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Abstract 

 This paper focuses on student explanations as a discourse practice central to 

mathematics teaching and learning. I discuss classrooms as hybrid discourse spaces, and 

focus on how talk is used to accomplish social action. In doing so, I contrast several 

different social and sociomathematical norms for explanation, and suggest that students’ 

choice of discourse practices position them within the classroom. Further, I caution 

educators against assuming that complete and detailed explanations are always best to 

support student learning. I discuss how explanations that are co-constructed by several 

students can actually support joint engagement in mathematical work and help peers stay 

‘on the same page’ while avoiding hierarchical positioning.   
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Explanations in mathematics classrooms: A discourse analysis  

 Mathematics education research on student explanations has fallen into roughly 

three kinds of studies: studies outlining what researchers consider to be characteristics of 

‘good’ explanations (Andrews, 2005; Inglis, Mejia-Ramos, & Simpson, 2007; Toulmin, 

1958), studies outlining developmental trajectories through which individual students’ or 

classroom sociomathematical norms for explanations develop (Hufferd-Ackles, Fuson, & 

Sherin, 2004; Morgan, 1998; Webb & Mastergeorge, 2003; Yackel & Cobb, 1996), and 

studies examining the details of discourse practices to characterize what student 

explanations look and sound like (Morgan, 1998; Rowland, 1995). This focus on 

explanation in mathematical thinking has highlighted the special nature of mathematical 

explanations, and considered the difficulties students might face in developing 

proficiency in this discourse practice, but has focused primarily on the content of talk 

rather than its situated nature.  

Only the last set of studies – characterizing explanations – has allowed any insight 

into the ways that explanations are used to position learners in relation to one another, 

and to accomplish other types of actions in social settings. As an example of how aspects 

of mathematical explanation serve to position explainers, Morgan (1998) discusses the 

features of written explanation that teachers value, such as a depersonalized tone, and 

shows how these values guide teachers’ assessments of student mathematical 

understanding. ‘More sophisticated’ writing is equated with ‘more sophisticated’ 

mathematical understanding. Rowland (1995) demonstrates how in oral explanations, 

students use ‘hedges’ (such as about, around, maybe, probably) as “a ‘Shield’ against 

being “wrong”” (p. 350). These two examples demonstrate that explanations are used to 
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position oneself, or others, in terms of mathematical understanding.  

Rather than seeing student explanations as a transparent window through which to 

view their mathematical understanding, in this paper I consider how student explanations 

function as tools towards some goal within an interaction. Even if an overarching goal of 

mathematics instruction is to help people learn mathematical ways of acting and 

speaking, I will argue that we cannot achieve this goal without serious attention to how 

talk-in-interaction functions as a tool for social action. I will use vignettes taken from a 

larger empirical study to highlight the importance of this approach, and to suggest some 

of the analytic tools that can be useful to analyse talk as social action.  

What are explanations and why are they important? 

 Many mathematics educators and teacher educators have come to see learning as 

a sociocultural process, in which learning mathematics is essentially learning to 

participate in a set of classroom mathematical discourse practices (Barwell, 2005; Sfard, 

2001). Discourse practices that are associated with mathematics include conjecturing, 

supporting claims with evidence, representing mathematical concepts, and using all the 

specialized language and symbols of mathematics accurately (Moschkovich, 2002).  

Explanation is one discourse practice that is central to mathematics teaching and 

learning. Mendez et al. (2007) argue that “presenting a logical warranted argument is a 

basic part of what it means to do mathematics” (p. 43). This position is supported by even 

a cursory examination of the Standards of the National Council of Teachers of 

Mathematics (2000). Two of the five Process Standards – communication, and reasoning 

and proof – are clearly heavily focused on student explanations. For the purposes of this 

paper, I consider a broad range of utterances under the heading ‘explanation’: utterances 
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that are designed to ‘explain why’ (i.e., reasoning and proof), ‘explain how’ (i.e., outline 

a procedure), and ‘explain your thinking.’ This definition of explanations is admittedly 

broad, but accords with informal definitions in use in many classrooms, where the term 

‘explain’ is used in a number of different ways.  

Yackel and Cobb (1996) point out that “what counts as an acceptable 

mathematical explanation and justification is a sociomathematical norm” (p. 461) in the 

classroom, and these norms may change over time. Several classroom studies 

demonstrate that this process of change can occur over a short time (such as a single class 

period in Forman, McCormick, & Donato, 1998) or longer-term (an academic year in 

Hufferd-Ackles et al., 2004), through concerted efforts by teachers to socialize students 

into their preferred discourse practices. The development of new (to the students) 

sociomathematical norms is not always simple or conflict-free, as students may resist 

adopting new norms for explanation or other aspects of classroom discourse practices 

(Herbel-Eisenmann, Lubienski, & Id-Deen, 2006). 

As Herbel-Eisenmann et al. demonstrate, students have agency and actively make 

choices about whether and how to participate in classroom talk; one danger of focusing 

only on norms in the classroom is that students who do not follow these norms can be 

positioned as ‘not knowing’ the norms. This may be the case for some students, 

especially those students whose familiar discourse practices are distant from the teacher’s 

preferred practices. Still, other possibilities exist: students may be actively working 

against the norms, or using the norms strategically to position themselves within 

classroom activity. In other words, talk should be considered as a form of social action, 

rather than an unproblematic reflection of student thinking. A second danger of focusing 
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on norms is that education researchers often place differential value on particular kinds of 

sociomathematical norms, and do not consider how a different set of norms might support 

student learning as effectively.  

I will use the following vignettes as ways to highlight these two issues: how talk 

is used as social action, and how various forms of talk can support student learning.  

These vignettes were selected from a larger corpus of data because explanation was the 

central focus of the students’ task, and because the two vignettes contrast in interesting 

ways. While I will not subject these vignettes to rigorous analysis, I will use them to 

elaborate on this approach to discourse analysis, and to consider the implications of this 

approach for mathematics education research more generally.  

Vignette 1 

 It was a Friday afternoon in March, 4
th

 period, right after lunch. Only a few days 

remained before a written unit test, and the teacher, Ms. Delack, had organized a jigsaw 

activity (Clarke, 1994). In a jigsaw activity, each student in the class joins a group (that I 

will call ‘jigsaw groups’) to become an expert on a particular topic. These experts are 

then responsible for teaching their peers in other jigsaw groups about their topic. For their 

jigsaw, the class selected four topics that they considered difficult, and then split into four 

large groups, each large group responsible for one of the four difficult topics. Later, they 

would reconvene into their regular daily ‘work groups’ of 3-4 members, and each person 

would give a presentation on their topic.  

The 4
th

 period class followed the Interactive Mathematics Program, Year 2 

(known as IMP 2) curriculum, This textbook series combined the various strands of 

mathematics into an integrated course that focused on problem-solving, reasoning, and 
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group collaboration around complex problems. IMP 2 is the equivalent, in the California 

system, to the Geometry course, typically taught in the 9
th

 or 10
th

 grade. This was one of 

three IMP 2 classes taught by Ms. Delack that were the focus of a larger study (Esmonde, 

2006, in press). The three classes were housed on the campus of a large, diverse urban 

high school (though the classes were officially part of several different programs within 

the school). The three classes were all diverse with respect to race, gender, prior 

achievement, and grade level (in each class, there were 9
th

 and 10
th

 grade students). 

 With about 15 minutes to work, a large group of 8 students gathered to discuss the 

feasible region.
1
 Several students immediately asserted that they already knew how to 

find the feasible region and seemed ready to end the discussion there, but one student, 

Riley, asked them, “right, but did you understand it? Can you explain it to your group?”. 

He was the first in the group to articulate the idea that their task was to explain and not 

just understand the topic for themselves. Other group members seemed to agree with this 

articulation, and so the group focused on rehearsing explanations and answering one 

another’s questions. Throughout the discussion, Riley took a leading role by asking other 

students to practice explaining. Most of the group members participated by contributing 

candidates for explanations, with Riley commenting on most of these contributions.  

As an example of a typical interaction during this mathematical discussion, 

consider Excerpt 1. In this excerpt, Riley encourages another student, Garai, to explain 

his strategy. Riley then repeats and expands on Garai’s strategy, and opens the discussion 

to further contributions from other group members. Transcript conventions include the 

following: numbers in subscript correspond to and index the onset of an action or gesture, 
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the boundaries of overlapping talk are shown with square brackets at the beginning ( [ ) 

and end ( ] ) of the overlap, and elongated pronunciation is shown with a series of colons. 
 

Excerpt 1. Riley encourages Garai to explain his strategy 

1 27:43 Riley Well Garai,  

2 27:44 Garai What 

3 27:45 Riley How’d you find 1this2 feasible region? 

1. Taps Garai’s paper with right hand 

2. Right hand returns to his chin, gaze towards Garai 

4 27:49 Garai 3Well4, (1.5 second pause) I just plotted points, (inaudible) and see 

uh, which was true? For the problem, and (2 second pause) that’s 

what I did 

3. Gaze towards his paper 

4. Leans back, gaze comes up towards Riley, hand comes up to 

his notebook 

5 28:00 Riley 5All right so you plot a point, and see, if it works 

5. Gaze towards his own notebook 

6 28:02 Garai Yeah 

7 28:03 Riley So like for each line6 you plot a point above it? 

And see if it works, and you plot a point below it, and see if it 

works? If it works then that means the line is going that way and 

you plot and you see where all the points, work. 

6. Gaze comes up towards Garai; throughout, he gestures to his 

own notebook, emphasizing where points are plotted 

8 28:14 Garai Yeah I see where all the points are and that’s where the feasible 

region, where everything works at 

9 28:19 Riley 7And- ((hear Candie laughing)) Anyone have any other ways? 

7. Gaze moves around the group 

10 28:27 Kendra Wait what did he say?8  

8. Eye gaze directed to Riley 

11 28:28 Riley He he, like they9  

He would plot a point for 10this line, on 11this side of the line, and 

on 12this side of the line  

(explanation continues for approximately 15 seconds) 

9. Points with finger and pencil towards Kendra’s paper 

10. Points with finger and pencil to a line on Kendra’s paper 

11. Points with finger and pencil to one side of the line 
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12. Points with finger and pencil to the other side of the line  

 

This brief excerpt illustrates several key points about the group’s interactions and 

the positioning of individual students. The group’s work together was collaborative in 

that several students contributed ideas for consideration, and in that Riley and Garai 

actually co-constructed Garai’s contribution to the group (see Riley’s shaping of Garai’s 

idea in turns 5 and 7). All students in the group were encouraged to come up with 

explanations, even after a correct explanation had been found (turn 9). As students 

worked together to co-construct and understand one another’s explanations, these 

explanations became quite detailed (turns 7, 8 and 11). Explanations often made use of 

tools (such as the graphs each student had written in their notebooks) and conventions 

that the group had previously used.  

In a later exchange after Garai had given his explanation, another student, Candie, 

told the group that she wasn’t sure how to explain how to find the feasible region; she 

assured them that she understood the mathematics, but struggled with the explanation. 

Riley turned to Candie and asked her what she might say, and she began to rehearse an 

explanation. Just as Candie finished, and before the group had time to respond, the 

teacher called an end to the activity, and the students returned to their seats.  

Vignette 2 

 Later that same afternoon, a group in Ms. Delack’s 6
th

 period class was 

videotaped as they engaged in the same jigsaw activity. The four students in this vignette 

(Noreen, Daniel, Elly, and Lisbet) were assigned to discuss ‘finding the highest profit,’ 

the last step in solving a linear programming problem.
2
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 Noreen, Elly and Lisbet began the discussion, with no active participation from 

Daniel. They displayed marked uncertainty about how to find the point of highest profit, 

as shown by comments like “I think… seventy-five and fifty or something,” and “oh wait, 

not, not in here, maybe I’m wrong,” (emphasis mine). Several possible strategies were 

suggested, but Noreen explained why she believed that the proposed alternatives would 

not work (though in fact, one of the suggestions was correct). After about three minutes 

of trying to work out an explanation, the group seemed to come to a tacit agreement that 

they could not solve this by themselves. For most of the rest of this activity, they talked 

amongst themselves about other matters – including their disapproval of the teacher’s 

methods, which they said were unhelpful because, as Lisbet said, “you can’t like just 

figure out math.”  

After a few minutes of this casual talk, Daniel sat up and looked around at his 

jigsaw group members for the first time since they began their discussion. He introduced 

the topic of the upcoming presentation he would have to give upon returning to his work 

group. The following excerpt demonstrates his request and the three other students’ 

responses to his request are displayed in Excerpt 2. 

Excerpt 2. Daniel's request for help 

1 41:03 Daniel Okay1 okay seriously. I- I- 2I don’t know how to go about 

teaching my group this3 

1. Hits desk with right hand, begins to lean back in his 

chair 

2. Shakes head as he speaks, gaze moves from person to 

person 

3. Gaze rests on Noreen 

2 41:09 Lisbet It doesn't matter. 

3 41:10 Elly We already- We talked about it 

4 41:12 Noreen Basically you like go through all the other steps? and then 



EXPLANATIONS  11 

you find like the 4highest profit line 5possible (inaudible)6 

4. Raises hand into the air 

5. Pushes hand up emphasizing ‘possible’ 

6. Lowers hand 

5 41:20 Daniel What? 

6 41:21 Noreen 7Yeah.  

7. Punctuates ‘yeah’ with gesture: closed fist moves 

towards Daniel, then drops back into her lap 

 

 When Daniel makes the statement that he doesn’t know how he will teach his 

work group about this topic, his statement is taken as a request for help by his group 

members. This is evidenced by their responses: Lisbet (in turn 2) tells him that it doesn’t 

matter that he doesn’t know how to do it, Elly (in turn 3) chides him for not paying 

attention when the rest of the group discussed it, and Noreen (in turn 4) gives him a quick 

and very general explanation of a solution strategy – an explanation that omitted some 

critical details. When Daniel responded by acknowledging he did not understand her 

strategy, Noreen’s response, ‘yeah,’ seemed to imply that she, too, was in the same boat. 

Earlier, Noreen had displayed and discussed a more solid understanding of the task than 

she shows in this instance, to Daniel. It appears that she chose to withhold information 

from Daniel, though we cannot know why. 

The group returned to their desultory conversation about other matters, and waited 

for the teacher to come over. Several minutes later, at the very end of this activity, when 

the teacher was urging everyone to return to their seats, they managed to attract her 

attention. When the teacher arrived, Noreen immediately explained how to solve the 

problem, and Ms. Delack confirmed that Noreen was correct. Elly seemed unsatisfied, 

and asked the teacher how they could be sure which point provided the highest profit. 
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The teacher gave a brief explanation on this point. The group then stood and each student 

returned to their own group. 

Analysing explanations: a focus on discourse 

In both vignettes, explanations were central to the group’s engagement in 

mathematical discourse. Because one central goal of mathematics education is to support 

students’ participation in mathematical discourse practice, it is valuable to analyse the 

sociomathematical norms for explanation which are evident in these interactions. As one 

approach to this type of analysis, I will briefly discuss three types of discourse markers 

that are often associated with formal mathematical explanations such as the presence or 

absence of personal pronouns (Morgan, 1998), a present-tense temporal structure (Pimm, 

2004), or the use of ‘hedges’ to denote uncertainty (Rowland, 1995).  

In both vignettes, students used pronouns ‘I’ and ‘you’ extensively as they 

described procedures for finding the feasible region or locating the point of highest profit. 

These pronouns seem to indicate ownership over particular solution methods. This 

ownership is again highlighted when Riley asked his group, “anyone have any other 

ways?,” perhaps emphasizing the value placed in this classroom on a variety of different 

methods, and individual creativity.  

With regards to verb tense, in the first vignette it is notable that Garai begins his 

description of his method with the past tense, indicating the method is something he has 

completed. When Riley revoices Garai’s strategy, he uses the present tense and the 

pronoun ‘you’ which could be interpreted as referring strictly to Garai, or a more 

impersonal ‘you’ that could use Garai’s strategy. Riley’s revoicing is also an interesting 

move to note in this context, as revoicing is typically described as a move teacher’s make 
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to position student thinking and to create space for dialogue in mathematics classrooms 

(Enyedy et al., 2008; O'Connor & Michaels, 1993).  

If we compare the two vignettes with respect to the use of ‘hedges,’ it is clear that 

the second group used more hedges in their talk and displayed a greater degree of 

uncertainty. This difference highlights the fact that although the two groups were 

engaged in the same classroom activity, they were in fact working at different tasks: in 

the first group, students were for the most part presenting information that they 

considered understood. In vignette 2, the group positioned themselves as uncertain, and 

struggled to construct a satisfactory explanation for finding the point of highest profit. 

 A number of authors have highlighted the distinction between ‘exploratory’ talk 

and ‘final draft’ talk (Barnes, 1976/1992 as discussed in ; Cazden, 1988; Wells, 1999). 

When students are working through mathematical ideas, a final draft-like, polished 

version of an explanation is not necessarily ideal. Instead, students may find themselves 

exploring ideas through their talk, and collaboratively constructing new ideas.  

Another approach to analysis would be to take a broad view of the phenomenon 

of explanation, and consider how well the explanations matched the teacher’s professed 

goals that student explanations be relatively complete and coherent with little teacher 

input. These goals match the goals of the teacher in a study by Hufferd-Ackles, Fuson 

and Sherin (2004) in which they characterized a range of explanation types (from Level 0 

– very little student explanation, to Level 1 – little student explanation, heavy prompting 

from the teacher for more detail, to Level 2 – prompting from teacher elicits detailed 

explanations from students, to Level 3 – complete and coherent explanations from 

students, with little probing from teacher) and showed how students and teachers in one 
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U.S.-based Grade 3 mathematics classroom moved from mostly Level 0 explanations to 

mostly Level 3 explanations over the course of a year.  

If this type of analysis were applied to the two vignettes, we might find that in the 

first vignette, the group practiced mainly a ‘Level 2’ or perhaps ‘Level 3’ form of 

explanation, in which students “stake a position and articulate more information in 

response to probes” (Hufferd-Ackles et al., 2004, p. 89) or “defend and justify their 

answers with little prompting from the teacher” (p. 90, italics in original). By contrast, in 

vignette 2, after deciding they were not sure of their explanation, the group provided 

“minimal volunteering of thoughts” (p. 89) and were therefore practicing Level 1 

explanations. When the teacher came over, Noreen gave a Level 3 explanation in which 

she defended her solution without any questioning from the teacher. Clearly, these 

analytic levels were created to describe whole-class discussions orchestrated by a teacher, 

and are less relevant for small group discussions where a teacher is not always present. A 

similar framework could be constructed to describe explanations in peer discussions, but 

would still gloss over the fact that at this point in the year, groups gave a range of 

different levels of explanation, sometimes within the same activity.  

The distinction between sociomathematical norms for explanations in whole class 

discussion, and those for peer discussions, is an important one. It remains an open 

question whether and when students in peer discussion would readily adopt the 

sociomathematical norms associated with whole class discussions. Webb, Nemer and Ing 

(2006) demonstrated that at least in some classrooms, students readily adopt the discourse 

practices that their teachers routinely use. The classroom in their study was fairly 

traditional and teacher-centered; discourse practices were primarily question-answer 
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sequences led by the teacher, and evaluated by the teacher. Studies that have 

demonstrated that students can develop proficiency in the discourse practices common in 

more student-centered or discussion-based classrooms have focused data collection 

primarily on whole class discussions, leaving open the question of how students talk with 

one another without the teacher present (Herbel-Eisenmann et al., 2006; Hufferd-Ackles 

et al., 2004).  

Thus, while these discursive approaches can illuminate important facets of 

classroom discussions, the vignettes show that explanation practices may be highly 

situational. Therefore, the context of talk should be taken into account in any analysis of 

this nature. For example, explanations in the presence of the teacher may differ from 

explanations made to other students, or explanations may vary depending on student 

perceptions of the task itself, or their perceived level of understanding of the 

mathematical material. In the first vignette, when students generally agreed that they 

understood the material and that their task was to rehearse explanations they could give 

later, they constructed several detailed explanations, co-authored by multiple students. In 

the second vignette, the group began by explaining their thinking, but when they 

collectively decided that they could not solve the problem on their own, they waited for 

the teacher. When one student indicated that he needed help, he was denied an 

explanation of what the group had done previously. Later, when the teacher arrived, one 

of the students who had professed confusion and refused to explain to the group gave a 

complete explanation for the teacher to confirm. Thus, in addition to considering general 

characteristics of explanations, it is also important to consider the following questions: 

what do people accomplish through explanations? And how does their talk support 
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mathematical learning? In the following sections, I explore these questions in further 

detail. 

Reconsidering discourse: hybridity, positioning, and talk as a tool for social action  

 Peer discussions in schools form a hybrid space, including the official school 

discourse, and one or more unofficial discourses that students draw on more informally 

(Gutiérrez, Baquedano-López, & Tejeda, 1999). While some versions of discourse 

analysis focus mainly on the talk itself, in such hybrid spaces, James Gee’s discussion of 

connections between identity and discourse is particularly useful (Gee, 1996, 2000).  

Gee defines a Discourse (with a capital ‘D’) as a “socially accepted association 

among ways of using language, of thinking, feeling, believing, valuing, and of acting that 

can be used to identify oneself as a member of a socially meaningful group or 'social 

network', or to signal (that one is playing) a socially meaningful 'role' " (Gee, 1996, p. 

143). I will use the term ‘discourse practice’ to refer to a particular type of talk or social 

action associated with a Discourse. The significance of this particular definition of 

Discourse (and discourse analysis) is that identities are made central to the analysis. The 

decisions that students make about when to speak and which discourses to employ are 

thus fraught with import, as their talk inevitably positions them as a kind of person in the 

classroom and in the world. Such classroom spaces are far from neutral, as the 

classroom’s ‘official’ discourse, and the various home or community discourses that 

students bring, are not all equally valued (Gutiérrez et al., 1999).  

In the vignettes of the jigsaw activity, Ms. Delack had specific expectations for 

student discourse – expectations that differed significantly from common conversational 

discourse practices, or even discourse practices that are common in many school settings. 
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She expected students to explain their thinking in detail, even if everyone already 

understood the material (e.g., the first vignette), or if the explainer did not understand it 

(e.g., Candie in the first vignette).  

These practices may contrast with explanation practices in informal 

conversations. Although students may all have different primary Discourses, and thus 

perhaps different expectations for talk amongst peers, research on informal conversation 

has highlighted some ways in which sociomathematical norms for explanation may differ 

from norms in other Discourses. Conversation analytic research in this area has 

emphasized that speakers and listeners operate with a substantial body of information that 

is taken-as-shared (Garfinkel, 1984). Garfinkel points out that to ask for or to give an 

explanation for an ordinary or common-sense statement is usually considered 

inappropriate. For example, a seemingly straightforward comment like “it’s sunny today” 

would rarely be greeted with a response like “can you explain what you mean by that?,” 

(although that response may be appropriate in some contexts). Indeed, Garfinkel points 

out that when this assumption of taken-as-shared is breached, feeling of confusion, anger 

and anxiety can quickly mount.  

That is not to say, of course, that explanations are not routinely offered. In 

informal conversations, explanations are offered when the validity of a statement is called 

into question. For example, if the speaker knows something that the hearers do not, or 

perhaps the speaker and audience disagree, an explanation might be offered (Pomerantz, 

1984). If these conversational norms were carried into mathematics classrooms, we 

should expect explanations when a) the explainer is explaining some new information to 

listeners, or b) there is a disagreement in the group. Students might consider it 
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inappropriate, even rude, to provide detailed explanations in other situations.  

Given the above, there are a number of reasons why a student might choose (not) 

to give an explanation in mathematics class. First of all, a student might, rightly or 

wrongly, consider an explanation unnecessary because of a common ground of 

understanding with their peers. For example, in vignette 1, Garai mentioned ‘plotting 

points’ without going into detail. The concept of plotting points was taken-as-shared in 

the group and did not require an explanation. (This does not mean that everyone in the 

group understood, just that the group acted as if ‘plotting points’ did not need an 

explanation at that time.) Every time students begin an explanation, they must decide 

how much detail to provide.  

Secondly, students might not explain if an acceptable explanation had already 

been given, and they had no new information to add. This could be a problem in some 

mathematics classrooms, in which it is common practice to ask students to find multiple 

solution strategies for a single problem. This practice is certainly not a part of most 

traditional mathematics classrooms, nor does it seem to be a part of most ‘everyday’ 

conversations. However, in the first episode, the group rehearsed a number of different 

explanations. Recall the group’s early decision that their job was not to ‘understand’ the 

problem. Rather, their job was to explain and to rehearse explanations to give to their 

peers. The structure of the jigsaw activity allowed students to give detailed explanations 

to one another without causing offense, or implying that someone did not understand the 

problem.  

Finally, conversational norms can be used as resources for social action and do 

not need to be followed to the letter. In his book Studies in the way of words, Paul Grice 
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(1989) elaborates on a set of maxims that he says govern much of face-to-face 

conversation. These maxims, such as “make your contribution as informative as is 

required,” and “do not make your contribution more informative than is required” (p. 26) 

are expansions of Grice’s overarching Cooperative Principle: with every conversational 

move, people are assumed to be cooperating to communicate relevant information. Grice 

goes on to show how breaches of a maxim are often interpreted as displaying allegiance 

to the overarching Cooperative Principle. To provide an example taken from the 

vignettes, Noreen’s failure to elaborate on her explanation to Daniel in vignette 2 would 

be interpreted as providing as much information, and no more than required. Since she 

chose not to elaborate when asked, her conversational move implies that she had no more 

information to share.  

Of course, later in the vignette, when the teacher arrived at the group, Noreen did 

provide a more detailed explanation. If she had this information, why did she not share it 

with Daniel earlier? Although there are many possible reasons, and no way to definitively 

decide, it is telling that Noreen’s conversational move served to align her position with 

that of Daniel. When he expressed confusion, and she responded simply with a 

sympathetic ‘yeah’ and a gesture similar to throwing up her hands in defeat, she 

positioned them as ‘in the same boat.’ Her utterance did not accord with various social 

and sociomathematical norms of the classroom – providing detailed, complete 

explanations, answering questions from a peer – but served to position her as incapable of 

fulfilling those norms, not unwilling. The effect is that she is positioned as an ally of 

Daniel’s, and not an antagonist (as she might at first seem, from her blunt refusal to help). 
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Reconsidering ‘complete’ explanations 

 So far I have discussed the presence of hybrid language practices within the 

classroom, and suggested contextual reasons why students who are mathematically 

knowledgeable, and proficient in classroom sociomathematical norms, still might not 

provide ‘complete’ explanations, unprompted by input from other students or from the 

teacher. In addition, I argue that complete and fluent explanations in mathematics 

classrooms may not always be the most effective at engaging students in mathematical 

discourse. If learning mathematics is learning the discourse of mathematics, then it is 

certainly critically important that students develop facility with ‘level 3’ explanations. 

However, one of the key distinguishing factors between Hufferd-Ackles et al.’s level 1 

and level 3 explanations is the amount of ‘prompting’ needed from a teacher. It is not 

necessarily the case that self-contained and detailed explanations are always the best 

choice for an oral explanation.  

 Indeed, Barron (2003) has made a compelling argument that what separates 

successful groups from less successful groups is their degree of joint attention and 

engagement with a problem. Barron’s findings are supported by research on everyday 

talk, highlighting how people use a number of conversational techniques to find ‘just the 

right amount’ of detail (in accordance with Grice's (1989) maxims). For example, in 

casual conversation, it is customary to state assertions as simply facts at first, and then in 

the face of a challenge or doubt, to begin to provide a basis for the claim (Pomerantz, 

1984). 

 This type of back-and-forth talk highlights the active participation of the listener 

in the speaker’s construction of an explanation. As illustration, consider the following 
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group interaction, taken from a paper of Noreen Webb and Ann Mastergeorge (2003). In 

Excerpt 3, two students are discussing a fairly routine math problem with a goal of 

finding the total cost of a long-distance call. 

Excerpt 3. Joint attention to an explanation 

Problem 1: Find the cost of a 5-minute telephone call to prefix 756 (first 

minute costs $0.19; each additional minute costs $0.12).  

1  A3: I got 79. [On his paper appear the calculations 12 × 5 +19.]  

2 A1: No, it’s 12 times 4.  

3  A3: Where’d you get 4 at?  

4  A1: 4 minutes and the additional minute is 19 cents. I got 0.67.  

5  A3: 5 minute call, enn... Where’d you get 4?  

6  A1: Look, look. OK, 12 times 4, right? And then the minute, that’s the 

19 cents is  

  the extra minute, which makes it 5.  

7  A3: Ah-ha.  

8  A1: Because it says after each additional minute, so that means it will 

be 12 times 4.  

  And then you add 19 cents, which is the additional time. You 

put 12 times 4.  

9  A3: Times 4.  

10  A1: And then you get the answer, and then you add 19 cents.  

11  A3: Oh boy. Now I get it. Smart! Too smart.  

(Webb & Mastergeorge, 2003, p. 390) 

 

 In this excerpt, student A3 begins by making an unsupported assertion, to which 

Student A1 disagrees. Over the next several turns, A3 repeatedly asks for clarification, 

and A1 provides increasingly specific response. In closing, at turn 11, student A3 seems 

pleased to ‘get it,’ and also positions student A1 as ‘smart.’  Some might argue that this 

interaction was less than ideal because no single turn at talk provided enough information 

to resolve the difficulty, and student A3 repeatedly requested more information from A1. 

However, I would argue that this exchange represents concerted joint attention, through a 

series of conversational repairs. At every turn, A1 and A3 provided one another with a 

small amount of information, were able to check for understanding, and repair as needed. 
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Rather than a full explanation by either person alone, both students actively participated 

in the resolution of this problem. Their interaction is reminiscent of conversation analytic 

accounts of story-telling, in which one person serves as the narrator but uses a number of 

discursive devices to remain aligned with their audience, and to check understanding 

frequently (Hutchby & Wooffitt, 2008). This joint construction of the full explanation is 

significant, especially in light of studies that suggest that students often do not align their 

explanations to the needs of their audience (Ross, Haimes, & Hogaboam-Gray, 1996). 

Seemingly less fluent explanations might actually play an important role in supporting 

students’ mathematical learning, if the students involved maintain joint attention and 

work to achieve some sense of intersubjectivity. 

 Of course, students (and others) do not always respond productively to prompts 

for more information, as we saw in Vignette 2 when Daniel queried Noreen, who chose 

not to elaborate on her terse explanation. If students are to negotiate a ‘detailed enough’ 

explanation together, then both parties have to actively orient to one another’s 

communicative needs. Vignette 2 reminds us that this is not always the case in 

mathematics classrooms.  

Discussion 

 Although discourse analysis is becoming widely used in mathematics education 

research, in this paper I have argued that it is still common for researchers to focus on the 

content of mathematical talk, without considering the interactional context in which talk 

occurs. In mathematics classrooms characterized by hybridity, in which students must 

choose between competing discourse practices around explaining, their choices position 

students as certain kinds of people within the classroom (Gee, 2000). Analysis that 
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focuses on the characteristics of talk will not be able to address some critical questions 

related to mathematical discourse and learning: what social actions do students perform 

through allegiance to or breaches of sociomathematical norms? How do these social 

actions support their identities as mathematics learners, and how does their talk (of all 

forms) support mathematics learning?  

 Mathematical discourse practices around explaining are distinctive in that 

mathematics teachers often encourage students to give lengthy, detailed explanations 

even when their peers already ‘get it,’ and even when the explainer is unsure of his or her 

ideas. While it is possible to structure activities, like the jigsaw activity, to support 

students’ engagement with explaining in these ways, the two vignettes that were 

discussed at length in this paper demonstrate that simply setting up such an activity may 

not be enough to help students do so. 

 A discourse analytic approach can highlight students’ competence at various 

forms of discourse, and the implications for student identity of engaging in various forms 

of talk. The creation of a set of levels to describe mathematical discourse practices can be 

helpful as a way to be explicit about teachers’ and researchers’ goals for mathematical 

discourse, but should not be used as the only way to analyse students’ participation. 

Otherwise, teachers and researchers may miss the important ways in which non-standard 

explanation forms might actually support student engagement in mathematical discourse 

practices. Since explaining plays such a central role in reform mathematics classrooms, it 

behooves educators and researchers to understand more clearly what kinds of 

explanations support student learning, rather than only looking at explanations as 

displays of student learning (Wells, 1999). 
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 It becomes even more important to consider how students use these 

sociomathematical and other discourse norms for social action when we consider issues 

of equity that arise in diverse classrooms. For students whose primary Discourses are 

compatible with those of the school, adopting an ‘official’ discourse in a peer discussion 

proves no problem; for students whose primary Discourses have been marginalized and 

devalued by school Discourses, this adoption would create a sense of conflict. Gee (1996) 

describes this conflict in the context of law school as “between who I am summoned to be 

in this new Discourse (law school) and who I am in other Discourses that overtly conflict 

with – and sometimes have historically contested with – this Discourse” (p. 135).  

 As Gutierrez et al. point out, the power of hybrid classrooms is that teachers can 

caplitalize on what they call the ‘third space’ in between the formal and informal 

discourse practices. If we as researchers focus only on the value of complete, coherent 

explanations without input from peers, we will miss some valuable learning moments, 

and end up reifying those discourse practices that are most closely aligned with the 

teacher’s or researcher’s values.  
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Footnotes 

1. Linear programming problems in two variables include a set of constraints on the 

variables, and a quantity to be maximized or minimized. In the jigsaw activity, this group 

was supposed to provide general guidelines for finding the feasible region of any linear 

programming problem. This can be done by first graphing the set of constraints (linear 

inequalities) and then determining the region of the coordinate plane that satisfies all of 

the constraints. 

2. To find the point(s) of highest profit for a two-variable linear programming problem, 

students could graph a set of ‘profit lines.’ This can be done by setting the profit equal to 

some (arbitrary) value and graphing the resulting line. If one does this repeatedly for 

different values, one will obtain a set of parallel lines. Students could then visually 

determine where the line of highest profit would cross the feasible region – always at a 

boundary point or line for the feasible region.  

 


