the properties
of trigonometric functions to determine the coefficients a,, b, in terms of f(x). First,

note the following obvious identities:

™
/ sinmzsinnzdr = 7Tomn

—T

is
/ cosmrcosnrdr = momn

-

3
/ sinmxzcosnrdr = 0,

-7

where:
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0 if m#mn,

5m’n -

1 if m=n.

Now, if we multiply both sides of the equations by cos nx and then by sin nz,

and assume that term-by-term integration is allowed, we get:

Ay, = l/ f(x) cosnx dzx,
TJ-x

b, = %/ f(z) sinnzx dz.

The coefficients agp, a1, - .., b1, bs, ... defined by the above integral formulas are
called the Fourier coefficients of f. The series on the right-hand side of the equation
(2.6) is then called the Fourier series of f. This was, in essence, the argument that
Fourier gave in his paper of 1822: if the equation (2.6) can be solved —i.e., if the values
of the infinite number of unknowns ag, ay, ..., b1, b2, ... can be determined — then the
representation must be valid. He further assumed that term-by-term integration of an
infinite series of functions is always possible and used this assumption to determine
the coeflicients. This claim, as we now know, is not always true. There are several
issues with the above calculation. The most important question is related with the
assumption on which it is based: when does a function admit a representation by
Fourier series? To demonstrate the validity of the Fourier series expansion of f one
must start with the coefficients, defined as values of definite integrals, construct the
infinite series shown on the right-hand side of equation (2.6), and then prove that
this series converges to f at each value of z in [—m, 7], considering also the important
question of the validity of term-by-term integration.

But the questions surrounding Fourier’s proposition turned out to be very

powerful triggers for the development of the modern theory of integration. That
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is because the formulation of the results obtained in the study of the possibility to
represent a function by trigonometric series, as we will show, depends on what is
meant by the representation of a function by a series, and how the integrals in the

formulas of the Fouriler coeflicients are understood.

2.5 Riemann: integrable functions

When Riemann turned to the study of the Fourier series in his habilitation thesis
he saw the need to first make some important clarifications about integration before
addressing the main problem, that is, the representability of functions by trigonomet-
ric series [45]. He did this in a short section before the main body of the thesis, in
just four pages. Here, he defined the definite integral and the improper integral, and
gave necessary and sufficient conditions for integrability. He then gave an example of
an integrable function that is discontinuous at every rational number with an even
denominator, showing thus that while continuity is a sufficient condition for integra-
bility, it is far from necessary. Riemann had studied with Dirichlet in Berlin, before
going to Gottingen to complete his doctorate under Gauss’ direction. This collabora-
tion certainly influenced Riemann: it was Dirichlet who, in 1829, called attention to
functions that were discontinuous on an infinite set of points in a finite interval and
to the problem of extending the concept of integral to this kind of functions.

Riemann’s definition of the integral [45] differs from Cauchy’s in the calculation
of the approximating sums: the value of the function is chosen in an arbitrary manner
in the interval [z;_,, x;]. However, the essential step forward is that Riemann replaces
the assumption of continuity by the much weaker one that the sums (Riemann sums)
all converge to a unique limit;:

Let f be a bounded function on [a,b]. For partitions of this interval, P =

{x:}7 o, consider the corresponding Riemann sums: S(P, f) = Y o (z; — xi—1) f(&),
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where & € [z;_1, %]

If these sums approach a unique limit as the norm of the corresponding parti-
tions approaches 0, that is, if lima(py.o S(P, f) exists, then f is said to be Riemann
integrable on [a,b]. The limit lima(pyo S(P, f) is called the definite integral of f on
[a,b], and is denoted by f: f(x)dx

The statement lima(p)o S(P, f) = L, where L is a real number, means that
for every € > 0 there is a 4 > 0, such that, for any partition P with A(P) < §, and

for any possible Riemann sum S(P, f) relative to P, the inequality:
|S(P,f) — Ll <e

is satisfied.

Next, Riemann asks the question: “|...] in what cases does a function admit
integration and in what cases it does not?” ([45], p. 235), which, based on his under-
standing of integration meant: when do the Riemann sums approach a unique limit as
the norm of the corresponding partitions approaches zero? He gives two integrability
conditions. The first states that the function f bounded on [a, ] is integrable if and

only if:

A(Ilijg?-'o((lel + 62D2 +eee 6nDn) = Oa (Cl)

where P = {x;}], is a partition that subdivides the interval [a,b] into intervals of
length &;, while D; represents the oscillation of the function on the interval [z;_, z;.

Riemann did not prove (C1); he used it as an assumption to prove the second

condition for integrability (C2), which is, in fact, known as his criterion of integrabil-
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ity. But, as we show below, (C1) follows from Riemann’s definition of integrability:

Z 0;D; = Z(Mz —m) (T — Zi1)
=1 =1

= z": Mi(z; — xi—1)> - (i m;(; — xi—l))
- i=1

i=1

= §( 7f)_§-(P,f)7
where:
M; =sup{f(x): zis1<z<z}, m=if{f(z): =z <z<x},

S(P, f) and S(P,f) are what we call, after a later development by Darboux, the
upper and lower Darboux sums (see next section).

Obviously, for a given partition P every Riemann sum corresponding to this
partition lies between the upper Darboux sum and the lower Darboux sum. Note
that S(P, f) and S(P, f) may not be Riemann sums since m; and M; may not be
in the range of f (unless f is continuous); however, we can find Riemann sums
that are arbitrarily close to the Darboux sums. Now, f is Riemann integrable if
and only if we can make all Riemann sums to be within ¢ of the specified value
L= fab f(z) dz by restricting the partitions to those with subintervals of length less
than an appropriately chosen ¢ (by definition). This is possible if and only if the
upper and lower Darboux sums for these partitions are also within € of L. Then
Riemann’s (C1) follows from the fact that f is Riemann integrable if and only if we
can make the difference between the upper and lower Darboux sums as small as we

wish by restricting the lengths of the intervals in the partition:

((x; —xi1) <o forall i= Xn:(Mz —m)(x; — xi—1) <€) < (C1).

i=1
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The statement and the proof of the second condition of integrability contain
the real insight into Riemann’s innovation of establishing the notion of integrable
function independently of the continuity assumption:

(C2): A necessary and sufficient condition for a function f to be integrable on
[a,b] is that for any € > 0 and ¢ > 0, there exists d > 0 such that for any partition
P = {x;}?, of [a,b] with norm less than d, the total length of the subintervals
[#i-1, x;] for which the oscillation D; is greater than o is less than .

In modern terms the above condition states that the function is Riemann
integrable if and only if the set of points of discontinuity of the function has Lebesgue
measure zero. Of course, Riemann did not regard it as such, since the measure-
theoretic developments were only to be fully understood and used in the context of
integration about half a century later. We give Riemann’s proof of (C2) below:

Let f be integrable and let A(d) be the least upper bound of the sums

1 0:D; for all partitions of norm not larger than d; then f is integrable if and only
if A(d) converges to 0 with d (by C(1)). Also, for each partition P, let S,p = 3. 4;

be the total length of those intervals for which D; is greater than an arbitrary ¢ > 0.

Then:
oSsp=0 Y &< znjazpi < A(d).
&D; >0 i=1
Thus, S,.p < ég-d—) and since A(d) converges to 0 with d, S, p also converges
to 0 with d.

Conversely, assume that given € > 0, § > 0 , there exists d > 0 such that for

any partition with norm less than d, the total length of the subintervals for which
the oscillation D; is greater than o is less than e. Thus, for partitions with norm less

than d, if D is the oscillation of the function on [a, b], we have:

8101+ 8Dzt +8.Dn= Y  &Dit Y &Di < SppD+o(b—a) < Deto(b—a).

D >0 D<o
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Since € and o can be made arbitrarily small, the sum converges to 0 with d
and by (C1), f is integrable.

As an example of an integrable function having an infinite number of points of
discontinuity in every interval, Riemann presents a function that has discontinuities

at all rational numbers with even denominators:

f(x):2<7l$>,

2
n>1 n
where < z > is defined as 0 if « is of the form & + 3, where k is an integer, and as

the difference between x and the nearest integer otherwise. In other words,

z—[z) ,if [<z<[g+i
<z >= 0 , if z=[z]+1 ;

z—[x]-1 , if gl+i<z<[z]+1

(Here, [z] stands for the greatest integer function.)

The function < x > has a discontinuity at every point that is half of an odd
integer: the limit on the left is equal to 3, the limit on the right is % , while at those
points the value of the function is 0. On the other hand, < x > is continuous at any
other point. Now the function <%= carries the same properties: it is discontinuous
whenever nz is half of an odd integer for some n, and this happens for every x that
is a rational number with an even denominator, i.e., at those points xy = 5%, where
p and q are relatively prime and n is an odd multiple of ¢, and it is continuous at all
other points.

Let us now study the continuity of our original function: f(x) = 3", g2

Note first that since | < z > | < %, the above series is uniformly convergent

because

1 1
’ S o2 and T;'iﬁé' < +00. (27)

|<TL.’L‘>
n2
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(In Riemann’s proof, the uniform convergence is not mentioned; he apparently as-
sumes is throughout the paper)

As a consequence of the uniform convergence, the limits can be interchanged
so f has lateral limits at every point and:

f(x_o)zzﬂ:ﬂz, fmo):zfﬁ_fvjﬁ_

2
n
n>1 n>1 n

Also because of the uniform convergence of the series, f is continuous at those
points at which all the terms of the series are continuous, i.e., at all points that are
not of the form xy = 2% , where p and 2q are relatively prime. For zo of this form,

congider all n which are odd multiples of ¢, i.e. let:

Sg={n: n=(2m—1)q, forsome m € N}.

Then:
< nreg—0> <nxo+0>
f@o—0)—flzo+0) = > — 55— - —F—
n n
n>1 n>1
B Z<nxo—0>—<nx0+0>
- 2
n>1 n
B Z<nx0—0>—<nxo—l-0>
- 2
nES, n
<nryg—0>—-—<nxy+0>
IR
n
ngS,
Now,
ifn €S, then <nwg—0> — <nxg +0>=1,
and
ifngS,, then <nxg—0>— <nzyg+0>=0.
Therefore:
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7.(_2

f(xo—o)_f(x0+0):Z%>O:Z(.‘Zm—-—ll)2¥:8—q2>o’
m>1

nES,

which shows that f is not continuous at zo. Thus f is discontinuous on a dense subset
of real numbers.

Yet, as Riemann shows next, f is integrable on any interval, because for any
o > 0, there are finitely many ¢’s such that % > ¢. So, in every interval there exist
only a finite number of points xg = —2% at which the jump of the function is larger than
o. Hence for a sufficiently small d (a bound for the norm of the partition), the sum

S (the total length of the intervals on which the oscillation is greater than o) can be

made arbitrarily small, that is, condition (C2) is satisfied, and thus, f is integrable.

2.6 Darboux and Peano: a convenient reformula-
tion of Riemann’s definition and criterion of
integrability

In 1875, Darboux published his Mémoire sur les fonctions discontinues [18] where
he proposed a way to bypass the difficulty caused by the variability of the values of
f due to the fact that & can be any value in the interval [z;_;, ;] by working with
the least upper bound (or supremum) and the greatest lower bound (or infimum) of
the set:

{flx): =z <2z}

For a bounded function f on [a, b] he associates with every partition P of [a, b],

the upper and lower Darboux sums:
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n

S(Pf) =Y Mi(z: — wiy) M;=sup{f(z): i1 <z <},

i=1

_S_(P, f) - zn:mz(l‘z - xi_l) m; = lnf{f(.’]?) i i1 fx < .’L‘z}
i=1

If we take a finer partition we can easily see that the upper sum gets smaller,
approaching the value of the Riemann integral. Similarly, the lower Darboux sums
get bigger approaching the Riemann integral, if it exists. This suggests taking the
infimum of the upper sums and the supremum of the lower sums. The greatest lower
bound of the upper sums and the least upper bound of the lower sums (taken over
all partitions) are called respectively the upper and the lower Darboux integrals, and

are denoted as follows:

—b
/ f(x)dx = inf S(P, f)

b
/f(x) dx = sup S(P, f).

In fact, it was Peano [41] who, in 1883, used Darboux sums to define the
so-called upper and lower integrals that exist for every function. If the integrals are
nevertheless named after Darboux, it is probably because they are defined in terms
of the sums introduced by Darboux. The function f is said to be integrable if these
integrals agree. We show below that this definition of integrability is equivalent to
Riemann’s definition.

Assume first that f is Riemann integrable. Then, for any partition:

—b

b
maﬁ</ﬂ@M</ﬂ@m<mRn
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(It is easy to show that LIZ f(x)dx < Tbaf (x) dx. We'll omit the proof.)

By Riemann’s (C1), if f is integrable, there is a partition P for which S(P, f)—
S(P, f) can be made arbitrarily small. Thus, the difference Tbaf (x) dx — iz f(x)dx can
also be made less than any desired positive value, which means that the upper and
lower Darboux integrals coincide.

Conversely, assume that the Darboux integrals are equal, and prove that f is
integrable.

Let Ll: f(z)dx = waf (x)dx = L. Then, since the upper Darboux integral is
the infimum, over all partitions, of the upper Darboux sums, for any € > 0 there
is a partition, say P, such that S(F’, f) is within § of L. Similarly, we can find a
partition, say P”, such that S(P”, f) is within £ of L. If we take a common refinement
P; of P! and P”,i.e., P"UP", then every Riemann sum for the partition P, is within
5 of L. While this is also true for any refinement of Ps, we still have to show that
this holds in general: for any partition with sufficiently short intervals, regardless of
whether they share points with Ps or not, every Riemann sum is within € of L.

By the same idea of Riemann’s proof of the criterion of integrability, let D
denote the oscillation of the function on the interval [a,b]. Also, let p denote the
number of intervals in P5. Now let P be an arbitrary partition, such that A(P) < Tl
and construct a partition Q = P U P;, where ) has at most p — 1 points more than
P. Consider an arbitrary Riemann sum for P, S(P, f) = > (x; — zi—1) f(&:), and
a particular Riemann sum for @), namely one constructed as follows: for every 4,
1 << n, if & belongs to an interval of P, then in the summation, the length of this
interval is multiplied by f(&;); otherwise, i.e. for less than p intervals, the point at

which f is evaluated is arbitrary. Then, we have:

€ €
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On the other hand, since Q was chosen to be a refinement of P3, we have that:
9@, ) -Ll<3.

Thus, we have, for arbitrarily chosen P (with norm less than a given value):
IS(P, f)— L| <e.

Hence, by definition, f is integrable.

Riemann’s criterion of integrability (C1), in terms of Darboux sums is: f is
integrable if and only if there is a partition P such that, for any € > 0, S(P, f) —
S(P,f) <e

2.7 Riemann’s insight

In order to appreciate Riemann’s work on integrability, one has to take into account
the fact that the basic concepts of analysis were not yet well established by mid-
19th century. Although concepts of limit and continuity were fairly clear, uniform
continuity and uniform convergence, as they are known today, were freshly intuited
properties, only about to emerge.

Riemann was the first to study trigonometric series systematically without
assuming that these series are Fourier series, i.e. series where the coeflicients are
given by Fourier’s integral formulas. Instead, he started with arbitrary trigonometric
series of the form (2.5) and asked what kind of properties such a function must possess.
He formulated necessary and sufficient conditions for the representability of a function
at a point by trigonometric series in terms of a continuous function F' which is the

sum of the uniformly convergent series (again, Riemann did not explicitly distinguish
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between uniform and non-uniform convergence):

i arcoskx + brsinkx

C+C'x +( )

k=1

obtained after term-by-term integrating the series (2.5) twice. Riemann showed that
the behavior of the series (2.5) at a point x depends only on the behavior of F' in an
arbitrarily small neighborhood of this point.

Riemann’s major innovation in the in the construction of integration theory
was that, in variance with the earlier work, he made the class of functions to which
the process of integration can be applied an explicit object of his investigations.
In other words, he was the first mathematician to ask the question: When can we
integrate? in its most general form. Riemann posed the problem of integrability, thus
giving meaning to Fourier coefficients. He used a definition of the integral that was
very close to the earlier one of Cauchy, but, unlike Cauchy, he considered not only
continuous functions, but also attempted — and succeeded - to establish a necessary
and sufficient criterion for integrability, significantly weakening the assumptions on
the function to be integrated.

While Riemann’s contribution to integration theory was certainly triggered by
the study of trigonometric series, another, perhaps less obvious, but equally powerful
motivation lies at the heart of his work, namely his acceptance of the very general
concept of function as any correspondence x +— f(x) between real numbers [27].
This must have been a bold decision because resistance against such generality was

probably not uncommon among mathematicians of his time, since still in 1908, the
great Henri Poincaré was writing: “Formerly, when a new function was invented, it
was in view of some practical end. Today, they are invented on purpose to show our
ancestors’ at fault, and we shall never get anything more than that from them” [44].

Riemann started off with roughly the same concept of definite integral as
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Cauchy, but then he asked the question: what are the conditions on a function f(x)
under which the Cauchy sums approach a unique limit as the norm of the corre-
sponding partitions approaches zero? The elimination of the assumption of conti-
nuity would not have been meaningful, in Hawkins’ view [27], if the possibility of
arbitrary functions which are discontinuous in the modern sense at more than a fi-
nite number of points in a finite interval had not been considered seriously. Hawkins
maintains that Cauchy, despite adopting the modern concept of continuity, fell short
of actually acknowledging the logical possibility of existence of highly discontinuous
functions. Although his definition of the definite integral did not involve an analytic
expression of the function, thus applying to the modern conception of function as a
correspondence, he did not appear to hold such a general notion of function. In fact,
he was inclined to think of functions in terms of equations, and to restrict himself to
“well-behaved” discontinuous functions, that only cease to be continuous for a finite

number of values.

2.8 Some shortcommings of the Riemann integral

Riemann’s integrability was successful in dealing with a large class of problems, and
through the the uniform convergence property, in many cases, term by term integra-
tion became possible. However, this approach to integrability has some important
weaknesses.

Firstly, the original definition of Riemann’s integrability applies only to bounded
functions, defined on bounded intervals. This difficulty is avoided by introducing the

so-called improper Riemann integral as

b—0

f@dt=_tm / F(t) dt,

a

provided that f : [a,b) — R is Riemann integrable on every interval [a,z] and the
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above limit actually exists. This approach is useful only for simple applications, and
it quickly turns out to be rather complex and to need new concepts such as semi-
convergent improper integrals or absolutely convergent improper integrals, almost
useless from the point of view of the (future) Lebesgue integral.

Secondly, the condition of uniform convergence appears to be too restrictive
a condition. If {f,} is a sequence of Riemann integrable functions such that f,(x)

converges pointwise everywhere, not necessarily uniformly, an equality of the form

lim / " di = / ’ lim f(t) e

a

is not true in general, or impossible. Consider the following example (inspired from
13)):

Let @QN[0,1] = {r1,72,...,7n...} be an enumeration of the rational numbers
in [0,1] and define f,(x) =1, if £ = rg, where 1 <k <n, and f(x) = 0 otherwise.
Also, let f(x) = 1,if x € QN [0, 1], or f(x) = 0 otherwise.

Then each f, is Riemann integrable, fol fa(x)dz =0, but f is not Riemann
integrable (it is the Dirichlet function restricted to [0, 1]).

Finally, it is possible to have a bounded derivative that cannot be integrated:
in 1881, Volterra provided an example of a a bounded function on (0,1), whose
derivative exists everywhere, and is not Riemann integrable (see [43]). In his thesis
[32], Lebesgue notes that this means that differentiation and integration cannot be

considered as inverse operations for a sufficiently large class of functions.
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Chapter 3

THE DEVELOPMENT OF THE MEASURE-THEORETIC
SUPPORT FOR THE MODERN THEORY OF
INTEGRATION

3.1 Introduction

If one looks back now at Riemann’s definition of integration and his original formu-
lation of the criterion of integrability, the notion of ordinary length appears to be
central and a generalization of Riemann’s integral seems to follow naturally by gen-
eralizing the notion of length. But some time would pass until the developments in

set theory would be linked to the notion of definite integral.

3.2 Cantor’s work in set theory and the first no-

tion of measure

Cantor introduced the first notion of measure that was still, however, dissociated from
the concept of definite integral. His groundbreaking work in set theory was in fact
triggered by the same interest in trigonometric series. In 1872 he published a paper

where he studied the uniqueness of the coefficients in the representation of a function
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by trigonometric series; in other words, he asked the question: could two different
trigonometric series converge to the same function [8]?

Let us now go back to the problem of uniform convergence of series of functions
that is linked to this question: uniqueness can be proved if uniform convergence is
assumed, because uniform convergence, as shown by Weierstrass [42], assures term-
by-term integration, and thus, Fourier’s argument we have mentioned earlier stands
(see section 2.4). However, the uniform convergence condition proved to be very
restrictive: a series of continuous functions that converges uniformly converges to a
continuous function. But then, interesting Fourier series that converged to discontin-
uous functions could not be uniformly convergent.

Heine addressed this problem in 1870 [28] and relaxed the sufficient condition
for term-by-term integration by introducing the notion of uniform convergence in
general: a series ) f,(x) converges to f(z) uniformly in general in [a,b] if there
exists a finite number of points 1, o, ..., %, in [a,b] such that the series converges
uniformly to f(x) on any sub interval of [a,b] not containing the z;.

He studied the question of uniqueness by considering the difference between
two distinct trigonometric series that would converge to the same function. This dif-
ference would be then a trigonometric series with non-zero coefficients that converges
to zero.

Heine thus reduced the problem of uniqueness to the following:

1 ad .
If 2 ap + ; an cos(nz) + b, sin(nx) =0 (%)

for all x except those forming a set P then are the coefficients a, and b,

all equal to 0?

He proved that, indeed, these coefficients are 0, if the convergence in (*) is

uniform in general with respect to the finite set P. This amounts to saying that two
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distinct trigonometric series that are uniformly convergent in general cannot converge
to the same function.

Cantor took up the uniqueness problem and eliminated the uniform conver-
gence assumption. He improved on the uniqueness problem gradually (as shown in
[27]): he first proved in 1870 that if a trigonometric series converges to 0 at all x,
then all coefficients of the series must be 0. In 1871, he showed that the same proof
works if the trigonometric series converges to 0 at all but finitely many points. He
then went on 1872 to study the problem for infinitely many points. In this context, he

began a careful investigation of infinite sets, and introduced the following definitions

8]:

Limat point : Given a set P, a point z is a limit point of P, if every neigh-
borhood of x contains infinitely many points of P. (The neighborhood of

x referred to an interval that had z in its interior.)

Derived set, type 1 set The set of limit points of P, denoted by P’ is called

the derived set of P. A set is of type 1 if its derived set is finite.

If P’ is not finite, then it has a derived set, and if this latter set is finite,
then P is of type 2. Similarly, sets of type n are defined as follows: A set
P is of type n if its (n — 1)-th derived set is not finite but the n-th derived

set is finite.

For example, Cantor shows that the set {1,1/2,1/3,...,1/n,...} has the set
{0} as its first derived set, and is thus of type 1. The first derived set of the set of all
rational numbers between 0 and 1, on the other hand, contains all the real numbers
between 0 and 1, and the derived set of this latter set is also made of all the real
numbers between 0 and 1.

What Cantor accomplished in his 1872 paper was to prove that if a trigono-

metric series converges to 0 at all points except on a set of type n, then all the
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coeflicients of the trigonometric series are 0.

With this paper, Cantor embarked on his fruitful work in the theory of infinite
sets. It also became clear, in connection with his work, that the question of finding
necessary and sufficient conditions under which term-by-term integration is possible
is extremely difficult.

In 1874 Cantor introduced the notion of countability, and proved the surprising
result that the set of algebraic numbers is countable, and started to study infinite
sets and to classify them according to these new notions.

The first notion of measure appears in Cantor’s 1884 papers [9], [10], where he
introduces it for the study of properties of continua. What he termed grandeur (or

Inhalt in his earlier German language paper) of a set is defined as follows [10]:

For an arbitrary bounded set P in R™, let K(p,p) be the closed sphere

centered at p € P, of radius p. Take

H(Pap) = U K(pap)

peEP

and let f(p) be its volume, which is a continuous function of p, that de-
creases monotonically with p. The volume f(p) of II(P, p) is given by the

multiple integral

/ d.’I,'leL'Q s d.'I)n
TI(P,p)

The limit: F(P) =lim,o f(p) is the measure of P.
Hawkins [27] observes that Cantor’s definition is based on two assumptions,
which he treats “loosely”: the first, is that if P is composed of a finite number of n-
dimensional regions, then the multiple integral [, dx, - - - di,, is defined. This assured
that the multiple integral fH(P,p) dxy -+ dx, is defined. But, as observed by both
Hawkins [27] and Pesin [42], multiple integrals had yet to be studied with more rigor

before such general assumptions could be made.
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Secondly, he assumed that if P is an arbitrary bounded set, then II(P, p)
consists of a finite number of n-dimensional pieces, where P is P together with its
limit points. This can be justified by the fact a closed and bounded set is compact.
But this property of sets hadn’t been proved at the time either.

Cantor [9] observes that a set and its closure have the same measure. Con-
sequently, this measure is not, in general, additive: if P and @ are two disjoint
sets, the relation F(PU Q) = F(P)+ F(Q) does not necessarily hold if their clo-
sures are not disjoint also. If, for instance, @ is the set of rational numbers in
I=[0,1], and P is the set of irrational numbers in [0,1], then F(Q) = F(P) = 1,
and F(Q U P)=1. Cantor mentioned this consequence in the following, more in-
tuitive form: F(PU Q) = F(P) + F(Q), if P and Q are in “completely separated”
n-dimensional regions of the space.

Cantor’s impact upon measure theory and, hence, upon integration, however,
extends beyond the fact that he was among the first to introduce a notion of measure.
It was the generality with which he treated sets that had the greatest influence. As
Ulam [58] observes:

“Cantor’s creation of set theory, where the notion of geometrical figure was
generalized into that of an arbitrary subset of points of a given space, introduced
also a need for an axiomatic investigation of the problem of measure of sets and, at
the same time, made possible a logical analysis of the notion of measure in general.”

(58], p. 597)

3.3 Peano: a rigorous definition of area.

The notions of measure introduced by Cantor , Stolz and Harnack were not linked
to the concept of definite integral. What would inspire Lebesgue’s approach to in-

tegration, according to Lebesgue himself [34] would be exactly that: the use of the
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notion of content to define area, in particular Jordan’s work in this domain. The
rigorous geometrical view of the definite integral of a function was first introduced
by Peano in 1887. In his Applicazioni geometriche del calcolo infinitesimale [?] he
introduced a notion of content that distinguished between inner and outer content.
While his concept of outer content agrees with Cantor, Stolz, and Harnack’s notions
of measure, the introduction of an inner content was a new and important feature of
Peano’s work.

He gave separate definitions for content in R, R% and R?® (his terminology is
actually inner and outer length, area, and volume, respectively). For S, a subset of
the two-dimensional space, Peano defined the outer and inner content — ¢.(S) and
¢;(S) — as the infimum of the areas of a finite system of polygons containing the set,
and correspondingly, the supremum of the areas of polygons contained in the set. S is
said to have content (area) if the two values agree, and this common value is defined
as the area of S.

Peano noticed the following relationship between inner and outer content:

ce(S) = ci(S) + c.(0S),

where 05, the boundary of S, is defined by Peano along with the notions of interior
and exterior of a set as follows: a point p is an interior point of a set S if there exists
a 6 > 0 such that every x whose distance from p is less than § belongs to S; p is an
exterior point of S, if there exists § > 0, such that all points x whose distance from
p is less than ¢ do not belong to S. Finally, p is a boundary point if it is neither an
interior nor an exterior point. In other words, the boundary of S, denoted by 85,
consists of all points for which every neighborhood contains at least one point in S
and at least one point not in S. The consequence of this relationship is that the set

S has area if and only if ¢;(S) = c.(S) .
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Peano did not prove this relationship, but it follows quite easily from his
definitions of interior, exterior and boundary points. Let us prove it for 2-dimensional
sets:

Consider a grid of R? with 27% x 2% disjoint squares, and let F) the union
of squares that intersect S in at least one point, and I, the union of squares that
are completely contained in S. Then Fjy is made of two kinds of squares: those
that contain boundary points of S and those that do not, and thus are completely
contained in S. In other words: Ey = I, U By , where By is the union of those squares

that contain boundary points, and
area(Ex) = area(Iy) + area(By)

Now, as k increases, the area of the cover Ej decreases and approaches the outer
content of S, the area of By also decreases and approaches the outer content of the
boundary of S, while the area of I increases and approaches the inner content of S.

Then:

c(S) = klil_)l'{.lo area(Ey) = klgg} area(lx U By)

= lim (area(lx) + area(By))

k00

= lim area(ly) + klim area(By)

k00

= ¢(S) + c(05).

The new notions of Peano, having provided a precise definition of area in terms
of content, allowed for a new geometrical characterization of Riemann integrability.

Peano had introduced in 1883 [41] the upper and lower Riemann integrals

—b

[ s

/bf(x) dxr and

Y _a
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defined as the infimum and the supremum of the upper and lower Darboux sums of f,
respectively. He came back to these definitions in the later work after introducing the
notion of content, and reformulated Riemann’s criterion of integrability (C1), giving
it a geometric interpretation, as follows:

If f is a non negative function defined on [a,b] and S denotes the region

bounded by the graph of f , i.e.:

then:

It follows that f is Riemann integrable if and only if S has area in the sense

that its inner and outer content are equal.

3.4 Jordan: measurability and finite additivity of
measure.

Jordan made the concept of content more rigorous (Peano’s work was thought to be
lacking in this respect), but also more far reaching through his very influential Cours
d’analyse de ’Ecole Polytechnique, an analysis textbook published in 1893.

Based on the same concept of content as Peano, he introduced the notion of
measurability, which despite being quite present between the lines in Peano’s work,

was never explicitly introduced [29]:

A set S is measurable if and only if the inner and outer content of the set
are equal, c;(S) = ce(S). The measure of S is given by either the inner or

outer content: c(S) = ¢;(S) = c.(S).
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What motivated Jordan to focus on the notion of content was his interest in
the theory of multi-dimensional integrals, which he managed to describe in a rigorous
manner. The concept of measurability (denoted hereinafter as Jordan measurability)
became useful when the domain of integration for a real valued function of two vari-
ables was an arbitrary set, which might be a very irregular region: in this case, the
integral made sense if the inner and outer contents of the domain were equal. In this
context, the finite additivity of the Jordan measure, that is, the property that the
measure of the union of a finite collection of pairwise disjoint Jordan-measurable sets
is equal to the sum of the measures, is critical.

Jordan noted the following properties of the measure, that we will describe, in
what follows, using the letter m: m;(S) the inner measure,m.(S) the outer measure,

and m(S) the Jordan measure, respectively, of S:

(a) If Sy C Sy, then my(S) < my(S) and m.(S) < m.(S) ;

k]

(b) If Sy are pairwise disjoint, then m, (U Sk> < Zme(Sk);
k=1

k=1

(c) If S are pairwise disjoint, then m; ( Sk) > Zmi(Sk).
1

k= k=1

Finite additivity follows:

> mi(Sk) < my (U sk) < me (U sk) <) me(Sk).
k=1 k=1 k=1 1

k=

Therefore, since each set is Jordan measurable,

m (U sk) = > " m(Sk).
k=1 k=1

Instead of defining upper and lower integrals as suprema and infima, he defined
the “intégrale par exces” and “intégrale par défaut” in a slightly different way, but

from the point of view of the generalizability of the definite integral, very fruitful. The
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most important difference was that he considered the upper and lower Darboux sums
that correspond to partitions into arbitrary Jordan-measurable sets instead of simply
intervals. The “intégrale par exces” and “intégrale par défaut” are then defined as
limits (instead of supremum and infimum) of these sums as the dimensions of the sets
constituting the partition approach 0.

Lebesgue, who studied Jordan’s Cours d’analyse as an undergraduate at the
Ecole Normale Supérieure, later recounts how Jordan’s work had paved the way for
his integration theory: a more general notion of measure and measurability would

allow him to create a more general notion of integral and integrability.

3.5 Borel: a generalized countably additive mea-
sure.

Borel took a different approach to defining measure. In his 1898 book Legons sur la
Théorie des Fonctions he defined measure in an axiomatic manner: measure and mea-
surability were described in terms of the properties that they should posses. Cantor’s
set theory had provided the necessary background for such an approach. In particu-
lar, the main property he entailed for his measure was countable additivity [5]. This
means that given an infinite collection of pairwise disjoint sets, Sy, Ss,...,S,,..., the

measure of their union is equal to the sum of their measures:

m (U sn) =) " m(Sn).

n>1 n>1

According to Borel, “When a set is formed of all the points comprised in a
denumerable infinity of intervals which do not overlap and have total length s, we
say that the set has measure s ([5], p. 46). This means that the measure assigned

by Borel to the class of sets that are unions of countable pairwise disjoint intervals is
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the sum of the measures of the covering intervals. Thus, Borel’s concept of measure
seems to be based on the property that any open set S C R, is the union of countably
many disjoint open intervals, but Borel doesn’t use the terminology of open sets (an
explicit definition of open sets was not introduced until 1899, by Baire, see [38]). At
the time, the terminology of closed sets was rather used. In fact Borel points out that
a closed set is measurable since it is the complement of a countable number of disjoint
sets. We emphasize here that this is a characteristic of both Borel and Lebesgue’s
work: in their original arguments they use the terminology of sets that are countable
unions of nonoverlapping intervals, rather then the modern terminology of open sets.

Borel also required that if a set E has measure s and has E’ as a subset, of
measure s', the set E\E’ is said to have measure s — s'.

Thus, the following three assumptions define Borel’s notion of measure in a
unique manner:

(1) The measure of a bounded interval is its length;

(2) The measure of a countable union of pairwise disjoint sets is the sum of
their measures.

(3) If @ C S, then m(S\Q) = m(S) — m(Q).

According to Borel, a set is said to be measurable if its measure “can be defined
by virtue of the preceding definitions”. In his treatise, Borel did not investigate in
a rigorous manner the class of sets described by these properties, and the structure
of his measurable sets is — using modern terminology — a o-ring. Lebesgue [36]
would later give a rigorous construction of the class of sets obtained by successive
application of the union and complement operations starting with open sets. In the
modern terminology they are called Borel sets or Borel measurable sets, they have a

structure which by now is called o-algebra of sets.

Definition 3.5.1. For an arbitrary non empty set T, F C P(T) is called a o-algebra,
if
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(a) D € F and T\A € F whenever A€ F.

(b) For every sequence A, € F,

UAnef-.

n>1

The collection of Borel sets, or Borel measurable sets, is the smallest o-algebra
that contains all the open sets.

Borel’s motivation for the introduction of the new concept of measure came
from his study of the size of the set of points on which certain infinite series converge,
that had led earlier to the discovery of the Heine-Borel theorem. The Jordan measure
turned out to be inappropriate for the study of this set, because it didn’t have the
property of countable additivity. But although he did find it useful to compare his
definition with the earlier one of Jordan, Borel did not see the use of his idea of
measure in the theory of integration. In fact, he went so far as to comment: “The
problem we investigate here is [...] totally different from the one resolved by M.
Jordan” ([5], p. 46).

Borel’s measure is, in fact less general than the Jordan measure, in the sense
that there are Jordan measurable sets which are not Borel measurable: the cardinality
of the collection of all Borel sets, is ¢, the cardinality of the continuum, while the
cardinality of the collection of Jordan measurable sets in R is 2°. This can be justified
by the following argument: consider the well-known Cantor’s ternary set, which, it
is easy to see, has Jordan measure 0. Then any subset of this set will be Jordan
measurable, and of measure 0. On the other side, the Cantor set C is equal with the
intersection of a decreasing sequence (Cp)n, each C, being a finite union of intervals,
hence having the cardinality c. Since the intersection of a decreasing sequence of sets
with the cardinality ¢ has also the cardinality ¢, it follows that C has the cardinality

¢, therefore the collection of its subsets has cardinality 2°. On the other hand, the
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cardinality of the set of all intervals is not larger than the cardinality of the set of
pairs of real numbers, which is ¢. By taking complements and countable unions, the
cardinality remains unchanged, thus the collection of all Borel sets has cardinality c,
which is smaller than 2¢, the cardinality of Jordan measurable sets.

Hence, Borel clearly did not intend for his measure to generalize the earlier
work of Jordan, especially since his interests, as he has stated were totally differ-
ent. Moreover, it is interesting that in the field of probability theory, as well, where
Borel made important contributions, both in general theory and applications (such
as the Borel-Cantelli lemma, the Strong Law of Large Numbers, or the Continued
Fraction Theorem), he failed to see the natural application of his theory of measure.
In his landmark paper in probability Les probabilités dénombrables et leurs applica-
tions arithmétiques of 1909 he used countable additivity very rarely and even avoided
using it by offering alternate proofs. Barone and Novikoff [3] attribute this to that
fact that Borel regarded rather the concept of countable independence as the essen-
tial ingredient of his theory (the property a countable collection By, B,,...,B,,...
has that P(N>,B,) = [I2, P(B,)). Bingham [4], on the other hand, looking at the
development of the axiomatic theory of probability, asserts that Borel’s failure to use
his measure theory in probability, could be explained by the fact that his view of
measure was still attached to the Euclidean and geometric settings. It would take
some time, and some important contributions such as those of Fréchet and Levy (see
[4]), for Borel’s measure theory to be applied successfully by Kolmogorov, in his 1933
Grundberigffe, to develop an axiomatic theory of probability.

The usefulness of Borel’s concept of measure in the theory of integration was
to be revealed by Lebesgue’s work, who attached a countably additive measure to a
class of sets much more general than those that had been considered previously, and,

most importantly, used this measure for integration.
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Chapter 4

THE LEBESGUE MEASURE AND INTEGRAL

4.1 Lebesgue’s measure: improving on Jordan and

Borel

Henri Lebesgue is generally known as the creator of the modern theory of measure and
integration. The first detailed exposition of the new notion of measure and integral
appears in his doctoral thesis of 1902, Intégrale, longueur, aire [32].

In the previous chapter we have presented the gradual development of the
measure theoretic support for the modern theory of integration. This development
was far from being linear and every new idea was closely related to a particular
problem which had to be solved with no general picture in sight.

Namely, Cantor (section 3.2), in his studies on Fourier series, became interested
in finding a possibility to evaluate “how big” a particular set is, in other words, to
find a measure for sets. But his approach was mainly topological — no geometrically
intuitive lengths or areas were involved — and in the end he invented the measurement
of sets in terms of cardinality.

Later, Peano (section 3.3) and Jordan (section 3.4) gave an intuitive definition
of measure and measurability which applies well to sets which are close to our image

of length and area, but countable unions of such sets failed to remain measurable
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(in fact these sets are measurable in our modern sense, it was Jordan’s method of
“measurement” that failed).

Borel’s idea of measure already encompassed some very useful properties (sec-
tion 3.5), but he did not seek to find the most general collection of sets for which such
a measure could be defined.

In his thesis Lebesgue first takes what he calls a descriptive approach to defin-
ing his more general measure (today, we’d rather call it an “axiomatic approach”, by
postulating the conditions that this measure should possess. The problem of measure
~ as Lebesgue put it — was to find a measure satisfying these properties. Namely,
m{(F), a non negative measure on some bounded subsets F C R has to satisfy the

following ([32]):

(m1) m(E)# 0 for some FE
(m2) m(E + a) = m(E) for every real number a
(m3) If E, are pairwise disjoint for n = 1,2,3,... , then

m (U En) = m(E,).

n>1 n>1

(m1) requires that m is not identically zero, (m2) is the translation invariance, while
condition (m3) is the countable additivity.

In the subsequent section, Lebesgue proposes to take an interval as “mea-
surement unit”, that is, to attribute to it the measure 1 by convention (assuming
that the problem of measure has a solution). Then, any interval can be attached
a measure, which is its length. That is, if, for instance, m((0, 1)) is assumed to be
1, then from (m2) and (m3) it follows that every interval should be measurable and

m((a,b)) = b — a (in fact, in later expositions [36], Lebesgue replaced (m1) by the
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requirement that m((0,1)) = 1). Moreover, any set that is the (bounded) union
of a countable collection of pairwise disjoint intervals (I,), should have attached a

measure and

m (U In) =y m(l,).

n>1 n>1

Throughout his thesis, Lebesgue, like Borel, whom he often quotes, works with
those sets that can be written as countable unions of pairwise disjoint intervals that
are not necessarily open (as compared to the modern approach where Borel sets are
“generated” by open sets), the measure of which, he assumes, in the sequel, to be the
sum of the lengths of these intervals.

All the above suggested that if m(F) is definable for some bounded set F,
i.e., if the problem of measure had a solution, then its value should be less than
> ns1 1{In), where (Un21 I,) D E, and l(I) denotes the length of the interval . Thus

Lebesgue proposed the following constructive definition of measure:

me(E) % inf {Zl([n) : EC | I, I, pairwise disjoint} (4.1)

n>1 n>1

The above m¢(F) is the outer measure of E.
In order to better understand Lebesgue’s contribution, recall that for a bounded

E C R, Jordan defined the outer content of F as

&(B) =inf Y "U(Iy),
k=1

where the infimum is taken over all finite collections of non-overlapping intervals

L,...,I, such that E C I; U---UI,, and the inner content as

o(B) =sup »_U(T),
k=1
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where the supremum is taken over all finite collections of non-overlapping intervals
Iy,..., I, such that L U.--UIL, C E. We have ¢(E) < ¢(FE), and F is said to be
Jordan measurable if ¢(E) = ¢(£), the common value being the Jordan measure of
E. Now it is easy to see that the outer measure m(F) is similar to Jordan’s outer
content, the change consisting of the fact that a finite number of intervals is replaced
by sequences, i.e., by an infinite number of intervals. This apparently small change
makes all the difference.

Namely, the major inconvenience of Jordan’s measurability is the fact that,
in general, countable unions of Jordan measurable sets fail to remain Jordan mea-
surable. For example, every point on the real line is Jordan measurable but the set
of rationals on [0,1] is countable but not Jordan measurable. On the other hand,
Jordan measurability is strongly related to the Riemann integral and the fact that
countable unions of Jordan measurable sets could easily fail to be Jordan measurable
is “almost” equivalent to the fact that the limit of a sequence of Riemann integrable
functions could fail to remain Riemann integrable. The example given in section 2.8
is a very simple illustration of this phenomenon. So, condition (m3) asks implicitly
that countable unions of Lebesgue measurable sets remain Lebesgue measurable.

Inspired by Jordan’s work, Lebesgue successfully modified Jordan’s definition
of outer measure, but his definition of the inner measure was different, it was not a
direct generalization of Jordan’s inner content. Lebesgue’s idea for the inner measure
was very intuitive: it was based on the same idea of generalizing the notion of length.
He used the outer measure, but for the complement of E, relative to some interval
la, b] such that F C [a, b].

So, for every E C [a,b], the inner measure m;(E) was defined as

mi(E) =b—a— me(la,b]\E). (4.2)
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Lebesgue noted that the number m;{E) does not depend on the choice of the interval
[a, b].

Since for every outer measure m.(A U B) < m(A) + m.(B), we have

b —a=me([a,b]) = m(E U ([a,b]\E)) < me(E) + me([a, b\ E),

and therefore m;(F) < m.(F). (Lebesgue used the terms exterior measure and
interior measure — whence the choice of notation m. and m;; we are using the modern
terminology). The set F is said to be measurable if m;(E) = m.(F), the common value
being the measure of F.

With this definition, Lebesgue was able to prove that every Borel set is measur-
able (see section 3.5 for the definition of a Borel set), that every union of a countable
collection of measurable sets is also measurable, and the measure is countably addi-
tive. He only gives the idea of the proof, which is based on an equivalent definition
of measurable sets. We present below a detailed proof, based on Lebesgue’s ideas.

Let us first fix an interval [a, b] and denote by G the set of all A C [a,b] which
are unions of a countable collection of pairwise disjoint intervals (not necessarily
open). Lebesgue uses implicitly the following properties of such sets (that had been
shown by Borel): if A and B are in G, then sois AN B and if A C B then B\A has
a measure, and m(B\A) = m(B) — m(A). Most importantly, the measure of any set
A C G is equal to the sum of the lengths of the intervals that cover it.

Now, the definition of m.(F), where E C A, from (4.1) translates into:

me(F) = inf{m(A) : Ae G} (4.3)
Lebesgue begins with the remark that E C [a,b] is measurable if and only if

for every ¢ > 0 there exist A, B € G such that
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EcA, [a,\ECB and m(ANB)<e. (4.4)

He didn’t prove this claim, but it is not difficult to show the equivalence of
the two definitions.

Indeed, let £ C [a,b] be fixed. Then, for every A, B € G such that £ C A and
la,b\E C B, since [a,b] = E U (la,b]\F) C AU B C [a, b], we have

la,b] = AU B = (A\(AN B)) U (B\(ANB)) U(AN B),

hence
b—a = m(a,b]) =m(A\(AN B)) + m(B\(ANB)) + m(AN B)
= m(A)—m(ANB)+m(B) —m(ANB)+m(AN B)
= m(A) +m(B) — m(AN B),
therefore:

b—a+m(AN B)=m(A) + m(B). (4.5)

Assume that for an arbitrary € > 0, there are A, B such that (4.4) holds. Then,
by (4.3) we have m.(E) < m(A), me([a,b]\E) < m(B), hence

mi(E) =b—a—me(la,b]\E) > b— a— m(B),

and

f rom:(4.5)

0 <me(E) — mi(E) < m(A)+m(B)— (b—a) m(ANB) <e.
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It follows that me(E) = m;(F) because ¢ was arbitrary, i.e., £ is measurable.
Conversely, assume that E is measurable (m.(E) = m;(F) ) and fix ¢ > 0. By (4.3)

there are A, B € G such that
me(E) < m(A) S me(E) +¢, me(la,)\E) < m(B) < me([a,b]\E) +¢
and from (4.5):

m(ANB) = m(A)+m(B) - (b—a)
< (me(E) +€) + (me([a, \E) +¢) — (b—a)
= 2e+me(E) — (b—a) — me([a, b\ E)
= 2¢+ me(E) — my(E)

= 2,

We now prove that every union of a countable collection of measurable sets is
measurable.
Let Ey, Es, ..., Ey... be a sequence of measurable sets in [a,b]. Fix an arbi-

trary € > 0 and set

E:UEn.

n>1

For every n > 1, since F,, are measurable, there are A,, B, € G such that
E.C A, , [6,b\E,C B, and m(A,NBy) < -2%

Now set Ag:Aanl,Bé:Bszl,Ag:AgﬂBé, B§:B3ﬂBé, or,

Ay = AN (BiNByN---NBy) and By =By N(BiNBN---NBy)
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for every p > 1. We claim that

EcA® au (U A;,) and |a,b|\E C B,

p>2

where B can any of the sets By, B;,..., By, ...
Let x € E. If x € 1 C Ay, then it is obvious that x € A. If x ¢ A; then there

is a first p > 1 such that
x€Ep1 CApyr and s EYU---UE,

hence z € ([a,b\E1)N---N([a,b]\E,) C B1N---N By,

therefore x € A;,,; C A. For the second inclusion it is sufficient to note that x € [a, b]\E

implies that
x € ([a, \NE)N---N([a,b]\Ep,) C BiN---NB, forevery p> 1.

It follows that A,B € G and AN B C ,5,(4, N B;) , hence

m(AN B) _<“Zm(ApﬂBp)§Z?;:6,

p=1 p21

therefore F is measurable.
Now, if E, are pairwise disjoint measurable sets, then, for any ¢ > 0 and for

every n > 1, E,, C A}, where A/, is defined as above (A} = A,), and we have:

m(A.) — m(EB,) < m(An) — m(Ba) = m(A\En) < m(A, N By) < -2% n> 1.
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On the other hand, we have shown that £ = |J,5, B, C A=, 4;, thus:
m(A) — m(E) = m(A\E) < m(AN B) < 2e.

It follows that:

Y m(En) — m(E) = m(A) —m(E) = > m(4,) + Y m(Ey) <26—Z—:

n>1 n>1 n>1 n>1

(Note that m(A) = 3", m(4y), since A € G)

Thus, countable additivity holds:

m <U En) = m(E,).

n>1 n>1

One can see in this construction the significance of Borel’s results. Lebesgue

did state his purpose to improve on the clarity and rigor of Borel’s theory of measure
(132], p. 2), but he entailed — and achieved — more than that, by applying his improved

theory of measure to integration.

4.2 Lebesgue’s integral: partitioning of the range

Next, Lebesgue turns to the problem of integration. Through the concept of measur-
able functions, his theory of measure proves to be more than a simple generalization
of Jordan’s and Borel’s measures, and finds its great application to integration.

He starts out with the following geometric characterization of the integral in

terms of measure of sets: if F/ is measurable,

| f@)do = m(B*) — m(E), (4.6)

where Et and E~ are the planar sets bounded by the graph of f and lying above
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and below the z-axis, respectively, and m denotes their 2-dimensional measure. This
geometrical definition of the integral had been proposed before, by Peano, but for the
Riemann integral and in terms of the Peano (Jordan) content [41].

But Lebesgue’s way of constructing the integral analytically provided its power:
he abandons his predecessors’ approach of partitioning the xz-axis, because this ap-
proach, he shows in a conference talk of 1926 (see [13]), is to some extent limited:
roughly speaking, by partitioning the domain (a, b) into smaller and smaller intervals
(Tk, Tk 1), one gets smaller and smaller differences between f,, and [, (the supremum
and the infimum, respectively, of f on (xk, Zr+1)), which makes the difference between
the upper and lower Darboux sums tend to 0, if f is continuous, or has only a few
points of discontinuity. However, this process may not work for functions that are
highly discontinuous, and he proposes a procedure for integration that starts out with
the goal to be attained: namely to “collect” values of f(z) which differ by very small
amounts. For this, he partitions the range of the function, instead of its domain.

That is, if f > 0 is defined on [a,b], f = inf f(z) and f = sup f(x), let

Pif=w<tn< Ua<tp=1/f

be an arbitrary partition of the interval [f, f] and consider the sets

Ee={tea,b] : yo < f(t) <yrs1}

Fach of these sets is made up of a union of intervals, and they partition the
domain [a,b]. Then, if E is the region bounded by the graph of f, the (planar)
measure of F, m(E) lies between the the sums: Y p—s yem(Ex) and 3720 vy 1m(Br),
ie., f: f = m(F) lies between these two quantities. These sums have a common limit
as the norm of P approaches 0 and this number is taken by Lebesgue as the definition

for the integral.
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(The argument that justifies the existence of the common limit is typical.
For any two partitions the difference between the two sums can be made arbitrarily
small by restricting the lengths of the subintervals formed by the two partitions: one
proceeds by first taking a partition @) that’s finer than P and then, one that contains
the points of both P and Q.)

The sums formed in this manner, however, are only defined for functions f(x)
for which the sets FEj are measurable for all y, — Lebesgue calls these functions
summable, and in later presentations measurable. More precisely, measurable func-

tions are those functions f : [a,b] — R for which the sets
{telab] : c< f(t) <d}

are measurable for all real numbers ¢, d [32].

Equipped with this definition, Lebesgue then shows the regular properties
of the integral and of the measurable functions. The most important property of
measurable functions followed easily from the properties of measurable sets: if a
function f is the limit of a sequence f,, of measurable functions, then f is measurable.

Finally, the most useful property of the integral — allowing for term-by-term in-
tegration — was revealed. In his thesis, Lebesgue only proved the following result that
is sometimes called the bounded convergence theorem (the dominated convergence

theorem only appears in a paper of Lebesgue later, in 1908):

Theorem 4.2.1. If f, is a sequence of measurable functions defined on some mea-

surable set E, such that lim,, .o frn = f, and |f — fo| < M for alln, then:

/f:}l:&o fn
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The proof is again very neat, typical for the kind of techniques used in argu-
ments involving measurable sets and, in particular, limiting processes on sequences
of sets.

For a fixed € > 0, consider the set:

En={xc E: |f(z)— fayp(zx)| > €, forsome p>0}.

Then FE, is measurable, E,,;; C E,, and, since lim,, ., f, = f, it follows that
ﬂnZl E, = 0, which gives limp0o m(E,) = 0.
Note: Lebesgue had proven the following two useful properties of measurable

sets:

m (Un?_l En) = limp 0 m(En)7 where FE, C Enyi;
m (ﬂnZl En) = limp, 00 m(E,), where F, 1 C E,, provided that, for some n,
m(E,) # oo.

Now, by the following inequalities:

L]

- }/E(f—fn) </ r-tl= [ If—fnl+/E\En =7

< /n M + /E\En € = Mm(Ey) + e(m(E) — m(E,)),

which approaches 0 as n + oo, and thus

fr=tim [ e

It must be noted that Lebesgue didn’t limit his theory to bounded sets or

bounded functions, as we have sketched in the above presentation. In fact, Lebesgue’s
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thesis was the starting point of a lifetime’s work in this field in which many - if not
almost all - results bear his name or can be traced back to his ideas: he generalized his
theory for functions of more variables and to certain classes of unbounded functions,
and he also showed the power of these generalizations in important applications.

It is also important to point out that Lebesgue was the first to prove that
there exists a unique measure on the Borel sets in R such that the measure of every

interval is its length.

4.3 Lebesgue on Fourier

Fourier had argued in 1822 [24] that if if a bounded function can be represented by a

trigonometric series, i.e.:

1 [ o]
flx) = 500 + Z(an cos nx + b, sinnx), (4.7)

n=1

then this is the Fourier series of f, i.e., the coefficients a, and b, are given by the

integral formulas:

1 2T

an = — f(x) cosnxdz,
T Jo
1 2

b = - f{(x) sin nx dz.

0
His argument involved term-by-term integration, which he had taken for granted.
The question about the conditions under which term-by-term integration is permissi-
ble arose. Secondly, what is understood by integration had to be clarified, in particular
the issue of integrability, if the coefficients were to have any meaning. We described
the remarkable insights that the search for answers to these questions has led to.
After publishing his thesis, Lebesgue declared his objective to demonstrate
the usefulness of his newly introduced concept of integral ([33], p.453), and the first

domain where he would do this was in the study of trigonometric series.
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His first application was proving that Fourier’s assertion is true in the con-
text of the Lebesgue integral, where the convergence in (4.7) is understood in the
weak sense of conditional convergence, and there are no assumptions made about
the function f. His proof was based on the bounded convergence theorem, that he
had proved in his thesis, which allowed term-by-term integration, and the Riemann
function corresponding to the series above (see section 2.7). We present below the
main ideas of Lebesgue’s proof:

Cantor showed that a,, and b,, approach 0 as n approaches oo, so it is possible

to define a continuous function F(x),

ap o 2\ [ ancosnz + bysinnz
F(z)= 2"~ ) ,

2
n=1 n

obtained by integrating the series in (4.7) term-by-term twice. Riemann showed that

F' is related to f through the following relation:

. AF(x) . Fl@+a)+Fx—a)—-2F()
lim ——— = lim o = f(x). (4.8)
Now Lebesgue considers the function:
1 - :
flx,r) = 500 + Z r*(a, cosnx + by sinnz) (0 <r < 1). (4.9)
n=1

By a theorem due to Abel, the convergence of the series in (4.7) implies:
flx) = IEH f(z,r) forevery fixed z € [0,2n]. (4.10)

Two results, concerning F(x) and f(x,r), were used in the proof. The first

one, about F'(z), established a property analogous to the intermediate value theorem:

Lemma 4.3.1. &(f}?l lies between the infimum and the supremum of f(x), for x €
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[z — o,z + al.

Secondly, based on Riemann’s theorem (4.8), Lemma 4.3.1, and the properties

of harmonic functions, Lebesgue proved the following property of f(x,r):

Lemma 4.3.2. If M and m are the supremum and the infimum of f(zx), then they

are also the infimum and the supremum of f(x,r).

Now, note that the convergence of {a,} and {b,} implies their boundedness,
and thus for any r < 1 the series on the right hand side of (4.9) is uniformly convergent

by the Weierstrass M-test, since:

Zr"lancosnx+bnsinnx| < Zr“. (4.11)

n=1 n=1
It follows that f(x,r) is continuous in x for every fixed r < 1 and, by uniform
convergence, the equality (4.9) can be integrated term-by-term, which gives
1 2n 1 2w

™a, = — flx,rycosnzdr , 1"by=— f(z,r)sinnz dz,
T Jo T Jo

and if we choose an arbitrary sequence ry T 1,

2 2

a, = lim — flx,ri)cosnxdr , b,= lim — f(x, ) sinnz de.
koo T 0 ko0 T 0

Now, since every f(x,ry) is continuous in z and f(z,ry) — f(z,1) = f(x),
it follows that f is measurable, hence integrable because it is bounded.

Finally, the uniform boundedness of the sequence (f(z,7x))k>1 , insured by
Lemma, 4.3.2, allows for the application of Lebesgue’s bounded convergence theorem

(4.2.1), hence term-by-term integration yields the Fourier coefficients:

2w

1 [ 1
ap = lim — / [z, ri) cosnxde = — f(z) cos nx dz,
0 T Jo

k—oo 7T

60



27 2
b, = lim — fx,re) sinnzde = — f(x) sinnx dz.
k—oo T 0 w 0
However, this first result of Lebesgue in the domain only gave a partial answer

to the main problem of Fourier analysis. The other side of the problem can be

formulated as follows:

Given an integrable function f, and its Fourier series, i.e., the trigono-
metric series where a,, b, are given by Fourier’s integral formulas, when

does it represent the function f, in other words, when does this hold:

1 x
= —ao + an cosnx + b, sin nx)?
2

n=1

u__n

The results depend on what the meaning given to the in the relation above: in
what sense does the series converge and how does it represent the function?

In 1905 Lebesgue provided his answer to this more general question, too [35]: if
f is Lebesgue integrable, then the Fourier series of f converges to f almost everywhere,

in a weaker sense, namely, in the Cesaro sense.

The sequence (ag) is said to have Cesaro limit [ if:

. amtast--tan
lim =1.

N00 n

But Lebesgue’s notion of measure and integral also had a deeper influence on
the subsequent development of analysis: it allowed for the question to be formulated
in different terms, giving new meanings to the word “represent” in the above question,
and thus opening the avenue for much more powerful investigations through functional
analysis.

Namely, the notion of sets of measure zero allowed a line of thinking where
functions can be thought of as equal, when they are equal almost everywhere. One

can think then in terms of equivalence classes of functions where f ~ gif f = g a.e. or
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f: | f(x)—g(x)| dx = 0. This integral naturally defines a distance D(f, g) = f: |f(z)—
g(x)| dx between Lebesgue integrable functions defined on [a,b]. We end up with a
space where each point is an equivalence class of functions, which turns out to be a
Banach space (complete normed vector space). The most important contribution in
this domain, which actually placed the Lebesgue integral in the context of functional

analysis, belonged to Riesz, who in 1910 defined L” spaces as follows [47}:

Definition 4.3.3. The space L?, p > 1, consists of all the functions such that | f|P is

integrable over [a,b], together with the norm defined as:

I~ ( [ blf(x)l”dx)% ,

and the distance:

dp(f,9) = IIf — gll»

Two functions are considered equal (i.e., belonging to the same equivalence
class) if the distance between them is 0. The most natural space to work in is the L?
space, in which we have orthogonality. This was generalized to the notion of Hilbert
spaces, in which Fourier series expansions can be viewed in terms of orthonormal
bases.

Then the partial sums of the Fourier series of f (equivalence class of f — the
integral is the same for functions that are equal a.e., their Fourier coefficients are thus
the same and so is then their Fourier series) can be seen as points in the space and
new, or rather more powerful questions can be asked: do these points converge to
f? Is there a unique trigonometric series converging to an equivalence class? These
questions open the way to more powerful mathematics through functional analysis.

As late as 1966, a stronger result was obtained by Carleson by including a
stronger assumption: namely, he proved pointwise convergence of the Fourier series

of a function f by requiring that f be square integrable; in 1970, Hunt proved the
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same result for L? spaces [30].
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Chapter 5

EPILOGUE: A LOOK AT MODERN TEXTBOOK
APPROACHES TO INTEGRATION AND DIDACTICAL
REFLECTIONS

We have concluded our historical account of the development of integration theory
with the first instances where Lebesgue’s theory of integration proved its usefulness,
but we also touched upon the more far reaching effects of the new theory on the
development of analysis in the context of the early 20th century. Analysis would take
a new course, shaped by the general context of the beginning of the century, when the
axiomatic method became the landmark of a new way of doing mathematics; by 1910
it had become obvious that working with functions as points in an abstract space was
much more fruitful. For integration, the notion of mapping was starting to become
central, but this is a whole new — indeed, truly exciting — period in the evolution of
mathematical thought that we do not aim to dwell upon in much depth in this study.
In this chapter, however, in the context of our didactical analysis, we will have a look
at some analysis textbooks that introduce the Lebesgue integral, whose approaches
also encompass modern developments in integration theory.

In the introductory section of this chapter we give indications about our ob-
jectives in doing this analysis, our method of approaching the teaching issues related

to integration, and the limitations of our approach. We then proceed to examine
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certain aspects of the teaching of integration at different levels at university.

5.1 Some methodological considerations
In North-American universities integration is taught on three levels:

e in a freshman or pre-university calculus course, the Riemann integral is used,

but most of the definitions and proofs are omitted;

e in a more advanced undergraduate analysis course, Riemann integration is pre-

sented, including proofs of the results that were used in calculus;

e finally, in an undergraduate course or a beginning graduate course, typically in

measure theory, where the Lebesgue integral is introduced.

Our aim is to describe and examine this organization in more detail, and to
call attention to the objectives that the teaching of integration has or should have and
to the problems that may arise in this context at the different levels. The teaching
and learning of calculus has been extensively researched, and that is why we do not
endeavor to delve very deeply into identifying problems that could arise or ways to
address them in the teaching of integration at this level. The more advanced level
of mathematics taught in analysis or measure theory courses has received much less
attention in mathematics education research, and thus we believe that it is rather
here that our study is of interest.

For the analysis we will look at modern textbooks, in particular at those used
in a large, urban North American university (hereafter called “The University”),
and we will draw inspiration from our account of the gradual enrichment of the
notion of integral in history to raise some didactical issues. The sequencing of the
analysis courses we have mentioned above reflects, to a certain extent, the historical

succession of events in that it presents Riemann’s theory as preceding that of Lebesgue
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— of course, with significant variations, across various textbooks, with regards to
the organization of the material. However, at the outset, we want to express the
following standpoint: through our teaching recommendations we do not naively aim
at “re-creating the past”; an organization of the material different from the historical
evolution of the discipline may well be justified by expository and didactical reasons.
Still, history can be interesting and informative for pedagogical purposes, especially
if looked at, as we did, with an interest in the problems, conceptual contexts, and
difficulties that marked the development of the subject.

Our analysis is theoretical, and lacking empirical confirmation, it will neces-
sarily result in conjectures needing further investigation. We believe, however, that
our reflections on the teaching of integration will be a welcomed contribution to a

domain of mathematics education that has received little attention in research.

5.2 Integration in calculus courses

Typically, pre-university or freshman calculus courses cover the following topics in in-
tegration: the Riemann integral, the fundamental theorem of calculus, some applica-
tions of integration (to volume, work, lengths of curves, etc.), and various integration
techniques.

In particular, at The University, the calculus course is based on the popular
textbook of Stewart [55], where integration is introduced through the section titled
The Area problem. In this section the area of a region S bounded by the graph
of a continuous function f (with f(x) > 0), the vertical lines x = a and x = b,
and the z-axis, is found by approximating rectangles; better and better numerical
approximations are obtained by increasing the number of rectangles. The area of a
region under a curve is then defined as the limit of the sums of the approximating

rectangles. The second section begins with the definition of the definite integral,
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with the use of Riemann sums (i.e., Riemann’s definition, presented in section 2.5),
which are interpreted geometrically by reference to the previous section. A paragraph
follows on the topic of “evaluating integrals” using the above definition, with the help
of some formulas for sums of powers of positive integers. Finally, the properties of
the definite integral are given. Antiderivatives are the subject of the following section
(according to the course outline; in the textbook, antiderivatives are treated in an
earlier chapter, the one on differentiation), and a table of antidifferentiation formulas
is given for some basic functions. A section is then devoted to the fundamental
theorem of calculus, while the rest of the course material on integration deals with
applications and techniques of integration.

We have stressed in Chapter 2 that the insight at the heart of calculus lies
in the dual understanding of the integral as the limit of a sum and as the inverse of
differentiation, and it appears that, theoretically, the course, through the sequencing
of the topics, aims at conveying such an understanding: the integral is first defined
as the limit of a sum, then an operation that is inverse to differentiation is defined
— antidifferentiation, and finally they are brought together through a section on the
fundamental theorem of calculus. However, the exercises proposed in the textbook
are, in their majority, heavily procedural. For instance, they involve calculating
estimates for a given number of intervals for areas under given graphs using left
endpoints or finding an expression for the area under the graph of a given function
as a limit; this requires only a substitution in the definition of area. Nothing seems
to bring to together the two very different interpretations of the integral.

That calculus courses generally fail to achieve conceptual understanding in
students has been well known for a long time (for a review of students’ difficulties
with calculus, see, for instance [57]). The fast pace of the course is certainly an
important contributing factor to this situation (see [54]), and the fact that two class

sessions (each lasting approximately two hours and a half) are devoted to covering
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the material we described above (Areas, Definite Integral, Antiderivatives, and the
Fundamental Theorem of Calculus), while the rest of the class time allotted for the
topic of integration, consisting of five sessions, deals with techniques of integration and
with applications, shows that the course is geared more towards developing students’
practical abilities with integration rather then a more subtle conception of integration.

But is this really a problem? Historically, as we have seen, defining integra-
tion as the inverse of differentiation was prevalent and useful for a long time after
Calculus was “invented” by Newton and Leibniz, until the re-instatement of the sum-
conception of the integral by Cauchy. Certainly, the informal idea of these operations
as being only two aspects of a single process is not meaningless. As Byers [7] states:
“The Fundamental Theorem says that these processes [differentiation and integra-
tion] are inverses of one other (when the functions are “reasonable”). Now it may
be possible to start with integration and then develop differentiation or vice versa,
but the theorem says that, for functions of one variable, neither process is the more
fundamental. Actually, the theorem says that there is in fact one process in calculus
that is integration when it is looked at in one way and differentiation when it is looked
at in another. Another way of putting this is that without the Fundamental Theorem
there would be two subjects: differential calculus and integral calculus. With it there
is just the calculus, albeit with a multiple perspective. This multiple perspective is
essential to an understanding of calculus.” ([7], p.50)

The answer to the above question, we believe, depends on the objectives that
one or another calculus course has. The course we have looked at is a prerequisite
for the science stream, its clientele consists of students enrolled or wishing to enroll
in B.Sc.’s in Mathematics, Physics, Chemistry or Biology, or for Engineering and
Computer Science students. We believe that at least students majoring in mathe-
matics should come out of this course with the understanding of the definite integral

as the limit of a sum, as Cauchy did, and although lacking the empirical confirmation
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of classroom research, based on our theoretical analysis, we believe that the calcu-
lus course may well fail to achieve this goal. Future engineers, on the other hand,
may do without the more subtle understanding of the integral that came about with
Cauchy’s definition of the integral. Students in the engineering or computer science
stream may benefit more from a course centered upon applications of calculus. This
does not mean that conceptual understanding should be sacrificed for this audience,
but introducing the formal definition of the definite integral as the limit of a sum, and
then not reinforcing this understanding of integration through appropriate theoretical
tasks is useless.

We talked about conceptual understanding, about teaching calculus with ap-
plications or about using tasks that reinforce understanding the theory. Research
shows that these goals are not easy to achieve. Underlying calculus is the notion of
limit, which, research shows, is the source of many difficulties (see [51], [52], [16]).
The topic of integration, in particular the understanding of the integral as the limit
of a sum, replicates the problems students have with understanding limits. Schneider
[50] shows how some students, in considering upper and lower sums for the function
f(z) from 0 to 1 by taking more and more rectangles, think that “as long as the
rectangles have thickness, they do not fill up the surface under the curve, and when
they become reduced to lines, their areas are equal to 0 and cannot be added” ([50],
p.33). In his study about college students’ understanding of integration, Orton [40]
found that students were fairly proficient in applying basic techniques of integration,
but among the tasks she gave them during interviews, a core of a few items, concerned
with the understanding of the integral as the limit of a sum, constituted the main
stumbling block. He indicates that the procedure of breaking up an area or volume,
making use of a limiting process, and providing the reasons why such a method works
were not part of the students’ understanding of the integral. Orton argues for laying a

satisfactory groundwork in understanding the notion of limit before introducing more
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advanced topics in calculus, but also draws the attention to the fact that students’ dif-
ficulties with algebra may also obscure their attempts to deal with calculus concepts.
For instance, in any approach to integration which can be described as an attempt
at a formal proof, such as the method based on summing rectangular areas, certain
formulae for the summation of series are required, that for some students may be a
first encounter. For the teaching of integration at these early stages, Orton proposes
that calculus be linked with appropriate illustrations, such as exploring polygons with
an increasing number of sides, investigating elementary number series, studying areas

of irregular shapes, etc., as well as numerical explorations using calculators.

5.3 Integration in analysis courses

Mathematics majors’ second encounter with integration is in analysis courses. A first
analysis course at The University starts with a preparatory section in Set Theory
and Elements of Proofs, and covers the following topics over a one-semester span:
Sequences, Limits of Functions and Continuity, and Derivatives. The sequel analysis
course covers Riemann Integration, Series of Real Numbers, Sequences and Series of
Functions, Taylor’s Theorem, Power Series and the Derivative of Inverse Functions.
The textbook for this course, Introductory Real Analysis, by F. D’Angello and M.
Seyfried [17], devotes a chapter to Riemann integration, and, according to the course
outline, the topic is covered over four weeks of classes. In the first section, Riemann
integrability and the Riemann integral of a bounded function on an interval are defined
in terms of upper and lower sums, and necessary and sufficient conditions for Riemann
integrability are then obtained. Modern textbooks thus rely mostly on Darboux
and Peano’s reformulations of Riemann’s work on integration (see section 2.6). In
the subsequent section, however, Riemann’s original definition of the integral, as a

limit of Riemann sums is given, and the equivalence of the two definitions is proven.
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The properties of the Riemann integral are presented next, and then continuous
and monotone functions are shown to be integrable. A section is devoted to the
Fundamental Theorem of Calculus, and finally, improper integrals are described and
comparison tests are established for deciding when an improper integral converges or
diverges.

The change of scene from calculus to analysis courses is abrupt. For students,
the proofs “migrate” from the the theoretical realm to the practical one: for instance,
students are now required to prove that a function is integrable. Their tools are ep-
silons and deltas, convergent sequences, suprema and infima, etc. The first section on
Riemann integration is titled Existence of the Riemann integral, and is characteristic
for this shift from the symbolic manipulations students have grown accustomed to in
calculus to the formalism of existence theorems of analysis. The Riemann integral of
a function was defined in the calculus course as the limit of Riemann sums, under
the very much implicit assumption of continuity. In the analysis course, on the other
hand, it is shown to exist if a certain condition is satisfied, and this condition - i.e.,
that upper and lower Riemann integrals coincide — is carefully examined. For in-
stance, the author of the textbook and the teacher would go through great “trouble”
to prove what a student may well see as an obvious statement: L’: f= T) o » and then
f is said to posses a Riemann integral, if the two agree.

Clearly, the objective of teaching integration in the undergraduate analysis
course seems to be the understanding of the notion of integrable function, in the
sense that Riemann first did, by asking the question: in what cases does a func-
tion admit integration and in what cases it does not? We see two main obstacles to
reaching this objective. Firstly, students’ encounter with formal proofs and defini-
tions makes the passage from calculus to analysis very difficult. Tall [57] mentions
this problem when he categorizes the representations available in the teaching of

calculus. He asserts that enactive representations may act as an intuition basis for
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calculus built with numeric, symbolic and visual representations, but that the formal
definitions and theorems of analysis require different cognitive qualities, and signifi-
cant constructions and reconstructions of knowledge. He argues that the conceptual
gap between the practical calculations and symbolic manipulations in calculus and
the theoretical proofs and definitions of analysis is so wide that this causes a severe
chasm in courses. He gives the example of the mean value theorem that “inhabits the
realms of existence theorems in analysis and sits uncomfortably in the computations
of elementary calculus” ([57], p. 23) and we would add that the same is true for the
definite integral: it is the subject of computations in calculus (in using techniques of
integration, or in applications to areas, volumes, etc.), while in analysis one questions
its very existence for a given function.

However, besides the problem of formalism, specific to analysis courses in gen-
eral, which is also implicitly recognized by the introductory section on set theory
and proofs of the first analysis course, we want to draw attention to another obstacle
that may become important in the teaching of integration in analysis courses. We
discussed in Chapter 2 the fact that it was Riemann’s acceptance of the modern con-
cept of function that underlay his innovative approach to integration. Research in
mathematics education documents how students’ problems with the concept of func-
tion hinder their learning of calculus concepts. Dreyfus and Eisenberg, [21] cited in
[67], found that students hold the belief that a relation is a function when it can be
represented by only one formula, and that students view algebraic and graphical data
as separate, with a graphical representation with no formula having no meaning for
most students. Bakar and 'Tall [2] also found that students had certain misconcep-
tions about the notion of function: that it has to be given by a formula that should
always include z, that the graph should have a recognizable shape (e.g. polynomial,
trigonometric or exponential), and that it has to have certain “continuous” proper-

ties. Another type of finding is that of Graham [23], who showed that students tend
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to believe that given a function, they are expected to do something with it, such as
substitute a value (see also [6], [53]).

It is less likely, however, that the more mathematically sophisticated clientele
of analysis courses — consisting of students majoring in mathematics, statistics or
actuarial studies — would have such problems with functions. We believe the main
problem for these students, that may act as an obstacle for the understanding of
the notion of integrable function, is of a “higher order” type: it has to do with
their conceiving of the notion of function in the sense that Cauchy did, as mainly
continuous (at most, with a finite number of discontinuities) and given by an analytic
expression. In precalculus courses students would gradually move from linear to
quadratic, then to polynomial and rational functions, and later to trigonometric,
exponential and logarithmic functions. In calculus courses, one also deals only with
elementary functions. So, although, in theory, students would be given a definition
stating that a function f is a rule that assigns to each element in a set X a unique
element in a set Y, in practice, they would only see functions given by formulas. The
set-theoretic definition proved to be very powerful for the development of mathematics
and Riemann’s approach to the problem of integral is only one example that illustrates
it. However, mathematicians and/or teachers, we believe, do not rely entirely on such
formal concepts. For them, too, more intuitive ideas of functions as change, or even
“images” of functions as formulas coexist with the more formal notion of ordered
pairs, but most probably in a more fluid and effective way. We believe this kind of
composite of ideas regarding functions should be conveyed in teaching, as opposed
to an approach where classes of elementary functions are presented and the ability
to perform algebraic manipulations is developed. This is possible, we believe, in
analysis courses, where sequences and series of functions are introduced, thus, an
opportunity for dealing with not so well behaved functions exists. Then, possibly,

students conceiving of functions as more than analytic expressions and continuous,
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would better grasp the understanding of integral that came about with Riemann’s

work.

5.4 Integration in measure theory courses

While the content in calculus and analysis courses on the topic of integration is
generally similar in various textbooks, when it comes to measure theory courses, the
situation is different: the way the Lebesgue measure and integration is introduced
varies significantly across different textbooks. Therefore, we will first provide the
background for our analysis by producing a more detailed overview of a few ways to
present the Lebesgue measure and integration. In this overview, we will trace, at the
same time, the origins of the main ideas of these modern approaches, concluding, in

this way, our historical account of the development of the modern integration theory.

5.4.1 The Carathéodory method: generating measures through

an outer measure

Constantin Carathéodory did pioneering work in abstract measure theory (see [38]).
In 1918, he proposed a general method to produce an abstract measure with the
help of a set function which is called outer measure. The novelty of Carathéodory’s
construction is the fact that it makes no use of the inner measure, so there is no need
to restrict the argument to bounded sets, as a preliminary step. There are sets that
are not bounded, and which we would expect to have finite measure: the most notable
example is the set of rational numbers, Q, which is countable, and has measure zero.

The ideas in the following presentation are due to Carathéodory and can be
found — with variations — in many textbooks, a classic being the book of Paul Hal-
mos, Measure theory [26], and one that is also extensively used being Royden’s Real

Analysis [48].
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Definition 5.4.1. For a fixzed non empty set T, an outer measure X is a set function
defined on P(T) (the power set of T, i.c., the set of all subsets of T) such that
ME) 2 0 for any E C T, and the following conditions are satisfied:

(a) AX(0) = 0 and ME) < MF) whenever E C F;

(b) For every sequence (Ap)n>1,

A (U A,,) <Y MA).

n>1 n>1
( The above property is usually called countable subadditivity.)

Given an outer measure, Carathéodory defines a notion of measurability with

respect to it:

Definition 5.4.2. With X as in the previous definition, we say that E C T is A-

measurable if
AM)=AXMNE)+ M\(MN(T\E)) forevery MCT. (5.1)

We shall denote by F) the set of all A-measurable sets in T'.

Carathéodory’s condition requires that a measurable set can be used to cut
any other set and the outer measure of the set that is cut will be equal to the sum of
the outer measures of the two pieces.

The main result is that the given outer measure “becomes” a measure, in
particular, it acquires the property of countable additivity, if restricted to measurable

sets defined according to Carathéodory’s condition. In other words, this result holds:

Theorem 5.4.3 (Carathéodory). F, is a o-algebra and the restriction of A to Fy

1S @ measure,

where the notion of measure is defined as follows:
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Definition 5.4.4. If T is a non-empty set and F s a o-algebra of subsets of T, then

p: F— R, is called a measure on F if

p® =0 and p <U An) =) pu(An)

n>1 n>1
for every pairwise disjoint sequence of sets A, € F.

Note: One can take Fo = {0, 7} and u(0) =0 and u(T) = +o0o. Then Fy is
in fact a o-algebra and p a measure on Fy. Some authors want to avoid this trivial

case and use a small modification of the above definition (see next sections).

Remark 5.4.5. It follows from the definition that A € F) whenever A\(A) = 0, there-

fore the measure given by Carathéodory’s theorem is also a complete measure.

One can arguably find the origin of Carathéodory’s condition in Lebesgue’s

notion of measure, at least in a logical sense. From the definition of the inner measure:
mi(E) = b—a —me([a,\E),

it can be observed that a set £ C [a, b] is measurable according to Lebesgue’s defini-
tion (m;(E) = me(F)), if and only if:
b —a = m([a,b]) = me(E) + me([a,b]\E).

Now m, has all the properties of an outer measure and the bounded set F is

measurable, in the original Lebesgue construction, if and only if
b—a=m(la,b]) = me([a,b] N E) + m.([a,b]\E) for every a <b,

not necessarily with the condition F C [a,b]. But m.(E) can be computed for every

subset £ C R, not necessarily bounded, and the particular case of the interval [a, ]
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can be dropped. Then, one can define as “measurable” every subset E C R with the

property that

me(M) = me(M N E) +me(M\E) forevery M CR.

Carathéodory’s theorem is by now a starting point of many measure theory
textbooks. Through particular choices of the “generating” outer measure one can
obtain different measures. In fact, most textbooks use this method in such a concrete
way with the purpose of proving the existence of the Lebesgue measure on R (see
[48]). Namely, the Lebesgue measure is obtained by means of the following outer
measure:

Let C be the set of all intervals of the form I = [a,b), and set I(I) = b— q,
where [ stands for the length of the interval I. Define, for every A C R,

m*(A) :inf{Zl(Ik) cAc L, Ik ec}.

k>1 k>1

Once it is established that m* is an outer measure, let £ be the set of all
m* measurable sets as defined in 5.4.2. Carathéodory’s theorem ensures that £ is a
o-algebra and the restriction of m* to L is a measure, and it can be easily shown that
for every I = [a,b),
m*(I)=1I)=b-a.

Finally, the following result holds:
Proposition 5.4.6. Every interval I = [a,b) € C is m*-measurable.

Proof. The proof is a relatively easy consequence of the following obvious properties

of the intervals in the class we have denoted by C :
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(a) 0 = [a,a) € Cand I N J € C whenever I,J € C.
(b) If I, J € C, then either I\J € C or I\J = J; U Jy, where Jy, J, are disjoint
elements of C.

(c)If I,J €C, then
{INJ)+UI\NJ)=1I(),

where, if I\J & C, we take [(I\J) = I(J1) + I(J) if I\J = J; U Ja.
Now, fix an arbitrary interval I = [a,b), an arbitrary M C R and a sequence

I,, € C such that

MnIc|JU.NnI), hence m*(MNI)<> I(I,NI),

n>1 n>1

M N R\ c | JZ.\D),

n>1
and, by our observation (b), I,\I (n > 1) can be rewritten as a sequence of intervals

of C which also covers M N (R\)), therefore

m* (M N (R\]) <> U(T\]).

n>1

By our observation (c),

DI = (W NI+ UI\)) =

n>1 n>1

=D TN D+ ) U\ = m* (M) +m* (M0 (R\])).

n>1 n>1
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Since I, € C was an arbitrary sequence which covers M, it follows

m* (M) > m*(M N I) + m*(M N ([R\])),

therefore I = [a, b) is m* measurable (the opposite direction inequality is assured by

countable subadditivity). O

We have reached the end of our argument. Since £ is a ¢-algebra and contains
every interval I = [a,b) by Proposition 5.4.6, it follows that it contains the o-algebra
generated in R by the set of all such intervals which is the o-algebra of all Borel
subsets of R, usually denoted by the symbol B. If we denote by m the restriction of
m* to B, then m is a measure and the measure of an interval, whether open, closed
or half-open is, as we had expected, its length.

Assuming the completeness of such a measure, uniqueness is immediate.

The elements of £ are the usual Lebesgue measurable sets and, by the defini-

tion of m* it is easy to check that:

A C R is Lebesgue measurable if and only if A= BUC, where B is a
Borel set and m*(C) = 0, therefore — see 5.4.5 — m(A)=m(B).

Thus, there exists a unique measure m on the Borel sets of R such that the
measure of an interval is its length.
This is in fact Lebesgue’s discovery around 1902. It is a fundamental property

of R, it is the natural and the unique translation invariant measure on R.

5.4.2 Riesz’s method: the integral before the measure

Another approach found in textbooks introducing Lebesgue integration puts integra-

tion rather than measure to the fore and constructs Lebesgue integrable functions as
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differences of limits of increasing sequences of step functions with bounded integrals.
This was originally done by the Hungarian mathematician F. Riesz in 1912 [46], and
adopted by other writers in analysis (such as Apostol in [1], Weir in [60], or Chae in
[13]).

Riesz’s method is to arrive at the Lebesgue integral by a step by step construc-
tion, without using the measure. His motivation appeared to be the preoccupation
with making Lebesgue’s integration theory more accessible to mathematics students
(see [42]), and the main difficulty of this new theory — he believed — lay in the pre-
requisite study of measure theory.

In what follows we present a scheme of this method, which starts with an
independent definition of sets of measure zero, the only instance where the notion of

measure appears:

Definition 5.4.7. We say that A C R has measure zero if for every e > 0, there

exists a sequence of bounded open intervals I,, = (a,,b,), such that

Ac UL and Y U(I) =) (bn—an) <e

n>1 n>1 n>1

An immediate consequence of this definition is that any (at most) countable
set has measure zero and a countable union of such sets sets is again of measure zero.

These sets are mainly used for the following definition:

Definition 5.4.8. f G CR, f,:G— R (n > 1) and f: G — R are arbitrary,

we say that (f,) converges to f almost everywhere, in short
fo(t) — (1) ae.,

if the set of t such that fn(t) does not converge to f(t) has measure zero.
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Recall also that the characteristic function of a set E is

1 for tekE,
xe(t) =
0 for t€E.

Then step functions and their integrals are introduced.
Definition 5.4.9. A function ¢ : [a,b] — R is called a step function if there is a
partition of the interval [a,b]
A=y <x1 < < ZTp==
such that o is constant on every open interval I = (Tx_1,2x), i.e., (x) = ar for
x€l, k=1,2,...,n.

It follows from the definition that every step function can be written as

o(z) = ZakXIk (x) ae.

and the class of all step functions behaves well with respect to elementary algebraic
operations, i.e. sums, products, etc. It is obvious that a step function has points
of discontinuity only at the points of the partition and is a very simple Riemann

integrable function.

Definition 5.4.10. Let

b n
/ wlx)dr = Zak(xk — Tp—1)
a k=1

be the integral of the step function p(x) = ZakX]k (x).
k=1

The integral of a step function is its Riemann integral and, consequently, has
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all the common properties of an integral, such as linearity, monotonicity, and so on.
Then the integral is gradually extended to larger classes of functions. To this end,

the following two lemmas are essential:

Lemma 5.4.11. Let ¢, be a monotonically decreasing sequence of positive step func-

tions defined on [a,b]. Then ¢,(x) — 0 almost everywhere in [a,b] if and only
if
b
/ Yn(x) dr — 0.

Lemma 5.4.12. Let ¢, be a monotonically increasing sequence of step functions on

la,b], and assume that there is a real number A such that

b
/ on(x)dr < A for every m>1

Then @n(x) converges almost everywhere.

The above two lemmas are the main tools in the construction of the Lebesgue
integral: more general functions are approximated by step functions. First, the class
L* of functions which are almost everywhere (a.e.) limits of increasing sequences of

step functions with bounded integrals, is introduced and their integral is defined:

Definition 5.4.13. Let Lt be the class of all functions f : [a,b] — R (the extended

real numbers set) such that

(a) There exists an increasing sequence @, of step functions on |a,b] with

on(x) — f(z) a.e.

(b) The sequence of integrals

/a b(pn(x) dx

82



18 bounded .

For every f € LT, let

/bf(x) dr = li7rln /b<p(x) dz. (5.2)

Finally, the class of Lebesgue integrable functions is defined as the set of
differences {g—h : g,h € L*}:

Definition 5.4.14. Let L be the class of all those f : [a,b] — R which can be written
as f = g— h, where f,g e L*.

L is the set of Lebesgue integrable functions and

/a b flxyde ™ / bg(:c) dz — / bh(x) dx (5.3)

is the integral of f.

The above definitions hide in their few lines a lot of work to be done. First
of all, it has to be shown that f: f(x)dx from (5.2) do not depend on the particular
sequence of step functions and fab f(z) dx from (5.3) do not depend on the functions
g,h € Lt such that f =g — h.

Everything is achieved in the Riesz approach to the Lebesgue integral through
a sequence of simple arguments, the most difficult being the above two lemmas. The
main properties of the Lebesgue integral are proved without any mention of a measure,
and, once all the tools are ready, the Lebesgue measure on R is defined in terms of the

integral. First, measurable functions are defined as functions that can be represented

almost everywhere as a limit of a sequence of step functions, then measurable sets are
said to be the sets such that their characteristic function is measurable, and finally,

the measure is defined by the integral of the characteristic function of that set.
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5.4.3 Radon, Fréchet and Riesz: abstract integration and

measure

Without claiming to have covered in an extensive or systematic manner the large
number of approaches to Lebesgue integration and measure, we now turn to one of
the most recent approaches to introducing the Lebesgue integral and measure.

Walter Rudin wrote a very popular text book in real analysis in which the
Lebesgue integral is presented in an abstract context [49]. The ideas on which this
exposition is based can be traced back to Radon, who, in 1913, introduced an integral
in the n-dimensional Euclidean space, that was based on an abstract measure — a
completely additive set function — rather than on the particular measure of Lebesgue
(see [38]). Lebesgue’s and Stieltjes integrals (the latter not discussed in our study)
were special cases of his definition. Even further abstraction was achieved through
the work of Fréchet in 1915, where the integral was defined for real functions defined
on completely abstract sets, freed of any Euclidean ties.

Fréchet had also introduced, in his thesis of 1906, the notion of distance on
an abstract set, the basis of today’s notion of metric space, which seems to have
inspired Riesz to introduce the notion of L” spaces. In Riesz’s work one can also
find the origins of the modern view of integrals as linear functionals, namely in his
representation theorem. In its original form, the theorem stated that all continuous

linear functionals are integrals [47]:

Etant donée Vopération A[f(z)], on peut déterminer la fonction & varia-
tion bornée a(x), telle que, quelle que soit la fonction continue f(x), on
ait:

Alf (@) = / £ () da(x).

Integrals came to be later defined as continuous linear functionals (for a very
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interesting account of the metamorphosis of this theorem from its beginnings to the
present times, see a paper by J.D. Gray [25]). Not surprisingly, Riesz is considered
to have the most important role in popularizing the work of Lebesgue, and in giving
it its important place in the theory of function spaces.

Rudin’s exposition of an abstract theory of measure and integral starts by
giving legitimisation to such an approach. If one looks at Riemann’s definition of the
integral for some f : [a,b] — R, then f: f(z) dr appears as the limit of sequences of
the form

n-—1

R, = zck(xkﬂ — Tk),

k=0
where a = 2o < 21 < --- < 2, = b are partitions of [a,b|, with norm approaching 0.
On the other hand, if we think of m as the “natural” measure on R, that is, if we let:
m([Tr, Tep1]) = Tep1 — 2 (0< k< n-—1),
and if we put (see Definition 5.4.9 and Definition 5.4.10):

n—1
(,O(ZL‘) - chxlzk,xk+1](x)’
k=0

then the above R,, can be re-written as

n—1 b k-1
Ro= Y aalorn =2 = [ p@)de =Y oo o)
k=0 a k=0

Now, a natural question arises: why should we limit the study of integration
to the special case of intervals, instead of working with arbitrary measurable sets,

and why should we consider only step functions [Definition 5.4.8] and not the more

general

8§ = E CreXAy»
k
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where A, are measurable sets, with the integral of s, suggested by 5.4.10, as

n—1

/s(:c) dx = Z ce m(Ag)?

k=0

Thus, the geometry of the underlying space is “removed” and this makes inte-
gration become a tool of much wider applicability. We will use, in the sequel, Rudin’s
notation.

A measurable space is an ordered pair (X.9), where X is a non empty set
and M is a o-algebra of subsets of X. (The definition of a g-algebra can be found in

3.5.1).

Definition 5.4.15. If f : X — R, we say that f is measurable if f~1(D) € M for
every open set D C R.

s : X —— R is said to be simple if it can be written as

]
§ = E Cr X Ar»
k=1

where ¢ are real numbers and A, € M. (Note: the function s could have several

representations in the form of the above sum.)
A fundamental property is the following

Theorem 5.4.16. f : X — R is measurable if and only if there is a sequence s, of
simple functions such that sp(x) — f(x) for almost every x € X. Moreover, if f is

positive, then s, can be found such that

0 < s,(x) < f(x) for almost every x € X.

Measurable functions have the regular algebraic properties, i.e. sums, products

of measurable functions remain measurable, and if f: X — R is measurable, then
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| f] is measurable and
fH(x) = max{ f(x),0} and f~(z)= —min{f(z),0}

are also measurable. Note that f = f* — f~and |f| = f* + f~. Finally, every simple
function is measurable because x4 is measurable if and only if A € <.

Now assume that z : 9 —s R, is a fixed measure, defined as follows:

Definition 5.4.17. A (positive) measure on the o-algebra M is a function
prMe— R,

such that

" (U An> = u(An)

n>1 n>1
for every sequence of pairwise disjoint sets A, € M, and there is at least one set

A € I such that p(A) < +o00.

The integral is defined next, first for simple functions and then for positive

measurable functions:

Definition 5.4.18. For every E € M and every simple function

§= ch XAy Ap € m, (54)

k=1

define the integral of s over F as
/s du =4 ch (AN E),
E k=1

with the convention 0 - oo = 0, meaning that we take ci u(Ax N E) = 0, whenever

ek = 0 and p(AxNE) = +o00. (It is shown that ;s dp does not depend on the particular
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representation in (5.4).)
It is assumed here that u{z : s(x) # 0} < oo; this avoids the co—oo situation.

Definition 5.4.19. For every positive measurable function f : X +— Ry and E € M,

set

/fdu:sup {/sdp,:ssimple,ogssf}.
E E

S pf dp is the integral of f over E or simply the integral of f in the E = X case.

(Note that [ f dp = +oo is a possibility.)

Finally, everything is ready for the following fundamental definition of inte-

grability:

Definition 5.4.20. If f : X +—— R is an arbitrary measurable function, and E € X,

then f is integrable over E if
/|f| dp < +o00.
E

In this case

[r7< [indu<roo and [ 1< [171du< oo,

and the integral of f over E is defined as

/Efduz/Ef*du—/Ef“du.

Thus, given a measure, an integral on measurable functions can be associ-
ated with it. The properties of this integral can be proved using only elementary
arguments, indeed in an abstract setting, but without making the theory any more
difficult than the special case of the real line, Rudin asserts. Besides, there is no need

for bounded intervals, bounded functions or partitions of intervals.
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Conversely, when it comes to “producing” a measure Rudin’s approach is also
abstract. After laying down some topological preliminaries, he uses the Riesz repre-
sentation theorem to prove the existence of a measure (actually a class of measures)
with certain properties. Namely, any positive linear functional defined on a space
satisfying certain topological properties “arises” as the integral with respect to a
measure.

Then, defining the Lebesgue measure on R* — a locally compact topological
space — becomes equivalent to the task of defining a suitable positive linear functional
on C.(R¥) (the space of continuous functions with compact support defined on R¥).

Keeping with the modern approach the subsequent chapter deals with classes
of integrable functions, LP spaces. It is obvious that, in Rudin’s book, integration and
measure are presented rather as prerequisites, or tools, for the powerful applications

that follow.

5.4.4 Discussion of teaching issues

We saw that the Lebesgue measure and integration can be introduced in at least
three different ways; the obvious — and somewhat simplistic — question is which one
is better?

Again, we believe that the answers greatly depend on the objectives of the
teaching of Lebesgue integration and measure. That is why we will give our answer to
the above question and, in general, reflect on the teaching of Lebesgue’s integration
theory through two more specific questions: should Lebesgue integration be taught
exclusively? and, should Lebesgue integration be taught at all?

We started our research with the belief that not introducing the Riemann inte-
gration in undergraduate analysis and starting directly with the Lebesgue integration
might be an interesting option. That is because Riemann integration is not logically

necessary for the introduction of the modern, more general, theory of integration.
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The only reason, we believed, for introducing the Riemann integral in a first stage,
would be that is is the only option for a population of students lacking mathematical
maturity. We have acquired a different point of view after undertaking the historical
research: Riemann integration might well require a great deal of mathematical matu-
rity and sophistication, too. Riemann’s definition of the integral, and his contribution
to integration theory, consisted of more than a slight generalization of Cauchy’s defi-
nition of the integral as the limit of approximating sums. With his notion of integral,
Riemann actually opened a new line of questioning: how discontinuous can a function
be while still being integrable? This is an important question that also provides the
opportunity for developing in students a more sophisticated notion of function, and
Riemann integration is, we believe, the right context to start asking it. That is why,
provided an effort is made to convey Riemann’s insight in teaching, our opinion is
that Riemann integration should not be replaced, in undergraduate mathematics, by
Lebesgue integration.

Now, at the other end of the spectrum is the question about whether Lebesgue
integration should be introduced at all at university. Besides the obvious time con-
straint — a first acquaintance with Lebesgue’s theory requires significantly more time
than the presentation of the Riemann integral — the conceptual difficulties of the
former are certainly the main concern. Norbert Wiener, who attributes the early
achievements of his career to his acquaintance with the Lebesgue integral, trying to
suggest the main idea of the Lebesgue integration, expresses this concern: “It is easy
enough to measure the length of an interval along a line or the area inside a circle or
other smooth, closed curve. Yet when one tries to measure sets of points which are
scattered over an infinity of segments or curve-bound areas, or sets of points so irreg-
ularly distributed that even this complicated description is not adequate for them,
the very simplest notions of area and volume demand high-grade thinking for their

definition. The Lebesgue integral is a tool for measuring such complex phenomena.
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The measurement of highly irregular regions is indispensable to the theories of prob-
ability and statistics; and these closely related theories seemed to me to be on the
point of taking over large areas of physics.” ([59], p. 23).

At The University, the existence of two versions of the measure theory course,
appears to address this concern. The undergraduate course, most probably assuming
a less mathematically mature clientele uses Royden’s textbook (see section 5.4.1),
where the Lebesgue measure and integral are introduced through Carathéodory’s
method in a less abstract setting with the generating measure chosen at the outset
to be the Lebesgue outer measure. The graduate course, on the other hand, is based
on Rudin’s book (section 5.4.3), where abstract integration with respect to any given
measure is presented, and measures are produced through the Riesz Representation
Theorem.

While this organization into two courses may succeed in providing the two dif-
ferent audiences with appropriately tailored “doses” of abstraction, the question still
remains about whether students come out of this course with a deep understanding
of the significance of Lebesgue’s theory in analysis, or in mathematics, in general. We
have seen that this theory was not the result of a search for a more general theory of
integration, but of a search for answers to problems for which the Riemann integral
was inadequate; and the main problem was certainly not the inability to integrate
Dirichlet’s function — an impression that students may come out of these courses
with. Mathematicians developed a new theory of integration sometimes because they
needed more powerful analytical tools in their search for answers to quite practical
problems. The notable example we have looked at closely in our research, the ques-
tions related to Fourier series, was at the origin of many important discoveries that
not only translated into direct answers to these questions, but also ended up having
a larger influence on mathematics. We have talked about the deeper significance of

the new integration theory in the emergence of functional analysis, and about how,
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in a way, it made analysis simpler. Therefore, we believe that the challenge in the
teaching of advanced integration theory lies not so much in the logical difficulties of
the theory, but in getting students to have a feel of what motivates the introduction
of Lebesgue integration, and of its analytical power in applications.

One way to do this is by introducing “meta” aspects into teaching, that is,
by maintaining an explicit discourse in class where information or knowledge about
mathematics would be embedded into the teaching of it. The effectiveness of such
an approach in university level teaching is documented by Dorier et al.[20] in their
research on the use of the “meta-lever” in the teaching and learning of linear algebra.
Of course, it is neither necessary nor possible to take students through all the intri-
cacies of the development of the modern integration theory, but some indications as
to what motivated this development can be given, and the discussion about Fourier
series can be carried out in class without particular difficulties.

Still, if we are to be realistic, this may be not enough, especially in the un-
dergraduate version of the measure theory course. We have argued that Riemann
integration already requires a certain level of mathematical maturity, and although
approaches such as Royden’s, that builds a measure starting with a concrete outer
measure, or Chae’s, that bypasses abstract measure theory, may overcome the logical
difficulties, it would be even harder to convey to students lacking mathematical so-
phistication the insights of the Lebesgue integration theory. Taking this into account,
a solution would be to delay the introduction of Lebesgue integration for later, in a
graduate course, and in that context, we believe a better choice would be Rudin’s

textbook. We have described the approach to integration and measure in this text-

book as highly abstract. However, even if the methods, the proofs, and the suggested
exercises are more difficult, the notion of abstract integral that can be defined for
measurable functions with respect to any given measure appears like a very intu-

itively acceptable generalization, obtained by removing any Euclidean “ties”. On the
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contrary, there seems to be nothing intuitive in Carathéodory’s condition (5.4.2), and
certainly not in the proof of what may seem to an undergraduate student as an ob-
vious fact: the measure of an interval [a, b) is its length. On the other hand, Rudin’s
textbook could also succeed in conveying the tool-like power of the Lebesgue integral,
since it contains many applications, treated in the modern setting of LP spaces.
Finally, one more issue we want to touch upon, is related to a domain of
application of the Lebesgue measure and integration to which we have not given much
attention in our research. Probability and statistics emerged, around the 1920’s, as
domains where the Lebesgue integral became a tool for “measuring” phenomena.
Here highly irregular regions occur and the Lebesgue integral becomes indispensable.
For instance, Lebesgue’s notion of measure allowed Wiener in the 1920’s to provide
an elegant mathematical model of the Brownian motion. He looked at the random
irregular movement of the molecules of a fluid as describing not only curves, but
statistical assemblages of curves, i.e., spaces of curves, and proved that, except for a
set of cases of probability 0 (i.e. of probability measure 0), all the Brownian motions
were continuous non-differentiable curves. As a final thought, we would like to add
that the teaching of the Lebesgue integral in such bordering areas, where analysis and
probability, or more generally, mathematics and physics meet would be an interesting

option to consider, especially for students majoring in probability and statistics.

5.5 Final remarks

In this research we described the development of the modern integration theory from
Cauchy to Lebesgue, and concluded with some of the modern developments following
Lebesgue at the beginning of the 20th century. We have followed a somewhat linear
strand in that we ignored the connections with some neighboring domains such as

complex analysis, partial differential equations, multi-variable analysis, or the emer-
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gent probability theory.

Nevertheless, by considering some questions related to Fourier series, we aimed
at describing the driving forces behind some of the important insights that shaped
the modern concepts. On the other hand, we could not give justice to all the com-
plex aspects that surrounded this development, and thus chose to ignore other, per-
haps equally important, triggers of this evolution. In particular, we did not look
at Lebesgue’s and his predecessors’ work on the Fundamental Theorem of Calculus,
in research that aimed, roughly speaking, at making differentiation and integration
inverse operations for a larger class of functions. But it was not our intention to
provide the most exhaustive account of the development of analysis in the last half
of the 19th century. Our hope is that, besides capturing the key ideas that led to
Lebesgue’s integration theory, we managed to tell a “story” that is illustrative for
the entire mathematical genre. We tried to depict the emergence of a unified the-
ory with the contribution of many mathematicians, not all aiming to solve the same
problems, on the contrary, having sometimes quite different questions, motivated by
either physical, mathematical or philosophical concerns.

Finally, we employed this historical and epistemological analysis to raise some
issues related to the teaching of integration at various levels at university. We have
found that there might be some conceptual gaps between subsequent levels, that are
not necessarily insuperable, but require careful didactical analysis. We looked at some
typical textbooks and, inspired by the historical analysis, we gave some suggestions
for teaching. A future avenue for research would be the investigation of the advanced

hypotheses through empirical research.
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