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Given its important role in mathematics as well as its role as a gatekeeper to future
educational and employment opportunities, algebra has become a focal point of both
reform and research efforts in mathematics education. Understanding and using
algebra is dependent on understanding a number of fundamental concepts, one of
which is the concept of equality. This article focuses on middle school students’ under-
standing of the equal sign and its relation to performance solving algebraic equations.
The data indicate that many students lack a sophisticated understanding of the equal
sign and that their understanding of the equal sign is associated with performance on
equation-solving items. Moreover, the latter finding holds even when controlling for
mathematics ability (as measured by standardized achievement test scores).
Implications for instruction and curricular design are discussed.
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Algebra continues to be a significant focus of both reform efforts (e.g.,
Lacampagne, Blair, & Kaput, 1995; National Council of Teachers of Mathematics
[NCTM], 2000) and research (e.g., Bednarz, Kieran, & Lee, 1996; Kaput, Carraher,
& Blanton, in press; Kieran, 1992; Olive, Izsak, & Blanton, 2002; RAND
Mathematics Study Panel, 2003; Wagner & Kieran, 1989) in mathematics educa-
tion. Such attention comes largely in response to growing concerns about students’
inadequate understandings of and preparation in algebra as well as in recognition
of the role that algebra plays as a gatekeeper to future educational and employment
opportunities (Ladson-Billings, 1998; Moses & Cobb, 2001; National Research
Council [NRC], 1998). Algebra reform, however, involves more than simply
“fixing” 1st-year algebra courses. Indeed, there is an emerging consensus that
algebra reform requires reconceptualizing the nature of algebra in school mathe-
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matics, with many mathematics educators advocating that algebra be treated as a
continuous K–12 strand (e.g., Carpenter & Levi, 1999; Kaput, 1998; NCTM,
2000). “By viewing algebra as a strand in the curriculum from prekindergarten on,
teachers can help students build a solid foundation of understanding and experience
as a preparation for more-sophisticated work in algebra in the middle grades and
high school” (NCTM, 2000, p. 37).

One concept that is fundamental to algebra understanding and that has received
considerable research attention is that of equality and, in particular, understanding
of the equal sign (e.g., Alibali, 1999; Behr, Erlwanger, & Nichols, 1980; Falkner,
Levi, & Carpenter, 1999; Kieran, 1981; McNeil & Alibali, 2005). The ubiquitous
presence of the equal sign at all levels of mathematics highlights its importance.
The concept of equality and its symbolic instantiation are traditionally introduced
during students’ early elementary school education, with little instructional time
explicitly spent on the concept in the later grades. Yet, as the RAND Mathematics
Study Panel (2003) contended, “the notion of ‘equal’ is complex and difficult for
students to comprehend” (p. 53). Studies of students’ understanding and use of
equality (and the equal sign) lend support to this contention (e.g., Alibali, 1999; Behr
et al., 1980; Falkner et al., 1999; Kieran, 1981; McNeil & Alibali, 2005). In this
article, we report results from a study1 that examined middle school students’
understanding of the equal sign and its relation to their performance solving alge-
braic equations.

STUDENT UNDERSTANDING OF THE EQUAL SIGN

Many elementary and middle school students demonstrate inadequate under-
standing of the meaning of the equal sign, frequently viewing the symbol as an
announcement of the result of an arithmetic operation rather than as a symbol of
mathematical equivalence (Baroody & Ginsburg, 1983; Behr et al., 1980; Kieran,
1981; Rittle-Johnson & Alibali, 1999). Such an “operational” view is consistent with
equal sign definitions—including “the total” or “the answer”—generated by third-
through fifth-grade students in McNeil and Alibali’s (2005) study. This view is also
consistent with first- through sixth-grade students’ attempts to solve the equation
8 + 4 = � + 5 (Falkner et al., 1999) and third- and fourth-grade students’ attempts
to solve equations such as 4 + 3 + 5 = __ + 5 (e.g., Alibali, 1999). Falkner et al. found
that many students provided answers of 12, 17, or 12 and 17—answers that are consis-
tent with an understanding of the equal sign as announcing a result. Similarly, Alibali
found that many students added all the numbers in the equation or added all the
numbers before the equal sign, again indicating an operational view of the equal sign.

It has been suggested that this well documented (mis)conception might be due,
at least in part, to students’ elementary school experiences (Baroody & Ginsburg,
1983; Behr et al., 1980; Carpenter, Franke, & Levi, 2003; Seo & Ginsburg, 2003).
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1 The study is part of a 5-year longitudinal study seeking to understand the development of middle
school students’ algebraic reasoning.



Although viewing the equal sign as a “do something signal” (Kieran, 1981, p. 319)
is generally not problematic when solving “typical” elementary school arithmetic
problems of the form a + b = �, such a view may not serve students well when they
encounter more complex equations in later grades. In fact, many of the difficulties
that students have when working with symbolic expressions and equations may
be attributed to their misconceptions about the meaning of the equal sign. Kieran,
for example, proposed that long-standing misconceptions about the meaning of the
equal sign might be the root cause of high school students’ difficulties dealing with
polynomial expressions. She found that 12- and 13-year-olds had difficulty
assigning meaning to expressions such as 3a, a + 3, and 3a + 5a because, as one
student stated, “There is no equal sign with a number after it” (p. 324). Carpenter
et al. (2003) questioned the meaning such students might make of the procedures
one might use to solve equations such as 5x + 32 = 97 (starting with subtracting
32 from each side resulting in 5x + 32 – 32 = 97 – 32): “What kind of meaning
can students who exhibit … misconceptions of the equal sign … attribute to this
equation?” (p. 22). Students must understand the equal sign as expressing a rela-
tion in order to make sense of the transformations performed on such an equation.

In sum, the literature highlights the misconceptions that many students possess
regarding the meaning of the equal sign. Such misconceptions persist among some high
school and even college students (e.g., McNeil & Alibali, 2005; Mevarech & Yitschak,
1983), suggesting that they are robust and long lasting. Given the results of the afore-
mentioned research, it seems reasonable to hypothesize that there is a relation between
students’ understanding of the equal sign and their success working with symbolic
expressions and algebraic equations. Yet evidence that such a relation does in fact exist
is lacking. The goal of this article is to present evidence regarding the relation between
students’ understanding of the equal sign and their success solving traditional algebraic
equations—in essence, to show that understanding the equal sign does matter.

METHOD

Participants

Participants were 177 middle school (47 sixth grade, 72 seventh grade, 58 eighth
grade) students drawn from an ethnically diverse middle school in the American
Midwest. The demographic breakdown of the school’s student population is as
follows: 25% African American, 5% Hispanic, 7% Asian, and 62% White. The
middle school had recently adopted the reform-based curricular program Connected
Mathematics; at the time of this study, the sixth-grade teachers were in their 2nd
year of implementation, while the seventh- and eighth-grade teachers were in their
3rd year of implementation.2 In addition, with the exception of one section of
eighth-grade algebra, the classes were not tracked (e.g., all seventh-grade students
were in the same mathematics course).
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of textbook series, often differing from grade level to grade level and even differing within a grade level.



Given the focus of this article, it should be noted that the authors of the Connected
Mathematics curriculum suggest that the development of algebra begins in the sixth-
grade units, with increasing attention being given to algebra in the seventh- and
eighth-grade units (Lappan, Fey, Fitzgerald, Friel, & Phillips, 2002). Of particular
relevance to this study, traditional algebraic topics such as solving linear equations
receive explicit attention beginning in seventh grade.

Data Collection

The data that are the focus of this article consist of students’ responses to items
from a written assessment that targeted their understandings of various aspects of
algebra. The assessment was designed by the authors, and it included a mixture of
items drawn from previous studies as well as items developed specifically for the
assessment. There were two alternate forms of the assessment, which varied only
in specific numbers or the problem format used in some of the items (i.e., verbal
format versus symbolic format). The two forms were randomly assigned to students
in each grade, and all students completed the entire assessment. This article
addresses students’ responses to three items.

One item required students to interpret the equal sign (see Figure 1), and two items
required students to determine the solution to an algebraic equation (see Figure 2). Each
student received the equal sign item and one of the two equation items. The equal sign
interpretation item required students to first name the equal sign symbol (first prompt),
then provide a statement regarding the symbol’s meaning (second prompt), and then,
if possible, provide a statement regarding an alternative meaning (third prompt). The
rationale for the first prompt was to preempt students from using the name of the symbol
in their response to the second prompt (e.g., “the symbol means equal”). The rationale
for the third prompt was based on our previous work, in which we found that students
often offer more than one interpretation when given the opportunity. The equation-
solving items required students to determine the solution to typical 1st-year algebra
equations. We used the prompt “What value of m will make the following number
sentence true?” for two reasons. First, we wanted to avoid running into problems asso-
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The following questions are about this statement:

3 + 4 = 7
↑

(a) The arrow above points to a symbol. What is the name of the symbol?

(b) What does the symbol mean?

(c) Can the symbol mean anything else? If yes, please explain.

Figure 1. Interpreting the equal sign.



ciated with students misunderstanding the more prototypical (in terms of 1st-year
algebra) prompt “Solve the equation.” Second, we felt that the prompt we used would
likely be more consistent with the prompt often used in elementary school problems
(i.e., “What value will make the number sentence, 8 + � = 12, true?”).

Data Analysis

In this section, we provide details regarding the coding of each item. For all three
items, responses that students left blank or for which they wrote “I don’t know” were
grouped into a no response/don’t know category, and response types that were not
sufficiently frequent to warrant their own codes were grouped into an other category.

Coding equal sign definitions. Student responses to parts (b) and (c) of Item 1
were coded as relational, operational, other, or no response/don’t know, with the
majority of responses falling into the first two categories. A response was coded
as relational if a student expressed the general idea that the equal sign means “the
same as” and as operational if the student expressed the general idea that the equal
sign means “add the numbers” or “the answer.” The other category included defi-
nitions such as “it means equals” or “it means equal to” as well as direct transla-
tions of the problem statement, such as “3 plus 4 equals 7.” In addition to coding
responses to parts (b) and (c) separately, students were also assigned an overall code
indicating their “best” interpretation. Many students provided two interpretations,
sometimes one relational and one operational; in such cases, the responses were
assigned an overall code of relational.

Coding equation-solving performance. For the equation-solving items, we coded
both correctness and strategy. A response was coded as correct if the student iden-
tified the value of m that satisfied the equation, incorrect if the student provided a
value for m that did not satisfy the equation, or no response/don’t know if the student
did not provide a value for m. Students’ strategies were classified into one of the
following six categories: answer only, no response/don’t know, guess and test,
unwind, algebra, and other. A response was coded as answer only if only a value
of m was provided (i.e., no corresponding work was shown). A response was
coded as guess and test if the student tested (substituted) various values of m in the
equation until he or she arrived at the correct value. A response was coded as unwind
if the student solved the problem by working backward through the constraints
provided in the problem, in essence, “unwinding” the constraints by inverting
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What value of m will make the following number sentence true?

(a) 4m + 10 = 70

(b) 3m + 7 = 25

Figure 2. Equation solving items.



operations and performing arithmetic operations rather than using algebraic manip-
ulation. It is important to note that in using an unwind strategy students start with
the constant value from one side of the equation and then perform arithmetic oper-
ations on that value. For example, for equation (a) of Figure 2, a student using the
unwind strategy would subtract 10 from 70 and then divide this result by 4 in order
to determine the value of m. Finally, responses were coded as algebra if the student
solved the equation using a typical algebraic method (i.e., performing the same trans-
formations on each side of the equation).

Coding reliability. To assess reliability of the coding procedure, a second coder
rescored approximately 20% of the data. Agreement between coders was 93% for
coding students’ interpretations of the equal sign, 100% for coding the correctness
of students’ responses to the equation-solving items, and 90% for coding students’
strategies on the equation-solving items.

RESULTS

We focus first on students’ interpretations of the equal sign, and then on how these
interpretations relate to students’ performance solving equations. In addition, for
a subset of students we examine their interpretations of the equal sign and their
performance solving equations in relation to their performance on the mathematics,
reading, and language components of a national standardized test (Terra Nova for
sixth- and seventh-grade students and Wisconsin Knowledge and Concepts Exam
[WKCE] for eighth-grade students).3 Where applicable, representative excerpts from
students’ written responses are provided to illustrate findings. In reporting the
results, we describe and illustrate only those coding categories that are most
germane to the focus of the article (e.g., the other category is not discussed in detail).
Finally, the statistical analysis was performed using logistic regression because the
outcome variables of interest were categorical. Full details of each logistic regres-
sion model are presented in the Appendix.

Equal Sign Interpretations

Table 1 presents the distribution of equal sign definitions as a function of grade.
As seen in the table, the majority of sixth- and eighth-grade students provided defi-
nitions that were coded as operational, whereas substantially fewer sixth- and
eighth-grade students provided definitions coded as relational. It is interesting that
in seventh grade, slightly more students provided definitions coded as relational than
provided definitions coded as operational; nevertheless, fewer than half of the
seventh-grade students provided a relational definition. The following student
responses are representative of responses coded as operational:

“What the sum of the two numbers are” (sixth-grade student).
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“A sign connecting the answer to the problem” (seventh-grade student).

“What the problem’s answer is” (seventh-grade student).

“The total” (eighth-grade student).

“How much the numbers added together equal” (eighth-grade student).

In contrast, the following student responses are representative of those coded as
relational:

“It means that what is to the left and right of the sign mean the same thing” (sixth-
grade student).

“The same as, same value” (seventh-grade student).

“The left side of the equals sign and the right side of the equals sign are the same
value” (eighth-grade student).

“The expression on the left side is equal to the expression on the right side”
(eighth-grade student). 

We used logistic regression to examine the relation between grade level (6, 7, or
8) and the likelihood of exhibiting a relational understanding of the equal sign. It
is surprising that students were not more likely to exhibit a relational understanding
of the equal sign as grade level increased (i.e., there was no linear trend across
grades), nor was there a U-shaped pattern in students’ likelihood of exhibiting a rela-
tional understanding across the grade levels (i.e., there was no quadratic trend across
grades; see the Appendix for details of the statistical analysis). Thus, there was no
evidence in this data set to suggest that students’ likelihood of exhibiting a relational
understanding of the equal sign changes across the middle school grades. We also
examined whether there were differences in students’ equal sign understanding
across teachers within each grade level; there were no significant teacher effects.

We next examined the relation between students’ equal sign definitions and math-
ematics ability, as assessed using standardized tests. We used logistic regression to
predict the log of the odds of exhibiting a relational understanding of the equal sign
for the subset of students for whom we had standardized test scores (N = 65 students
across the three grades). Predictor variables included grade level (6, 7, or 8) and
students’ national percentiles on the mathematics, reading, and language components
of a national standardized test. Students with higher national percentile scores on the
mathematics component of the standardized test were more likely to exhibit a rela-
tional understanding of the equal sign, β̂ = 0.061, z = 2.44, Wald (1, N = 65) = 5.93,
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Table 1
Percent of Students at Each Grade Level Who Provided Each Type of Equal Sign Definition
as Their Best Definition

Best Definition Grade 6 Grade 7 Grade 8

Operational 53 36 52
Relational 32 43 31
Other 15 20 17
No response/don’t know 00 01 00



p = .02. However, students’ likelihood of exhibiting a relational understanding of
the equal sign was not related to national percentile score on the reading or language
components of the standardized tests. Additionally, as in the overall sample, the effect
of grade level was not significant in the subsample (neither the linear nor the
quadratic trend). Thus, students’ equal sign understanding was associated with
mathematics ability, but not with reading ability, language ability, or grade level.

Relation to Equation-Solving Performance

We next examined the relation between students’ equal sign understanding and their
performance in solving algebraic equations. To address this issue, we examined two
outcome measures: (1) whether or not students solved the equations correctly, and
(2) whether or not students used an algebraic strategy to solve the equations. Overall
performance and use of an algebraic strategy did not differ across the two equation-
solving items; thus, we collapsed across items in the analyses presented here. Based
on prior work (e.g., Kieran, 1981), we predicted that students who lack a relational
understanding of the equal sign might have difficulty understanding the steps involved
in an algebraic strategy (e.g., why do the same thing to both sides?). Consequently,
we expected such students to use nonalgebraic strategies to solve the equations.

Correctness. Figures 3 and 4 present the proportion of students at each grade level
and with each level of equal sign understanding who solved the equations correctly.
We used logistic regression to predict the log of the odds of solving the equations
correctly. Predictor variables included grade level (6, 7, or 8) and equal sign under-
standing (relational or not). Students were more likely to solve the equations
correctly as grade level increased, β = 1.06, z = 3.29, Wald (1, N = 177) = 10.81,
p = .001. More important, however, students who exhibited a relational under-
standing of the equal sign were more likely than students who did not exhibit a rela-
tional understanding to solve the equations correctly, β̂ = –1.74, z = –4.76, Wald
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Figure 3. Proportion of sixth-, seventh-, and eighth-grade students who solved the equations
correctly.



(1, N = 177) = 22.64, p < .001. As seen in Figure 4, at each grade level, a greater
proportion of students who exhibited a relational understanding of the equal sign
solved the equations correctly.

It might be argued that the relation between equal sign understanding and equa-
tion-solving performance is because of students’ general abilities in mathematics
and not because of a  relation between equal sign understanding and equation solving
per se. To address this issue, we performed a similar analysis on a subset of the
students for whom we had standardized test scores (N = 65), so we could control
for mathematics ability. In addition to grade level (6, 7, or 8) and equal sign under-
standing (relational or not), we included national percentile scores on the mathe-
matics, reading, and language components of a national standardized test as predic-
tors in the model. Three effects were significant: the linear effect of grade level, β̂
= 7.17, z = 2.54, Wald (1, N = 65) = 6.43, p = .01; the effect of equal sign under-
standing, β̂ = –4.58, z = –1.96, Wald (1, N = 65) = 3.85, p = .05; and the effect of
national percentile on the mathematics component of the standardized test, β̂ = 0.15,
z = 2.10, Wald (1, N = 65) = 4.38, p = .04. There were no effects of national percentile
on the reading and language components of the standardized test. 

Thus, even when controlling for grade level and standardized mathematics test
scores, the association between equal sign understanding and equation-solving
performance was significant. In other words, the observed relation between equal
sign understanding and equation-solving performance was not simply because
better students were performing well on both items.

Use of an algebraic strategy. Table 2 presents the distribution of strategies used
by students in each grade to solve the equations. It is clear from the table that the
proportion of student strategies coded as answer only or no response/don’t know
decreased with grade level (77% in sixth grade to 31% in eighth grade), perhaps
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Figure 4. Proportion of sixth-, seventh-, and eighth-grade students in each equal sign under-
standing category who solved the equations correctly.
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because students were gaining more experience with literal symbols and algebraic
equations. The table also displays an increase in the proportion of seventh- and eighth-
grade students using “prealgebraic” strategies (strategies coded as guess and test and
unwind) as well as algebraic strategies (strategies coded as algebra). Similar to Kieran
(1989), we consider guess and test to be an arithmetic strategy; we also consider
unwind to be a prealgebraic strategy because this strategy does not emphasize the
symmetry of an equation (in contrast to algebra strategies with their emphasis on
performing the same operation on both sides of the equal sign). Representative exam-
ples of the prealgebraic strategies are displayed in Figure 5, and a representative
example of an algebraic strategy is displayed in Figure 6. Table 3 displays the
proportion of problem-solving strategies used by students at each grade level who
solved the equations correctly. As seen in the table, the most effective strategy at
Grade 6 was guess and test; at Grade 7, it was unwind; and at Grade 8, algebra.

None of the sixth-grade students and only one seventh-grade student used an alge-
braic strategy to solve the equations (see Table 2); thus, the relation between equal
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Table 2
Percent of Students at Each Grade Level Who Used Each Type of Problem-solving Strategy
on the Equation-solving Items

Strategy Code Grade 6 Grade 7 Grade 8

Answer only 51 25 17
No response/don’t know 26 24 14
Guess and test 06 15 16
Unwind 09 26 09
Algebra 00 01 33
Other 09 08 12

7. What value of m will make the following number sentence true?
4m + 10 = 70

(a)

7. What value of m will make the following number sentence true?
3m + 7 = 25

(b)

Figure 5. Examples of (a) guess and test and (b) unwind strategies.



sign understanding and use of an algebraic strategy could not be tested among sixth-
and seventh-grade students. For the eighth-grade students, however, students who ex-
hibited a relational understanding of the equal sign were more likely than those who
did not exhibit a relational understanding to use an algebraic strategy (see Figure 7),
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7. What value of m will make the following number sentence true?
4m + 10 = 70

Figure 6. Example of an algebra strategy
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Figure 7. Proportion of sixth-, seventh-, and eighth-grade students in each equal sign under-
standing category who used an algebraic strategy to solve the equations.

Table 3
Percent of Students Who Used Each Type of Problem-solving Strategy Who Arrived at the
Correct Solution

Strategy Code Grade 6 Grade 7 Grade 8 Total

Answer only 33% (24) 56% (18) 60% (10) 46% (52)
No response/don’t know 0% (12) 0% (17) 0% (8) 0% (37)
Guess and test 100% (3) 73% (11) 78% (9) 78% (23)
Unwind 75% (4) 95% (19) 60% (5) 86% (28)
Algebra — 0% (1) 100% (19) 95% (20)
Other 0% (4) 33% (6) 0% (7) 12% (17)

Note. The number in parentheses is the number of students who used the particular problem-solving
strategy. In Grade 6, no students attempted an algebraic strategy.



χ2 (1, N = 58) = 18.45, p < .001. It is important to note that all 19 eighth-grade
students who used an algebraic strategy also solved the equations correctly.

We could not analyze the effects of mathematics ability on use of an algebraic
strategy because there were too few eighth-grade students for whom we had stan-
dardized test scores. Recall, however, that some eighth-grade students were enrolled
in an algebra course, and others were not. It seemed probable that students enrolled
in algebra would be more likely both to use an algebraic strategy and to provide a
relational definition of the equal sign. If this were the case, the observed relation
between equal sign understanding and use of an algebraic strategy might be because
both were being related to algebra course work rather than to a relation between
equal sign understanding and use of an algebraic strategy per se. As expected, eighth-
grade students enrolled in algebra (N = 7) were more likely than those not enrolled
in algebra (N = 45) to use an algebraic strategy (86% versus 29% of students). In
addition, students enrolled in algebra were more likely than students not enrolled
in algebra to give a relational definition of the equal sign (71% versus 29% of
students). However, the relation between equal sign understanding and use of an
algebraic strategy remained significant even when students enrolled in algebra were
excluded from the analysis, χ2 (1, N = 45) = 9.49, p = .002. Thus, the observed rela-
tion between equal sign understanding and use of an algebraic strategy was not
because students enrolled in algebra were performing well on both items. These data
suggest that equal sign understanding informs students’ use of an algebraic strategy.

UNDERSTANDING THE EQUAL SIGN DOES MATTER

In this study, we examined middle school students’ understanding of the equal
sign and how it relates to equation-solving performance. The results suggest that
relatively few middle school students hold a relational view of the equal sign.
Further, there was no evidence to indicate that equal sign understanding improves
across the middle grades (although modest improvement across the middle grades
has been reported elsewhere—see, for example, Knuth, Alibali, McNeil, Weinberg,
& Stephens, 2005). As seen in Table 1, in the present study, although there were
slight improvements from Grade 6 to Grade 7, performance declined in Grade 8.
This differs from the pattern observed by Knuth et al. (2005), who noted improve-
ments from Grade 7 to Grade 8 (as well as from Grade 6 to Grade 7). It is worth
noting, however, that overall performance in this previous study remained relatively
low (less than 50% of the eighth-grade students demonstrated a relational view of
the equal sign). The reasons for eighth-grade students’ particularly poor performance
in the present study are unclear.

The generally poor performance on measures of equal sign understanding is perhaps
not surprising, given the lack of explicit focus on the equal sign in middle school
curricula. Nevertheless, these findings are cause for concern because we also found a
strong relation between equal sign understanding and success in solving equations.

Kieran (1992) suggested that “one of the requirements for generating and adequately
interpreting structural representations such as equations is a conception of the symmetric
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and transitive character of equality—sometimes referred to as the ‘left-right equiva-
lence’ of the equal sign” (p. 398). In support of this claim, we have documented else-
where (Knuth et al., 2005) that such an understanding of the equal sign does indeed
support a structural conception of equations. Specifically, we found a positive relation
between equal sign understanding and performance on equivalent equations problems
(e.g., judging that the value of m that satisfies the equation, 2m + 15 = 31, will be the
same value that satisfies the equation 2m + 15 – 9 = 31 – 9). An important omission
in Kieran’s statement (as well as in the research literature), however, is that a relational
view of the equal sign is necessary not only to meaningfully generate and interpret equa-
tions but also to meaningfully operate on equations. The results of this study support
the latter point and suggest that efforts to enhance students’ understanding of the equal
sign may pay off in better performance in algebra.

We found a strong positive relation between middle school students’ equal sign
understanding and their equation-solving performance, and we showed that this rela-
tion holds even when controlling for mathematics ability (as assessed via stan-
dardized tests). This finding is noteworthy in that it suggests that even students
having no experience with formal algebra (sixth- and seventh-grade students in
particular) have a better understanding of how to solve equations when they have
a relational understanding of the equal sign. In addition, we found a strong posi-
tive relation between equal sign understanding and use of an algebraic strategy
among eighth-grade students (students who have had more experience with alge-
braic ideas and symbols as compared to their peers in sixth and seventh grade), and
we showed that this relation holds for those eighth-grade students who were not
enrolled in an algebra course. Taken together, these findings suggest that under-
standing the equal sign is a pivotal aspect of success in solving algebraic equations
(whether using an algebraic strategy or not). These findings also help build a case
for the importance of continuing to explicitly develop students’ understanding of
the equal sign during their middle school mathematics education.

Why might middle school students hold an operational view of the equal sign? The
equal sign is traditionally introduced during students’ early elementary years, with little
instructional time explicitly spent on the concept in the later grades. In fact, teachers
generally assume that once students have been introduced to the concept during
elementary school, little or no review is needed. The lack of explicit attention to the
equal sign in the later grades may explain, in large part, why many students continue
to show inadequate understandings of its meaning in middle school and beyond (e.g.,
McNeil & Alibali, 2005; Mevarech & Yitschak, 1983). Further exacerbating students’
lack of opportunities to develop their understanding of the equal sign is the fact that
very little attention is paid to the symbol in curricular materials—despite its ubiqui-
tous presence. Moreover, analyses of middle school curricular materials suggest that
relational uses of the equal sign are less common than operational uses (McNeil et al.,
in press). This pattern of exposure may actually condition students to favor less sophis-
ticated and generalized uses of equivalence (such as “operations equals answer”).

In recent years, mathematics educators have recognized the importance of contin-
uing to explicitly develop students’ understanding of equality and of the equal sign,
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in particular (see, for example, Carpenter et al., 2003). These efforts, however, have
primarily concentrated on the elementary school grades. We argue that there is a
clear need for continued attention to be given to the notion of equality in the
middle school grades. In our professional development work with middle school
teachers, for example, we encourage teachers to look for opportunities to engage
students in conversations about the equal sign during classroom interactions as well
as to create such opportunities intentionally. Anyone who has spent time in math-
ematics classrooms has probably witnessed the equality “strings” students often
produce (e.g., 3 + 5 = 8 + 2 = 10 + 5 = 15); these equality strings provide an excel-
lent opportunity to discuss with students the meaning of the equal sign and its proper
use. Even providing students with equations to solve (arithmetic or algebraic) in
which numbers and operations (or symbolic expressions and operations) appear on
both sides of the equal sign may help promote more appropriate interpretations and
uses of the equal sign.

CLOSING REMARKS

Algebra continues to be a struggle for many students—a fact that has led to 1st-
year algebra courses in the United States being characterized as “an unmitigated
disaster for most students” (NRC, 1998, p. 1). Although students’ difficulties
learning algebra have been attributed to a variety of factors, we agree with Carpenter
et al.’s (2003) contention that a “limited conception of what the equal sign means
is one of the major stumbling blocks in learning algebra. Virtually all manipula-
tions on equations require understanding that the equal sign represents a relation”
(p. 22). The results of our study lend support to this contention: Students who under-
stand the equal sign as a relational symbol of equivalence are more successful
solving algebraic equations than their peers who do not have such an understanding.
This finding, coupled with the fact that, overall, far too few middle school students
viewed the equal sign as representing a relation, clearly illustrate the need to give
more explicit attention to the equal sign in middle school mathematics. As NCTM
(2000) recommended, “The notion of equality [and its symbolic representation] also
should be developed throughout the curriculum” (p. 39). This recommendation, if
followed, may lead to success in learning algebra by greater numbers of students.
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APPENDIX

Details of Each Logistic Regression Model

Table A1
Dependent Response: Whether or Not a Relational Understanding Is Exhibited

Effect β z Wald p

Model 1 (N = 177)
Grade level—linear –0.03 –0.10 0.009 .92
Grade level—quadratic –0.41 –1.57 2.45 .12

Model 2 (N = 65)
National percentile—math 0.061 2.44 5.93 .02
National percentile—reading –0.001 –0.04 0.002 .97
National percentile—language –0.01 –0.38 0.15 .70
Grade level—linear –0.71 –1.25 1.58 .21
Grade level—quadratic –0.08 –0.16 0.025 .87

Note. In each regression model, Y = 1 if relational and Y = 0 if not relational.

Table A2
Dependent Response: Whether or Not Equation Is Solved Correctly

Effect β z Wald p

Model 1 (N = 177)
Grade level—linear 1.06 3.29 10.81 .001
Grade level—quadratic –0.14 –0.51 0.26 .61
Equal sign understanding –1.74 –4.76 22.64 <.001

Model 2 (N = 65)
National percentile—math 0.15 2.10 4.38 .04
National percentile—reading –0.11 –1.26 1.59 .21
National percentile—language 0.13 1.65 2.74 .10
Grade level—linear 7.17 2.54 6.43 .01
Grade level—quadratic –0.82 –0.63 0.39 .53
Equal sign understanding –4.58 –1.96 3.85 .05

Note. In each regression model, Y = 1 if correct and Y = 0 if incorrect.


