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Abstract This article summarises what we can learn from research into workplace practice
and vocational preparation to inform the design of mathematics education curricula for learners
in general education undertaking compulsory schooling. Key findings about workplace
practices are identified and explicated through the report of a case study from research in
which researchers, students, teachers and workers explored workplace and mathematical
practices together. Further to this, issues of learning and personal development are considered
and explored from a point of view that sees learning as practice (doing) and identity
development (becoming). This leads to a proposal for principles that provide a strategic vision
for curriculum design. A potential approach to tactical design that facilitates curriculum
structuring is illustrated in the particular instance of understanding developing measures as a
modelling activity. Overall, the exercise, whilst providing some insight into possible ways
forward in curriculum development, also suggests areas that require further research and
development.
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1 General mathematics education curricula: a twenty-first century design challenge

The issue of the transferability of what is learned and known from one setting to another has
greatly troubled educators generally, and the mathematics education community in particular,
over many years. The classical cognitivist view might be characterised as suggesting that the
generality of mathematics and its abstract nature means that it should be possible to easily
apply it in a wide range of situations. On the other hand, situated cognitionists demonstrate
how the context of situations is often inextricably bound up with the development, under-
standing and learning of mathematics for individuals, and indeed communities, in ways that
inhibit such transferability (e.g., see the work of Lave, 1988). Others, such as Beach (1999)
and Séljo (2003), suggest that the metaphor of transfer itself is problematic and that it is not
surprising that supporters of these different perspectives conceptualise transfer very differently;
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consequently, it is difficult to compare findings and arguments. What seems clear from
research into the use of mathematics in workplace activity, as the complex accounts testify
(e.g. Hoyles, Noss, Kent, & Bakker, 2010; Roth, 2012; Triantafillou & Potari, 2010; Williams
& Wake, 2007a, b; Zevenbergen, 2011), is that mathematical activity in workplaces, where and
when it occurs, looks very different from that in educational settings. Indeed, there is a
fundamental difference between the nature of the role of mathematics in the different settings
of school and workplace that has a major impact on mathematics as practised in each. In
school, mathematics is mainly the object of study, whereas in the workplace, it is used as a tool
for mediating activity that is inevitably focused on the productive outcomes that are the raisons
d’étre of the workplace. For individuals, as workers or learners, there are consequently
different motivations for, and expected outcomes from, their mathematical actions. Mathemat-
ics in workplaces takes on different formulations from those familiar in schools because of the
very different role it plays for those who engage with it and also because of the diverse range
of technologies (considered in the widest sense) available and used.

Given that mathematics plays an important role throughout the world in compulsory
general education, this article seeks to understand what we can learn from studies of mathe-
matics in workplace practice that can inform the design of mathematics curricula for compul-
sory general education. It is not my intention to argue here for a more utilitarian curriculum
that is focused on preparation for work: such a suggestion is more suitable for designers of
vocational and pre-vocational courses where progression routes are more clearly defined.
Rather, it is my intention to consider what we might distil from our research and emerging
understanding of mathematical activities in workplace settings that might inform future
iterations of curriculum design. This seems particularly important as this research provides
new insights into the role of mathematics and its dual nature as both an area of study and an
increasingly diverse tool with application in and across many aspects of human life. At a basic
level, workplace research emphasises the dynamic nature of this tool-use of mathematics and
suggests that we somehow need to capture this in future curriculum manifestations.

In workplaces, as researchers, our attention is drawn to practice, that is, the coupling of
human actions with the relatively complex tasks or problems that workers undertake and the
role that mathematics has to play in these. In seeking to inform how we might develop a
mathematics curriculum for compulsory schooling from research into workplace activity,
however, it seems clear that we need to look beyond particular manifestations of competence
in specific practices to a generality of what is emerging as essential across a wide range of such
practices. As these practices become increasingly diverse, with many being enmeshed in the
use of increasingly sophisticated and changing technologies, it is important that we consider
how a twenty-first century mathematics curriculum might best prepare young people to engage
during their lifetimes with, and make sense of, such practices as they emerge and develop; in
many cases, in directions as yet unknown.

Much recent workplace research has drawn, to a greater or lesser extent, on Cultural
Historical Activity Theory (CHAT) (see, e.g., Roth, 2012; Williams & Wake, 2007a) which
considers school/college and workplaces as activity systems that are culturally and historically
evolved, with the actions of the individual contributing to the activity of the collective
community in pursuit of its goals in terms of outcomes. In these terms, the school and the
workplace focus mainly on learning and production, respectively, with the former preparing
students for progression to the latter in its many different formulations, as well as for
progression to adulthood and citizenship more generally.

From this theoretical perspective, one way of providing a bridge between the activity
systems of workplace and education, so that purposeful learning might be developed, is to
provide for boundary crossing (Engestrom, Engestrom, & Kérkkéinen, 1995) by students as
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they become workers. Learning can be mediated in such cases by specially created boundary
objects—artefacts that are sufficiently robust to maintain meaning across communities, but
also flexible enough to be used effectively in each (Star, 1989). Akkerman and Bakker (2011)
provide a comprehensive overview of boundary objects and boundary crossing in their review
of the literature and identify the potential for learning at boundaries through the mechanisms of
identification, coordination, reflection and transformation. Such bridging approaches incorpo-
rating boundaries have been explored profitably in relation to the workplace learning of
workers (see, e.g., Hoyles et al., 2010) and in the case of students in specific vocational
preparation for laboratory work (Bakker & Akkerman, 2013). In their work, Hoyles et al.
(2010) designed computer-based learning environments, which they termed technology-en-
hanced boundary objects, that provide opportunities for mathematical insight and learning in
particular workplace settings. These have been shown to have efficacy in better preparing
workers in the packaging industry to control production processes, in the automotive industry
to understand the statistics of process control and in the financial services industry to
understand the financial products they sell to customers. Bakker and Akkerman considered
the use of reports as boundary objects that had meaning in both vocational school and
workplace settings. They provide insight into how students and their workplace supervisors
brought together both mathematical (in this case, statistical) and workplace perspectives to
develop new understandings of the application of mathematics in practice. In preparation for
specific and immediate work, these boundary objects provide for quite a tight coupling
between mathematical activity and a specific workplace setting. This approach does not,
therefore, provide an immediately obvious solution for the conceptualisation and development
of a new epistemology and resulting mathematics curriculum with more general applicability.
However, it does seem apparent that boundaries and boundary objects have a potentially
significant role to play in informing our consideration of curriculum design.

In considering mathematics curricula for general education, we have to seek solutions that
are less clearly focused on apparent progression routes; crucially, we need to inform strategic
design of a curriculum that seeks to adequately prepare students for future knowledge trans-
formation to settings as yet undetermined. Burkhardt (2009) helpfully identifies three major
aspects of educational design—strategic, tactical and technical—with the first being “concerned
with the overall structure of the product set and how it will relate to the user-system” (pp. 1-49).
In later sections in this article, I focus on emerging issues that might inform principles for
strategic design and propose, at a tactical design level, one possible way of providing an
organising structure of a mathematics curriculum. The final part of the design process, that of
technical design, at the level of detail concerned with products that speak directly to the end
users (i.e., teachers and students) is beyond the scope of this article. Prior to putting forward any
proposals, I will summarise some of the key issues that analysis of practice identifies as relevant
to inform such design, using for illustrative purposes a vignette from my own research. I will
also consider perspectives on learning as practice and as identity development.

2 Vignette: the railway signal engineer

This vignette is taken from one of a dozen case studies developed as part of a project which
explored workplace practices that involved aspects of some mathematical activity and in-
volved workers, college teachers and their students who were following a relevant pre-
vocational course. Each of the studies was developed as a result of about 5 days of fieldwork,
during which we, as researchers, observed workers’ practices and discussed these with them,
prior to undertaking a visit with students, during which we explored the practices in terms of
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mathematics. These workplace visits were followed up by further visits to the students’ college
where issues that arose with the students and their teachers were discussed. A cross-case
analysis allowed conclusions about the general nature of mathematical activity in workplace
practices to be drawn (Wake & Williams, 2001).

The case study summarised here brought together a group of college students (aged 16—19)
following a pre-vocational engineering course, their teacher and a researcher to investigate the
work of Alan, a railway signal engineer. Elsewhere (e.g., Williams & Wake, 2007a), such data
has been analysed using CHAT to understand the actions of individual workers in relation to
the activity of the workplace community, but here, I wish to focus closely on the nature of the
mathematical understanding at issue. This particular case study was chosen for use here
because the mathematics is easily accessible, and the context of the railway is assumed to
be relatively familiar to most readers.

During a visit of the group to Alan’s workplace, he described and illustrated how he
calculates the speed at which trains should travel on a stretch of track. As part of this work,
Alan decides where to position the speed boards that indicate to drivers the maximum speed at
which they should travel as they head toward an impending signal at which they may have to
stop. The gradient of the track is an important factor in the calculations Alan performs: because
of the momentum of the train, a downhill gradient will require a greater stopping distance, and
so a greater distance between speed board and signal, whilst for uphill gradients, the reverse is
true. Consequently, Alan needs to calculate the average gradient over a stretch of track. He
showed the students the example from the training manual (see Fig. 1). Having calculated the
average gradient for the stretch of track, Alan goes on to use the chart in Fig. 2 to determine the
distance between signals and speed boards for trains of varying maximum speed limits. Alan
knows when using the chart that, for safety reasons, he should always use the maximum
possible speed for the types of trains that will use the track and the gradient which is least
advantageous for stopping the train.

signal A signal B
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Fig. 1 Example of average gradient calculations from railway signal engineering training manual (Note: The use
of superscript x, as in 600%, is to indicate yards, an imperial unit of distance)
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GRADIENT
Rising Falling
INITIAL 1inS0 1in67 1in100 1in200 Level 1in200 1in100 1in67 1inS0
SPEED 2.0% 1.5% 1.0% 0.5% Level 0.5% 1.0% 1.5% 2.0%
(Mph)
20 175 180 185 215 240 275 320 395 520
25 240 255 280 315 355 410 485 625 840
30 320 340 380 | 425 485 575 700 895 | 1425
a5 405 | 440 485 550 635 780 | 1010 | 1380 | 2237
40 495 550 620 720 | 865 | 1080 | 1420 | 1903 | 2237
45 630 710 805 | 935 | 1130 | 1435 | 1660 | 1503 | 2237
50 688 748 816 | 935 | 1130 | 1435 | 1660 | 1903 | 2237
55 770 831 S01 984 | 1130 | 1435 | 1660 | 1903 | 2237
60 845 911 980 | 1061 | 1165 | 1435 | 1660 | 1903 | 2237

Fig. 2 Railway signal engineering chart used to determine the distance required between signals and speed
boards

It was clear that Alan does not need to think hard about all this; for him, the required
understanding has become operationalised (Leont’ev, 1978), or automatic, in his practice. He
knows how to find the two values of gradient included in the table between which his
calculated gradient lies, and then to use the value from the column in the table “to the right”,
thus leaving a “margin for error” for safety. Follow-up discussions with the group of students
who visited the workplace highlighted the major misunderstandings they had in relation to
gradients.

The students first of all investigated how to find the distance between the stop and the
warning signals (speed boards) using a gradient of / in 433 rising that appears on a plan of a
section of track (Fig. 3).
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Fig. 3 Railway signal engineering plan of a section of railway track
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Student 1: Yeah, or 1 in 433—and it is rising—it couldn’t go that high could it?
Student 2: I don’t know how they use it. [referring to Fig. 3]

Researcher: well look, ok... have you got any idea (to S2). Here you’ve got level, here
you’ve got 1 in 200, and here you’ve got 1 in 100 [indicating the column headings]. But
we want 1 in 400 so what do you think we might do?

S1: double it [indicating value in 1 in 200 column].
S2: yeah double it...

R: .... double the distance would make it #uge wouldn’t it? Yes, if you doubled... like
60 miles [per hour]... we’re working along this line here... So 1 in 200 is 1061 if you
doubled it, that would be 2100—well.... but on the level it’s only 1100?
... if we could slot in another column there between 1 in 200 and? Yes?

S1: T would just take the higher gradient... or erm...

R: Or you could... oh you see, you could... erm. Ah, he [Alan] mentioned something
about always using the one to the right, didn’t he?...

S1: right yeah
R: so, where are we then? Which... I can’t read that. What value have you got?
S1: 1165

R: that’s 1165... what are they... they’re yards." Right, so what we’ve got to find out
now, is... whether it is actually 1165 ...

S2: times 2

The students had great difficulty in making sense of what had become operationalised in
Alan’s practice. As student 2’s final comment indicates, his initial belief that a gradient of 1 in
400 somehow requires doubling values associated with a gradient of 1 in 200 seems intuitive
and a deeply ingrained misconception common to these students.

Equally problematic was the students’ understanding of the training calculations of Fig. 1
that show how to find the average gradient over three of sections of track. Alan explained that
such averaging needs to be performed prior to using the chart in Fig. 2. The brief extract below
from the transcript of the discussions between researcher and one student from the group
illustrates how the student struggled to make sense of the process.

R: Yes... So can you just explain what’s going on in there [indicating the Table in
Fig. 1]?

S: ... used different gradients for each slope and he’s averaged it out...

! Yards are an imperial measure of distance still used throughout the railway industry and other transport systems
in the UK. One yard is a little shorter than 1 m.
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R: yes can you sort of explain the detail...
S: you started adding them together—adding the gradients together and divide by two.
R: Perhaps if we describe what each column is doing

Here, the student appears to associate finding an average with the school mathematics
procedure of “adding the values together and dividing by the number of values”—presumably,
in this case, ignoring the level section of track. The ensuing discussion was lengthy, requiring
the researcher to explain the basic concept of gradient by drawing diagrams that illustrated “for
every 220 it goes along, it comes down 1, so when you’ve gone along [the track] 220 it’s come
down 17. Of course, Alan’s familiarity with the procedure caused him no problems with his
calculations. However, attempting to understand this for the first time was clearly demanding
for the students.

This particular case demonstrates that although the workplace practice is intricately linked
with knowledge of the school mathematics concepts of gradients and averages, the demands
made of outsiders in making sense of this seem to leave those who have developed their
mathematical knowledge, skills and understanding in current general mathematics curricula in
school settings ill prepared. This is the case even though there is a well-set-out example to
follow in Alan’s manual, with considerable contextual information and background detail (that
may or may not help the outsider). The transcript of the students struggling to make sense of
the training example points to fundamental problems in their understanding of gradient and
averages and consequently how to calculate the average of two or more gradients. Throughout
the process, they attempted to rely on procedural approaches of which they clearly lacked any
deep understanding.

3 Vignette commentary

This particular vignette serves to highlight many of the key features of workers’ activity and
their mathematical understanding when contrasted with the problems that surfaced for the
students in the new workplace/college interface activity system that the research initiated. The
complexity of workplaces is immediately noticeable, both in terms of social structuring and the
activities in which the particular workers we researched were engaged. This often leads to the
mathematics being made invisible or black-boxed (Williams & Wake, 2007a), at times
deliberately so. Table 1 summarises the key findings that emerged across the entirety of our
case studies (Wake & Williams, 2001) and identifies how the vignette here adds illustrative
texture to these.

In general, and perhaps obviously so, workers do not consider that they are doing
mathematics (Wake & Williams, 2001; Williams & Wake, 2007b): their goal-directed activity
(Leont'ev, 1974) is focused on workplace production, and in our project, it was the research
that provided the catalyst for identification and unpacking of the mathematics, in effect
provoking a breakdown (Pozzi, Noss, & Hoyles, 1998) of the routine. This hiding of
mathematics, at least as far as workers are concerned, tends to occur through its black-boxing.
Black-boxing of mathematics in this way often has the deliberate intention of minimising the
level of scientific mathematical knowledge with which workers are required to engage; either
so that mistakes do not result from incorrect mathematical working or because of the
complexity of the process that the mathematics underpins. In many cases, the mathematics
itself is relatively impenetrable to the majority of workers, with the black-boxing ensuring that
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Table 1 Major findings in relation the to use of mathematics in workplace practice exemplified in relation to the
railway signal engineer vignette

Key finding Vignette observation

The chart in Fig. 2 is just one of a number used by the
railway signal engineer that effectively crystallises
knowledge and understanding of the use of
equations of motion and consideration of forces. In
his interview, the engineer referred to issues of
knowledge and understanding but also explained
that in his day-to-day practice, this is made unnec-
essary because of artefacts such as this chart.

In workplaces, knowledge is often crystallised
(Hutchins, 1995) in artefacts, including tools and
signs, often as a result of reification by workplace
communities (Wenger, 1998).

The chart in Fig. 2 effectively black-boxes the need for
more advanced mathematical knowledge. Workers
do not need to engage with concepts of forces and
acceleration. This might be provoked if, for
example, there was a request for specific values
intermediate to those given in the chart or if a
newcomer seeks to understand how the chart is
developed (as was the case during our research).

Use of mathematics is often “black-boxed” (Williams
& Wake, 2007a) and engagement with mathematics
often only occurs at “breakdown” moments (Pozzi et
al., 1998).

Consider, for example, the mathematical sign
highlighted in Fig. 3. This indicates that to the left of
this point, the gradient of the track is level, and to the
right, it is 1 in 433 rising. This symbol/sign is
particularly meaningful to the railway signal
engineer, whereas it requires cognitive effort by
“outsiders” in its interpretation and eventual use.

The fusion (Meira, 1998) of mathematical “signs”, in
the sense of Peirce (1931-1958) with the reality they
represent reduces cognitive effort.

When required, mathematical understanding is only The particular example of the railway signal engineer

part of a complex interconnected set of conceptual
resources on which workers have to draw as they
engage in often complex and substantial activity
which builds on, and involves, other workplace

as presented in the vignette here is particularly well
focused on mathematical activity as practised by one
worker. However, he explained that, in deciding

exactly where to place the speed boards, he relies on

additional contextual information, for example in
relation to line of sight, which he might have to
ascertain from a colleague familiar with the
particular section of track at issue. The plans of the
rail network which the worker uses are stylised and
idiosyncratic (see below) and are not conventional
(or at least widely used) straightforward maps.

colleagues’ knowledge, skills and understanding.

The work of the railway signal engineer relies on a
large number of artefacts, such as Fig. 3, that use
industry-specific conventions and notations to rep-
resent the reality of the railway track. Again, con-
sider, for example, the highlighted symbol that in-
dicates a change in gradient and contrast this with
how gradient would be represented in a school
mathematics text.

Workplaces present outsiders with a diversity of
conventions and idiosyncrasies in both
representation and methods of analysis: these are
almost always quite different from those adopted in
academic mathematics, provoking breakdowns
(Pozzi et al., 1998), problem solving and modelling
(Wake, 2013).

In general the concept of gradient might be considered
relatively straightforward. Here, it is given
complexity by its use over a number of sections of
track, and the need to be able to calculate an overall
(average) gradient.

Workplace activity with mathematics as central often
relies on relatively simple mathematics embedded in
complex situations (Steen, 1990). Making sense of
this also provokes breakdowns, problem solving and
modelling.

workplace outcomes are routinised and error free. This, however, does not obviate the need for
all mathematical thought, as the black-box itself produces output in relation to input, which
needs interpretation and understanding. It is this sort of output that, for experienced workers,
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becomes fitsed (Meira, 1998) with workplace contextual factors. For example, workers often
interpret graphical output not in terms of controlled and independent variables, or statistical
measures of location and spread, but instead talk of these representations or signs, in the sense
of Peirce (1931-1958), in terms of the workplace features they re-present. In one of our case
studies, for example, a chemical engineer explained a graph, made complex due to its dual
vertical axes and logarithmic scales, in terms of the chemical reaction it represented (Williams,
Wake, & Boreham, 2001). It is when newcomers to the workplace attempt to understand
established practice, or when such practice breaks down because changes are introduced
(Pozzi et al., 1998), that workers often need mathematical knowledge, skills and understanding
to (re-)construct meaning of what, by necessity, becomes routine in day-to-day practice.

The vignette reported here identifies typical manifestations of activity underpinned by
mathematics in workplaces. This presents us with the conundrum of how we might draw on
our developing understanding of workplace activity such as this to inform directions for
curriculum development that might lead usefully to the preparation of young people as
potential future workers in such situations. As signalled in the first section of this article,
many researchers and theorists in studies that have probed the use of mathematics in work-
places, and the difficulties that workers encounter, have indicated that the notion of transfer is
at the heart of the problem.

In the next sections, I wish to explore the nature of learning more widely than its usual
conception in schooling, which I suggest is often narrow and focused on a vertical view of
cognitive development, in which knowledge becomes increasingly abstract and removed from
everyday experience. In doing so, I draw on a number of theoretical ideas that typically emerge
from studies into mathematically based workplace activity and where they have been applied
as analytical tools. As Tuomi-Grohn, Engestrom, and Young (2003) point out in the introduc-
tion to their edited volume that explores transfer and boundary crossing between school and
work, many researchers in this field take the view that transfer incorporates polycontextuality,
that is, simultaneous participation in, and boundary crossing between, multiple communities of
practice. Their collection considers vocational learning and work, whereas I aim to consider
general mathematics education, which, by its nature, is less clearly focused on the specifics and
particularities of a given sector of employment. However, in the next section, I propose a way
forward by taking a similar stance on transfer to researchers such as Beach (1999). Tuomi-
Grohn et al. summarise this approach as, rather than focussing on knowledge, instead focus
should be on a process of generalisation that is located in the changing relationships between
individuals and sets of social activities. Further, these relationships are embodied in systems of
symbolic artefacts that are created to facilitate human actions in different settings. Thus,
artefacts that have meaning across different settings, albeit different meanings in each, appear
to have particular importance because of the boundary crossing and learning they can
potentially stimulate. I then explore theoretical conceptualisation of issues of learning across
social settings before synthesising these ideas to propose some general principles for curric-
ulum design at a strategic level.

4 Horizontal and vertical conceptions of learning and personal development

The issues of situativity and the social, ideas of horizontal and vertical development of the
person, both in relation to knowledge and to their identity, and related consideration of individual
and societal values, all seem to have important relevance, but require some careful unpacking.

In terms of knowledge development, Vygotsky recognised the potential of spontaneous
conceptualisation arising from reflection on everyday experience, as opposed to non-
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spontaneous or scientific conceptualisation that comes from beyond this, and as part of a
system of interdependent concepts (formalised academic knowledge). Vygotsky (1986) sug-
gested that ““...the development of the child's spontaneous concepts proceeds upward, and the
development of his scientific concepts downward...” (p. 193).

We might, therefore, consider an individual’s everyday understanding as emerging from
horizontal activity through interaction with the world within a number of different communi-
ties and, in contrast to this, the vertical development of knowledge as relating to formal
structured educational activity. In mathematics education, these ideas are reflected in those of
horizontal and vertical mathematising, as developed by Treffers (1987) in theorising the
essence of Freudenthal’s Realistic Mathematics Education (RME). From this perspective,
horizontal mathematising is about moving Aorizontally back and forth between situations or
contexts in which mathematics arises or is applied. In the RME approach, realisable situations
and contexts outside of mathematics (the home, school or workplace, but culture generally)
provide a resource for mathematising. Thus, context provides the catalyst for developing
mathematical representations which can then, as objects of study, be developed further,
vertically, for use in future horizontal mathematisation. Typically, the relation between the
model that was initially used to organise a context (say, the number line used to represent
whole numbers in a context involving adding and subtracting positive whole numbers) is then
used to extend the mathematics with which the learner is familiar. For example, the properties
of the number line are used to discover new properties of the numbers or even new numbers
(Gravemeijer, 1994, 1998). First, the model has been introduced as an organising model of the
context, but then, the number line becomes a model for the mathematical objects themselves,
allowing the learner to invent/develop/discover new mathematics quite intuitively. In the main,
such approaches have used realisable contexts for horizontal mathematisation, where the
context need not be real but rather imaginable to the learner. It would seem important in
adapting such a model of curriculum design that more suitably reflects future workplace
practice and that the clutter and messiness of such reality forms an integral part of the problem
situation that requires mathematising. In their work in educational design, Dierdorp, Bakker,
Eijkelhof, and van Maanen (2011) researched the use of authentic workplace practices as the
basis for materials that organised hypothetical learning trajectories in developing students’
informal inferential learning. The successful outcomes of this research in terms of student
motivation and learning suggest that such a methodology has the potential to inform curric-
ulum design throughout strategic, tactical and technical levels.

There appear to be parallels in discussion of the horizontal and vertical development of
knowledge and understanding generally, and mathematics more particularly, with the use of
these terms in discussion of transformation, or development, of the person. In considering
development of the individual in terms of their learning, Beach’s (1999) construct of conse-
quential transitions appears particularly helpful. In his critique of the usual understanding of
transfer—that is, the abstraction of knowledge and understanding (particularly pertinent in the
case of mathematics) and its transportation and application to a range of settings—Beach
considers how it might be better conceptualised as the (re-)construction of knowledge, skills
and identity in relation to different communities of practice (Wenger, 1998). Wenger’s
development of ideas of community of practice I consider here as providing a lens, comple-
mentary to CHAT, through which to view the co-production of participants of workplace and
school knowledge. This provides a perspective that emphasises participation and identity
formation of individuals, in contrast to a focus on how the system is constituted in pursuit
of a common goal, as emphasised by CHAT. Further to this, Beach asks us to expand our
notion of developmental progress beyond the usual vertical (in Beach’s terms, lateral)
transitions as we move in what constitutes socially accepted developmental progress between
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historically related activities: for example, from college to university or work or from
university to work. In doing so, he asks us to consider, as equally valid, developmental
progress that he terms collateral transitions, which involve, for example, simultaneous partic-
ipation in both workplaces and education or training. In his research, Beach contrasted
shopkeepers and students participating in college and shop activity systems simultaneously
and how individuals in each group developed their knowledge differently, particularly in
relation to formal mathematics, due to their different motivations and developing identities.
This transition of the person in relation to knowledge, Beach suggests, can be considered as
horizontal development, as individuals, with possibly different motivations at different times,
need to be able to deconstruct and reconstruct mathematical understandings in different
settings, drawing on the resources that each provides. This re-casts the problem of knowledge
transfer as one of knowledge transformation and gives recognition and value to making
meaning of the relation between knowledge and the situation in which it is applied. In terms
of the person and their relationship with knowledge in transition, this suggests that we need to
move away from only attributing value to the usual conception of developmental progress as
constantly being upwards and onwards. In relation to preparation for work and change within
work, we also need to value horizontal development that results in enriched mathematical
understanding and application.

This focus on individual developmental progress, with its implicit notions of identity
development, has parallels with aspects of Engestrom’s (2001) work that considers the
expansive learning of a community, with its members reflecting upon the object of their
activity and responding to the associated problems, systemic contradictions and the resulting
personal conflicts that arise, in order to develop a new expanded model of their activity.

Recognising and valuing such notions of horizontal development provides a particular
challenge, as it is vertical development, with its implicit upward motion through a range of
settings, based on a hierarchy of knowledge, skills and understanding that become more and
more generalised, abstract and distant from the specifics of human activity, that provides the
dominant notion of human progress in learning in educational settings (particularly in math-
ematics and science). In preparation for transition from school to work, it seems important,
therefore, that we give increased recognition and value to the effort required when
transforming or creating new relations between knowledge and social activities that do not
have conventional and implicit value in a vertical sense. This needs to be considered as
progress, as suggested by Beach (1999) and Engestrom (2001), amongst others. In particular,
when such an effort is proving problematic for an individual, it ought not to be seen as a
deficiency but rather as something to be valued and supported; indeed, it needs to be given
space and recognised as an essential aspect of learning activity. In general, crossing boundaries
between activity systems, whether these are vertically/hierarchically or horizontally/non-hier-
archically related, has the potential for generating learning: Such boundary crossing requires
the transformation of existing, or construction of new, knowledge and a shift or development
in identity.

Following from the above, this suggests that boundary objects (Star, 1989) that have
meaning and use in different communities have a potentially important role to play. For
example, graphs as boundary objects, whilst having very distinctive, and often very different,
features that make them useful in mediating meaning within each particular community (see,
e.g., Roth & McGinn, 1998; Williams et al., 2001), also have common underlying structural
features that are maintained across the communities in which they are used. Boundary objects
should not be considered to be constituted as having the same meaning in each community
because in reality, they will have significant, sometimes subtle, differences that are often
problematic to boundary crossers. For example, in recent research exploring mathematical
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learning in college and university settings, with the implicit notion of vertical progression, it
was found that the notion of inverse function was very differently conceived of by commu-
nities in college and in university settings (Jooganah & Williams, 2010). Indeed, although
inverse function was initially considered by teacher and students as an unproblematic bound-
ary object (the assumption in each community was that an inverse function would be
understood as the same in both), this in reality was not the case. The difference in under-
standing of inverse function between the university academic and his new students coming
directly from school/college emerged through discussion in a problem class and provoked
contradictions and conflict for members of the university community. The resolution resulted
in expansive learning, with members of that community coming to understand issues under-
pinning, and differences between, learning and mathematical understanding in university and
in school/college. However, as Hoyles et al. (2010) recognised, boundary objects can provide
an effective way forward. In facilitating mathematical learning in the workplace, they take the
view that well-designed symbolic artefacts acting as boundary objects can assist in developing
shared meanings and productive learning across communities. Hoyles et al. also argue that the
reverse case of badly designed boundary objects can result in the breakdown of such shared
meanings, understanding and, consequently, of learning.

In recognition of the importance that artefacts/instruments as boundary objects play,
Kerosuo and Toiviainen (2011) draw attention to two types of boundaries that they identify
in learning (as either horizontal or vertical development): socio-spatial and instrumental—
developmental boundaries. Socio-spatial boundaries are highly visible and therefore relatively
obvious; for example, school/college students may be involved in clearly defined communities
focused on education (school/college) and (part-time) work. On the other hand, instrumental—
developmental boundaries emphasise the developmental role that artefacts have to play in
supporting boundary crossing: recognition of this seems particularly important in considering
how learning within a school setting might prepare such students for future boundary crossing.
In a study that investigated the adoption of a new artefact in a workplace setting, Hasu (2000)
demonstrated how this presented a major challenge to a workplace community of practice, and
was only accomplished through collective visualisation and reflective dialogue, with expan-
sion of the object of activity. Such findings suggest that curriculum design must recognise the
central role that artefacts play in motivating and influencing learning activity in ways that
facilitate expansion of the object of activity in the learning system and consequently impact
upon the collective motive and purpose of the community (Leont’ev, 1978). Attention needs to
be paid to how artefacts embody mathematics and to how these require adaptation to the
different contexts in which they are used.

5 Learning as doing and becoming

Having made a case for greater attention to be paid to the notion of horizontal development of
knowledge and the person, I wish to focus a little more closely on the person as a learner in any
setting. In relation to their learning, engagement in doing has long been recognised: Greek
playwright Sophocles (c. 496406 B.C.) is quoted as saying, “One must learn by doing the
thing; for though you think you know it, you have no certainty, until you try”. However, such
active engagement is not sufficient for learning; learning requires reflection by the learner if
they are to make new meaning of the knowledge, skills and understanding they engage with.
When space is provided for reflection on doing/practice, as Bakker and Akkerman (2013)
argue, there is the potential for taking different perspectives on that practice, leading to
learning. In relation to this, Wenger (1998) suggests that learning is fundamentally experienced
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and social, and transforms the learner’s identity, as Hahn (2011) also recognises. Black et al.
(2010) explored learners’ transitions in relation to mathematics from school through college to
university (16—19 years) and found that identity formation was crucial in mediating their
relationships with mathematics. In particular, it was found that a student’s aspirations play a
fundamental role in determining these relationships. Building on the work of Stetsenko and
Arievitch (2004), who developed the construct of leading activity, we suggest that learners at
any one time have a leading identity (Black et al., 2010) in relation to mathematics and that this
reflects their hierarchy of motives. The crucial factor is how a learner values mathematics; in
particular, for its use or for its exchange value. We found that some learners value mathematics
for its use when they can see its immediate or potential application within the field of
mathematics itself or within another area of study or work. However, because of the role of
mathematics in school settings as ultimately providing a high-stake gatekeeper qualification,
for many, its exchange value in terms of certification provides motivation for its study.
Accordingly, any general mathematics curriculum aiming to prepare learners for workplace
practice should seek to support identity development through a use orientation; however, this
use value of mathematics should also be valued in terms of its potential exchange value.

Crucially, learning involves both doing and becoming. Learning trajectories are not out-
comes of passivity: they require agency, engagement and direction. Wenger (1998) suggests
that learning needs to be “designed for” (p. 229), seeking to provide affordances rather than
constraints for identity transformation. Wenger’s position supports at a meta-level the perspec-
tive argued for by Roth and McGinn (1997) in relation to the specific mathematical practice of
graphing. Their analysis from a sociocultural perspective leads them to suggest that graphs as
productions have three major purposes: (a) as semiotic devices, in the sense of Peirce, as signs
representing aspects of reality; (b) as rhetorical devices used to communicate or elaborate their
author’s construction of science; and (c) as conscription devices that in their production
stimulate and facilitate the activity of scientific communities. This view of graphing as practice
offers contextual support to learning both as doing and as becoming. Engaging students in the
practice of graphing, specified and formulated to emphasise these key features of engaging in
doing graphing and becoming someone who uses and communicates with others who do
likewise, may ultimately allow students to develop an insight into mathematics as an important
tool in workplace practice. As Roth and McGinn recognise, this would enable novice students
to become successful members in a community of graphing practice. This practice perspective
may be developed to cover a wide range of other practices, such as spreadsheet building,
developing spatial representations, presenting statistical information and so on. In many ways,
it mirrors key aspects of both general mathematical competences (Williams, Wake, & Jervis,
1999) (discussed below) and techno-mathematical literacies (Hoyles et al., 2010) that focus on
how mathematics may be an object of study but also involve activity that enables the
development of models of reality. Crucially, these constructs in their different ways position
learning mathematics as encompassing more than exposure to content and the practising of a
range of process skills. Each pays attention to the learner developing in a transformative way
new relationships between mathematics and new contexts. This suggests that new approaches
to strategic curriculum design are required that focus on these important aspects of learning
mathematics for application in a range of settings.

6 Principles for strategic curriculum design

Up to this point, I have attempted to distil what might be learned from an understanding of
mathematics as it manifests itself in workplace practice and learning. I have introduced some
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important theoretical conceptions that might inform some, necessarily general, principles for
curriculum design. In addition to providing strategic direction, these principles might inform
the specification of curricula at the tactical design stage in ways that facilitate the competences
and subjective needs of students as they become workers (and, more generally, citizens) with
the capacity to develop mathematical understanding of, and facility with, new practices with
which they might engage.

I propose the following principles for strategic curriculum design:

1. Curriculum specification should be formulated so that mathematics is conceptualised as
more than an object of study and take account of mathematics in practice. In doing so,
mathematical activity should be elaborated and supported, and learner identity develop-
ment or transformation in becoming a user of mathematics should be recognised and
facilitated.

2. Ways in which artefacts can be used to embody both mathematics and context, and allow
communication of the reality they re-present, should be emphasised. In doing so, the ways
in which the activity of the production of such artefacts supports the development of a
community of practice should be recognised.

3. Horizontal mathematisation across a wide range of different contexts should be recognised
and valued. Consequently, mathematical models and their relationship with the realities
they represent should be emphasised and explored, with learners constructing models of
their own and developing familiarity with important and recurring models.

4. Making sense of the mathematical productions (models) of others is a particularly
important activity. Learners should routinely be expected to make sense of (i.e., decon-
struct) and critique the mathematical activity and productions of others and build on these
to provide new jointly engineered productions as part of mathematical communication.

5. The technology which “black-boxes” mathematics transforms mathematical activity by
requiring sense making of symbolic productions of the technology in relation to the input
and the use of these productions to communicate meaning in terms of contextual factors.
The mathematics curriculum needs to attend to strategies and skills that are required when
working in this way.

7 Strategic to tactical curriculum design: from foundations to structural development

I have so far provided the background case for an expansion of the school curriculum beyond
usual formulations and elicited five general principles for a redesign at a strategic level.
However, current curriculum formulations provide a well-defined and widely known episte-
mology and, most importantly, support a discourse that allows us to discuss mathematics as a
knowledge domain with meaning across broad and different constituencies. The following is
pragmatically situated in, and builds on, this discourse.

In general, mathematics as a domain is usually considered to be focused on, and specified in
terms of, key content areas as knowledge sub-domains. At a meta-level, these are often
identified as number, algebra, geometry, probability and statistics. However, particularly in
the last 5—10 years or so, curricula that are narrowly focused around content areas have been
questioned, and the ensuing debate has recognised that learners need to be better equipped to
be able to apply mathematics in a range of contexts, so that they can become critically
enquiring, problem-solving citizens of the future (Rocard et al., 2007). In many cases, this
observation has led to new formulations and specifications of curricula that include and
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explicitly identify a range of problem-solving competencies or process skills. For example, in
England, the 2007 curriculum specification (QCDA, 2007) focused on the key processes of a
mathematical problem-solving cycle, involving the processes of representing, analysing,
interpreting and evaluating and, at a meta-level, communicating and reflecting.

Central to arguments about how to proceed in curriculum development has been the
unjustified dichotomy in the mathematics education community, and more widely, drawn
between mathematics content and process skills. Sometimes, this is couched in terms of
mastering the basics (generally relating to application of procedural techniques) or developing
skills in problem solving and modelling. The demand for mathematical literacy (Steen, 1990)
has recently seen many countries adopting more process-oriented mathematics curricula
(Dorier, 2010). Terms such as quantitative literacy, mathematical literacy, numeracy and
functional mathematics have been used to try to capture the essence of what might inform a
new curriculum that ensures that people are better equipped to use mathematical knowledge
and skills in ways that might empower them to solve problems and be able to make critical and
informed choices based on quantitative information. The PISA studies, which seek to measure
students’ mathematical ability at age 15, “to use their knowledge and skills to meet real-life
challenges, rather than merely the extent to which they have mastered a specific school
curriculum” (Organisation for Economic Co-operation and Development, 2004, p. 20), have
been a key driver in nations giving priority to process skills and problem solving.

It is clear that prioritising either technical fluency with mathematical content or process
skills is a dangerous route to take, given that mathematical activity requires a blending of
engagement with (a) mathematical content, (b) mathematical competencies and (c) context. It
is in the interplay of these components, not only internally within the mathematics, but also
externally within the social setting in which they are situated, that we encounter some of the
key issues in the dialectic between mathematical practices in academic and workplace settings.
It is important to recognise the interdependency of these components.

The analysis of college-workplace case studies by Wake and Williams (2001), drawing on
our earlier experience of pre-vocational curriculum research and development, led us to propose
the construct of general mathematical competences (g.m.c.) (Williams et al., 1999). These
provide, at a tactical level, a potential structure for the design of curricula (and materials) that
might, with appropriate adaptation, embody the strategic design principles listed above. They
focus curriculum specification on attempting to define forms of task formulation that consider
ways in which learners and workers might commonly bring together content and competencies
when applying mathematics in different contexts (e.g., in pre-vocational learning in science and
technical areas). For example, technicians in laboratory settings are often involved in practices
that involve them in handling data graphically, almost certainly using technology, although this
activity might look very different from its nearest equivalent in school/college. In addition to
handling (experimental) data graphically, we identified six other competences:

* Costing a project (e.g., in terms of money, materials, energy use, etc.)
* Interpreting large data sets

* Using mathematical diagrams

* Using models of direct proportion

* Measuring quantities

* Using formulae

Each g.m.c. may apply in many different social settings and contexts and is, therefore,

sufficiently general to be useful; each organises a substantial body of mathematical concepts
and competencies and emphasises the use of mathematical models, paying attention to their
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underlying assumptions and validity (Williams et al., 1999). Fundamentally, the task formu-
lation attempts to ensure that the mathematical activity leads to meaningful insights into
mathematical ways of working that might pertain in different (including vocational) settings.
Consequently, the brief titles of the proposed g.m.c. hide a wealth of detail that each
encapsulates. For example, in the development of curriculum materials at a technical design
stage, we encouraged students to develop critical enquiry skills, engaging them in mathemat-
ical comprehension of existing graphical representations, statistical diagrams and so on.
Although the underpinning content is already included in current curricula formulations, it is
the unfamiliar way to students (but familiar to practitioners) in which it is required to be
brought together that often proves problematic. For a clear illustration of this, consider the
relatively straightforward school mathematics involved in the railway signal engineer vignette
provided above. In particular, our research suggests the need, at the tactical level of curriculum
design, for formulations that require learners to engage with a range of skills and strategies
used to deconstruct and reconstruct mathematical meaning. We have identified some strategies
that were useful in such activities (Wake & Williams, 2001, 2003): for example, anchoring and
bridging to common or everyday experiences; considering simple, special or very large and
small cases; questioning validity and so on.

General mathematical competences were developed to reflect our observation that in the
workplace, mathematical activity becomes subsidiary to the overall objective of activity. For
example, in school/college, students may be concerned with making sense of information
from, and ways of working in, another discipline; whereas, in the workplace, they may be
concerned with production of some sort. The mathematics becomes an integrated part of the
activity to such an extent that the boundaries between knowledge disciplines become blurred.
Also, and importantly, although individuals require mathematical resources upon which they
need to draw (e.g., how to convert quantities between different sets of units), these form only a
subsidiary part of the overall activity. Not only do g.m.c. offer a useful tactical design model by
which to organise and define a mathematics curriculum, but they might also meet the strategic
design principles earlier identified. To add some detail to this contention, I turn now to
illustrate how the general mathematical competence of measuring quantities might be devel-
oped according to these principles so as to provide students with mathematical activity that
might better prepare them for the challenges that mathematics might pose if they were to work
elsewhere, for example, in railway signal engineering.

Issues of measurement and measures underpin much workplace activity in all spheres (e.g.,
Bakker, Wijers, Jonker, & Akkerman, 2011; Cockcroft, 1982). Throughout all workplace
settings, there is increasing measurement of workplace performance and its effectiveness.
Although understanding the nature of the input data may be unproblematic (e.g., the distances
used in railway signal engineering activity), understanding output measures and how they
relate to input data, let alone the processing of these, often provides considerable challenge. In
the context of measures, therefore, the design principles for curriculum suggest that:

1. The production of measures is recognised as a mathematical practice and provides a
tactical organising structure within the curriculum. Learners should consequently have
opportunities to engage in both the production/development and exploration of the use of
measures across a range of different settings and contexts.

2. Measures as mathematical productions should be seen and appreciated as artefacts that
reflect the context from which they arise and can be used to communicate aspects of the
reality they represent. How the mathematical structure of the measure interconnects with
the structure of this reality should be emphasised and explored. Here, boundary objects
have an important role to play.

@ Springer



Making sense of and with mathematics

3. The practice of production of a measure as one potential outcome of mathematical
modelling should be recognised and appreciated as such. Learners should have opportu-
nities to experience measure production and measures as models arising in (many)
different settings (e.g., the range of indices used in finance) and have space to reflect on
common mathematical principles that are important in such practices (see below).

4. In addition to the production of measures, learners should have opportunities to de-
construct and critique the mathematical structure of measures that are productions of
others. For example, in the case of average gradient, as calculated by the railway signal
engineer, learners could explore an alternative model that involves working with much
more detailed data.

5. Measures are often black-boxed in technology, and this needs to be recognised as a feature
of the application of mathematics in many settings. Students may, for example, consider
how they might be expected to programme a spreadsheet to calculate average gradients or,
alternatively, explore a black-box model that is supplied to them. Their developing
understanding of how processed data output relate to raw input data is crucial.

Although the workplace activity of calculating a measure of average gradient, as identified
in the work of the railway signal engineer, may provide the stimulus for the production of
learning materials (at a level of technical design), it is the general mathematical competence
focused on the production of measures that I wish to emphasise as important in the tactical
design of curriculum structure. The importance of how this curriculum structure is communi-
cated should not be underestimated. It is essential that this communication emphasises learner
activity (doing) and how this activity can form an essential aspect of induction into commu-
nities (becoming).

To illustrate issues that occur in the next step, developing further from tactical to technical
design, it is worth considering the production of average gradient in just a little more detail.
This particular case raises issues of weighting in the production of measures which we found to
be important in a number of case studies. In the particular case of average gradient, this relied
on deep and structural understanding of the two concepts of gradient and average measures of
location and their interconnection. In another case study, where the weighting of data became
significant, an engineer modelled how much space was filled by equipment across 13 separate
areas, referred to as nodes, in the workplace. This activity was part of a larger problem in
which the engineer was trying to determine the effect of a break in pipes carrying steam. The
engineer had calculated 13 individual percentage values and went on to explain to researcher
and student:

So, what we could have done, is just added up these 13 numbers and divided it by 13
and found an average of the 13. But, when you look at it, I mean, the percentage.... If
node nine is 25% full of equipment, then that’s a lot of equipment compared to, say,
node one” having 25% of equipment. So we couldn’t really just add them all up and
divide by 13 because it’s...

Once again, in this case, a student involved was unsure why it was not correct simply to
find an average of the values for each area. Here, as in the case of average gradient, contents
across sub-domains of mathematics interact: percentages of areas and volumes interact with
measures of location (averages). Although context and setting provide challenges in terms of
understanding, they may also provide the potential for learners to develop their mathematical
understanding of content working with a range of competencies. At the level of technical

2 A scale diagram of the situation showed node 9 to have a much larger floor area than node 1.
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curriculum design, it is important for curriculum developers to have insight into emerging
priorities from current workplace practices that incorporate mathematics. Although I have
indicated some of these at a strategic level, such as the need for the unpacking of existing
mathematical productions, the case of the weighting of data in the production of measures
illustrates the need to re-examine accounts of existing workplace practices in ways that might
inform detailed technical curriculum design.

8 The way forward: an expanded research agenda

It is essential that future general mathematics curriculum specifications recognise the quickly
changing nature and wide range of contexts in which mathematical principles are being applied.
One only has to consider how every aspect of our lives in the industrialised world has been
changing rapidly in this and the last century: from the way we are now interconnected by
technology in our leisure time through to how we can work across geographical and temporal
boundaries in ways that only a few years ago were impossible, if not inconceivable. Technology
is key and provides the potential for unbounded creativity in the form of quantitative and
representational productions that are possible. In workplaces, this can be seen in the output of
production and the generation of services that are increasingly monitored, controlled and
communicated. It is possible that school mathematics as a distinctive genre could remain isolated
from the rapid technology-driven advances that are taking place in many aspects of our lives.
However, it is necessary to recognise the potential that the use of technology affords for
providing innovative mathematical productions and to recognise the difficulty that many workers
experience in being able to use mathematics to make sense of these with ease and facility.

I have argued in this article that mathematics curricula need to reposition mathematics as a
discipline that builds connections; indeed, that it should be at the nexus of our interaction as
individuals and communities with each other and with a range of situations and contexts. It is
important, therefore, to design curricula in ways that ensure that mathematics is valued by
learners as they attempt to make sense of, and with, mathematics in ways that facilitate their
being able to engage in practice (doing) and developing their identity (becoming). However,
such an approach to the formulation of mathematics curricula signals that we need an
expanded research agenda that allows a better understanding of the learning of mathematics
in its juxtaposition with context. It is important not only to form a better understanding of an
individual’s relationship with mathematics and context, but also how this is socially constituted
in ways that allow for shared understanding and communication. Attempting to inform
curriculum design for general education in education systems that appear increasingly inex-
tricably situated in performance-driven contexts provides considerable challenge, especially
where curricula focused on knowledge recall and technical facility with rules and procedures
tend to prevail. In attempting to meet the challenges likely to be faced by such an agenda for
change, it is necessary to draw on an enhanced understanding of how individuals can react to,
and be supported by, pedagogies that are informed by, and designed to capture the essence of,
new conceptualisations of mathematical competences. These competences need to encompass
an enhanced range of activities that provide learners with opportunities, when working with
others, to make mathematical productions that represent a range of realities, to make sense of
such mathematical productions as devised by others and to communicate effectively. Research
that explores activity in these new spaces of educational design in order to support mathemat-
ical activity of this type is required. The collective papers of this special issue provide an
indication of starting points for such an endeavour, but the challenge is considerable and
should not be underestimated.
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