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GENERALIZATION OF PATTERNS: THE TENSION BETWEEN
ALGEBRAIC THINKING AND ALGEBRAIC NOTATION

ABSTRACT. This study explores the attempts of a group of preservice elementary school
teachers to generalize a repeating visual number pattern. We discuss students’ emergent
algebraic thinking and the variety of ways in which they generalize and symbolize their
generalizations. Our results indicate that students’ ability to express generality verbally was
not accompanied by, and did not depend on, algebraic notation. However, participants often
perceived their complete and accurate solutions that did not involve algebraic symbolism
as inadequate.

1. INTRODUCTION

Patterns are the heart and soul of mathematics. However, unlike solving
equations or manipulating integers, exploration of patterns does not always
stand on its own as a curricular topic or activity. Some teachers see such
an activity as recreational enrichment rather than curriculum core. We take
the view that “algebra, and indeed all of mathematics is about generalizing
patterns” (Lee, 1996, p. 103). Therefore we believe that it is essential in a
study of mathematics to direct students’ attention to patterns underlying a
wide variety of mathematical topics.

In this article we describe the attempts of a group of preservice ele-
mentary school teachers to generalize a visual numeric pattern. We analyze
the routes towards expressing generality followed or abandoned by these
participants and the obstacles encountered on these routes. This way we
extend the existing research on the development of algebraic thinking in
general and on the pattern generalization approach to algebra in particular.

1.1. Patterns

There are several attempts to develop students’ pattern finding strategies
at different levels, from nursery school to secondary school (Ishida, 1997;
Iwasaki and Yamaguchi, 1997; Orton and Orton, 1999; Radford, 2000).
Research distinguishes between different kinds of patterns — number pat-
terns, pictorial/geometric patterns, patterns in computational procedures,
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linear and quadratic patterns, repeating patterns, etc. In what follows we
comment on repeating patterns and on linear patterns.

Threlfall (1999) focused on one-dimensional repeating patterns in early
primary years. Repeating patterns are patterns with a recognizable repeat-
ing cycle of elements, referred to as ‘unit of repeat’. For example,
ABCABCABC... can be seen as a repeating pattern with 3 attributes and
a repeating cycle, or unit of repeat, of length 3; ABCabABCabABCab can
be seen as a more complex repeating pattern, with 3 attributes and a cycle
of length 5, in which not only the letter but also the case is varied. Varying
some attributes of elements (such as size, color, orientation, etc.) while
keeping other attributes constant adds complexity to a repeating pattern
(Threlfall, 1999).

Among the reasons for working with repeating patterns, Threlfall (1999)
acknowledges ideas of regularity and sequencing, and opportunities for
teachers to draw students’ attention to helpful aspects of the experience.
Moreover, Threlfall advocates the use of repeating patterns as a vehicle
for working with symbols, a conceptual stepping stone to algebra and a
context for generalization. Young children can succeed in generating or
continuing repeating patterns using a procedural or rhythmic approach.
However, as a stepping stone towards generalization and algebra, it is es-
sential to see particular patterns; that is, to perceive the unit of repeat in
a repeating pattern. This goal may not be achieved if work with repeating
patterns is undertaken only in early primary years, when students are not
yet developmentally able to achieve the perception of a unit of repeat.

Stacey (1989) focused her exploration on linear patterns, presented pic-
torially as expanding ladders or trees. Participants were asked to determine
the number of matches needed to make a ladder with 20 or 1000 rungs, or
the number of lights in a Christmas tree of a given size. These patterns are
labeled ‘linear’ because the n'" element can be expressed as an+b. Stacey
found these problems were challenging for 8—13 year old students. The
constant difference property was largely recognized and enabled students
to find the n™ element of a pattern from the (n-1)™ element. However, in
an attempt to generalize, a significant number of students used an erro-
neous direct proportion method, that is, determining the n'" element as the
n™ multiple of the difference. Stacey also reported inconsistencies in the
methods chosen by students for ‘near generalization’ tasks (e.g., find the
twentieth term), and ‘far generalization’ tasks (e.g., find the thousandth
term). Similar results were reported by Zazkis and Liljedahl (2001, 2002)
in their investigations of arithmetic sequences with preservice elementary
school teachers. In these studies participants were provided with the first
4 or 5 elements in an arithmetic sequence and were asked to provide ex-
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amples of large numbers in this sequence and to determine whether certain
numbers belonged to the sequence if it continued infinitely. The direct
proportion, or multiple of a difference approach, appropriate to sequences
of multiples (e.g., 3,6,9,12 . ..) was also extended and applied to sequences
of so called ‘non-multiples’ (e.g., 2,5,8,11 ...).

Orton and Orton (1999) extended investigations of linear patterns (arith-
metic sequences) to other sequences of numbers. They reported the tend-
ency of students to use differences between the consecutive elements in a
sequence as their preferred method. This method was successfully exten-
ded to quadratic patterns by taking the second differences, but led to a dead
end in instances such as the Fibonacci sequence. Among the obstacles to
successful generalization Orton and Orton mentioned students’ arithmet-
ical incompetence and fixation on a recursive approach. Although allowing
students to generate the next element in a sequence based on a previous
one, this approach prevented them from seeing the general structure of all
the elements. A recursive approach was also mentioned by English and
Warren (1998) as an approach that students preferred and often reverted to
when more challenging patterns were presented to them.

1.2. Generalization

According to Dorfler (1991) generalization is both “an object and a means
of thinking and communicating” (p. 63). Realizing the importance of gen-
eralization in mathematical activity, several researchers identify different
kinds of generalization. Dorfler distinguishes between empirical general-
ization and theoretical generalization. Empirical generalization is based on
recognizing common features or common qualities of objects. According
to Dorfler it is considered ‘problematic’ in mathematics education in terms
of determining qualities that are relevant for generalization. That is, empir-
ical generalization is criticized for lacking a specific goal to decide what is
essential, being limited without a possibility to generalize further and over-
reliance on particular examples. Theoretical generalization, in contrast, is
both intentional and extensional. It starts with what Dorfler refers to as a
“system of action”, in which essential invariants are identified and substi-
tuted for by prototypes. Generalization is constructed through abstraction
of the essential invariants. The abstracted qualities are relations among
objects, rather than objects themselves.

Harel and Tall (1991) use the term generalization to mean “applying
a given argument in a broader context” (p. 38). They distinguish between
3 different kinds of generalization: (1) expansive, where the applicabil-
ity range of an existing schema is expanded, without reconstructing the
schema; (2) reconstructive, where the existing schema is reconstructed in
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order to widen the applicability range; and (3) disjunctive, where a new
schema is constructed when moving to a new context. It is noted that
although a disjunctive generalization may appear as a successful general-
ization for an observer, it fails to be a cognitive generalization since it does
not consider earlier examples as special cases of the general procedure. In
fact, disjunctive generalization may be a burden for a weaker student, who
constructs a separate procedure for a variety of cases, rather than creating
a general case. Furthermore, expansive generalization is cognitively easier
than reconstructive generalization, but may be insufficient in the long run.

1.3. Generalization of patterns and algebra

Attention to patterns is acknowledged in its importance as an introduction
to algebra. Mason (1996) describes “expressing generality” as one of the
roots of, and routes into, algebra. The use of patterns as a route to ex-
pressing generality has become popular over the past decade within school
mathematics curricula in the UK (Orton and Orton, 1999). “Understanding
patterns, relations and functions” is a continuous theme of the Algebra
standard in the Principles and Standards for school mathematics (NCTM,
2000) at all grade levels.

English and Warren (1998) advocate a patterning approach to intro-
ducing a variable. They argue that, traditionally, variables are introduced
as unknowns in equations, where they do not possess the varying nature.
Furthermore, a patterning approach provides students with the opportunity
to observe and verbalize their generalizations and to record them sym-
bolically. They suggest that patterning activities need not end with the
establishment of the concept of a variable, as they provide a useful and
concrete base for work with symbols.

Attending to algebraic symbolization when exploring patterns in the
context of an elementary algebra course for adults was one of the main foci
of the teaching experiment reported by Lee (1996). According to Lee, the
major problem for students was not in “seeing a pattern” but in perceiving
an “algebraically useful pattern” (p. 95). Once students perceived a pattern
in a certain way, it was hard for them to abandon their initial perception.
A flexible view of patterns should be developed in order to help students
find those patterns that may lead to algebraic symbolization (Lee, 1996;
English and Warren, 1998).
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2. METHODOLOGY

2.1. The task

The following array of numbers was presented to a group of 36 preservice
elementary school teachers.

1 2 3 4

16 15 14 13
17 18 19 20

The participants were invited to explore patterns they identified in this
array and keep a log/journal of their investigations. They had two weeks
to complete the assignment and were advised to work on it for at least half
an hour every other day. The following questions were intended to provide
an initial guidance to their investigation:

How can you continue this pattern' ?
Suppose you continue it indefinitely. Are there numbers that you know
‘for sure’ where they will be placed? How do you decide?

e Can you predict where the number 50 will be? 150? And how about
867 877 1877 3927 73867 5467

e In general, given any whole number, how can one predict where it
will appear in this pattern? Explain the strategy that you propose.

The participants were asked to record carefully their processes, queries,
conjectures and the results of testing them, their frustrations (if any), and
celebrations. They were explicitly asked and expected to present the pro-
gress in their thinking, rather than just to provide a ‘final solution’. Further-
more, it was suggested that they explain and justify every mathematical
claim they made. The use of algebraic formalism was neither required nor
assumed by the wording of the task.

After initial examination of the protocols, four participants were invited
to a clinical interview. The interviews were intended to probe and clarify
several claims that were provided but not justified in their written work.

1A more accurate way to present this question would have been “How can you ex-
tend this arrangement, preserving some regularity?” We are thankful to the Editor Anna
Sierpinska for this comment and for helping us clarify the notion of ‘pattern’ in this article.
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2.2. Analysis of the task

It is well known that no finite sequence of elements uniquely generates the
next term (e.g. Mason, 2002). A finite array of 20 numbers can be extended
in a variety of ways, each preserving some regularity. However, some ex-
tensions may be perceived as more ‘natural’ than others. For example, the
next element in the sequence of 1,2,3,4,5,6. .. can be 727 if the sequence is
defined by a, = (n-1)(n-2)(n-3)(n-4)(n-5)(n-6) +n or just 7 if the sequence
is defined by a, = n. We suggest that the latter extension is more ‘natural’
than the former. In our study the array was extended in the same way by all
the participants. In what follows we attend only to this ‘natural’ extension.

The number array presented to the participants has a combination of
pattern features mentioned in the literature. Its elements are numbers in a
predetermined arrangement and the location of a number in this arrange-
ment is an integral component of the array. Therefore, it can be perceived
as both a numerical pattern and a visual pattern. Taken separately, the left,
the right and middle columns (labeled A, E and C respectively) present
arithmetic sequences, that in a context of patterns, are referred to as linear
patterns. In addition, by observing every second row, one can detect a
linear pattern in columns B and D as well.

Furthermore, we identify in this array features of a ‘repeating pattern’.
However, it is not a repeating pattern in some conventional way. There is
a level of complexity added by making the unit of repeat implicit, or par-
tially implicit. That is, what is explicitly repeating is the visual structure.
Considering the visual structure and ignoring the numbers, we attend to
the form that repeats every 2 lines or every 8 elements.

A B C D E A B C D E
1 2 3 4 o 0 0 o

8§ 7 6 5 o 0 0 o
9 10 11 12 = o o o o

16 15 14 13 0O 0 0 o
17 18 19 20 O 0 0 O

Although the numbers themselves do not repeat, applying the same trans-
formation on each element produces an explicitly recognizable repeat-
ing cycle. This transformation replaces every element in the array by its
remainder in division by 8.
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1 2 3 4 1 2 3 4

8 7 6 5 0 7 6 5
9 10 11 12 = 1 2 3 4

16 15 14 13 0 7 6 5
2 3 4

17 18 19 20 1

Attending to this feature allows us to determine the location of any
natural number in the array. For example, considering number 548 we note
that 548 + 8 = 68 Remainder 4. Therefore the column location of 548 is
the same as of number 4 (column D). Furthermore, we conclude that 548
is found in the 69th set of 8 or in thel137th row of the array.

The predominant pattern-related activity for students in school is ex-
tending number sequences and finding a ‘general term’, with the aim to
express it algebraically. That is, given the position in a sequence, the goal
is to determine the corresponding element. Defining such an element #(n)
as a function of its position n expresses generality with standard algeb-
raic symbolism. The task discussed in this article adds complexity on two
counts. First, what constitutes a position is not predetermined. The planar,
rather than sequential, presentation of numbers invites consideration of a
location as an ordered pair of numbers, specifying either (column, row) or
(place within set, set ordinal). Second, the task can be considered as an
‘inverse task’ as it reverses the usual roles of what is given and what is to
be found. Unlike the usual goal of finding the element in any given place,
the task is to locate a position for any element. In what follows we present
one possible way to formalize the general description of the array.

In order to formalize the definition of a position of a number, we could
first view the (infinite) array as consisting of sets of 8§ numbers, where the
place of each number in a set corresponds to the place of one of the first 8
numbers. For example, number 17 is positioned in place number 1, set 3;
and number 13 is positioned in place number 5, set 2. We define Position
as a function from the set of natural numbers to the set of ordered pairs, as
follows:

Position: N— Zg x N, where N is a set of natural numbers, and

Zg ={0,1,2,3,4,5,6,7} is the set of remainders in division by 8

Position(n) = (place within set(n), set ordinal(n),)
Place within set (n) = R(n, 8)
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. 14+ Q(n, 8) if R(n,8) #0
Set ordinal (n) = { Q(n, 8) ifR(n. 8) =0
where R(n,8) and Q(n,8) are the remainder and the quotient of n in
division by 8 respectively.
We acknowledge that an interpretation of position as row and column
may appear as a more natural pattern. This view can be formalized as
follows:

if R(n,8) =1
ifRn,8) =2o0r0
if Rn,8) =3or7
ifRn,8) =4or6
if R(n,8) =5

Column(n) =

Mo Qw >

or recorded in a more concise form:

Column (n) = Map (R(n,8)),
where Map (1,2,3,4,5,6,7,0) = (A, B,C, D, E, D, C, B)
2 x Q(n, 8) if Rn,8) =0
Row(n) ={ 2xQ(n,8) +1 ifR(n,8) =1,2,3
2xQ(n,8) +2 ifR(n,8) =5,6,7
This symbolization further clarifies the distinction made by Lee between
‘seeing a pattern’ and perceiving ‘an algebraically useful pattern’. Flex-
ibility in perceiving a pattern helps in choosing a way that leads more
easily to a formal notation. We emphasize that this, or a similar, formalism
was neither expected nor required from the participants. We present this in
order to highlight a complexity that is involved in moving from a verbal
description to formal symbols.

Having a predetermined solution in mind, initially we planned to in-
vestigate how participants take advantage of divisibility or division with
remainder related ideas in their explorations of the array. However, facing
the richness of participants’ approaches we have extended our initial focus.

In our analysis of the 36 problem solving logs and 4 clinical interviews
we address the following questions:

e What patterns were found and acknowledged in the given structure of
numbers? What were the common tendencies or common obstacles?

e What patterns were generalized and how is it possible to describe the
different kinds of generalization that took place?

e What means were used to express generality?
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3. RESULTS AND ANALYSIS

The complexity of the number array and the data collection method res-
ulted in a rich and diverse set of solution approaches. What follows is an
analysis of results organized according to the themes that emerged in the
participants’ work. We describe students’ solutions, their paths towards the
solutions, and their perceptions of acceptability of the generated solutions.
We discuss students’ algebraic thinking, their use of algebraic symbolism,
and the interplay between the two.

3.1. What does it mean to ‘solve’ a pattern?

Being able to continue a pattern can be taken as an understanding of a re-
peating pattern. Being able to describe a ‘general’ element can be seen as a
solution of a linear pattern. In our case, we asked students to determine the
location of every whole number. The following question directed students
towards such generalization:

In general, given any whole number, how can one predict where it will appear in
this pattern? Explain the strategy that you propose.

We provided students with no specific instructions as to the interpretation
of ‘where’. Only three students used a structure that was directly related to
the calculation of quotient and remainder; they responded to the question
‘where’ with a pair of numbers, designating the ordinal set of 8 and the
placement in such a set. As an example, the number 15 is found in the
second set (of 8 numbers), seventh placement. The rest of the students,
however, interpreted ‘where’ as a pair of numbers specifying the row and
column location. In this case the number 15 is found in row 4 and column
3 (column C).

However, being able to determine row/column or set/position location
of any number did not always satisfy the participants. During her first at-
tempt at this problem, Myra determined that “multiples of 8§ were at the end
of the sets”. She had shown that “50 divided by 8 equals 6.25, therefore
50 is two numbers into the seventh set”. She further claimed that “with
my current solution, I can place any number into the pattern”. Myra didn’t
consider that this completed her solution. She claimed, “Although I have
an answer to the problem, there has to be an easier solution”. A search for
an ‘easier solution’ was, at first, disappointing for Myra. She declared, “I
have not been able to come up with any short-cuts for solving this problem.
I’m sure that there is some sort of ‘formula’ to solve it quickly, but I have
not found it”.

After some persistence Myra noticed that “each set starts with 1+ mul-
tiple of 8” and suggested a solution by finding the first number in a set
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and counting up. The “first number in a set” was found by division by 8,
“rounding down to a whole” where necessary, and adding 1. Her summary
of the solution was presented as follows:
e adivided by 8 = b (needs to be a whole number, if it is a decimal, the number
should be rounded down, this number shows the amount of complete sets of
8)
b x 8 + 1 = the first number in the set
count up to the number that has been selected (a)

Myra found her second solution “much easier”. We wondered what left
Mpyra dissatisfied with her first solution and much happier with the second.
There could be a combination of two things. The second solution attends
to the first element in each unit of repeat, and as such it may appear as
more accessible. In addition, Myra’s second solution introduced algebraic
symbolism, which was absent in her first solution. Ironically, it may have
satisfied her search for a ‘formula’ and given her solution a perceived
mathematical validity.

Myra exemplifies a common tendency among the participants. Search
for a solution is a search for a single formula that will determine the loc-
ation for any given number. Solutions by cases or solutions not involving
algebraic formalism often left participants with a feeling of inadequacy.

3.2. Spotting patterns

As noted by Orton and Orton (1999) in their investigation of children’s
patterning abilities, the ability to continue a pattern comes well before
the ability to describe the general term. With the specific number array
in question, the ability to think of a way of extending the array does not
easily translate into the ability to determine the place of any given ele-
ment of the extension. Significant amount of pattern-spotting took place
in participants’ attempts to progress towards a generalized solution. The
participants noticed and described patterns, however, at least initially they
had no appreciation of what route it was beneficial to pursue. As Shirley
pointed out, “I’m really unsure as to where to go with this. I see so many
patterns, yet, I don’t know how to use them.”

Almost everyone started the exploration by recapitulating the visual
structure of the array. It was referred to as ‘right/left indented rows’, ‘snake-
like’, ‘S-like’ or ‘zig-zagging’. A predominant observation attended to
even and odd numbers. The fact that even numbers are in columns B and
D, and the odd numbers are in rows A, C and E was easily spotted. (Re-
gardless of the participants’ choice of reference for labeling the columns,
we use letters for consistency). The choice between B and D for evens and
between A, C and E for odds was significantly more demanding.
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The observation of differences between the consecutive numbers in
the columns was another predominant focus of attention. The constant
difference of 8 in columns A and E as well as the constant difference
of 4 in column C was, for most, the first pattern described by the par-
ticipants. Further, alternating differences of 2 and 6 were identified in
columns B and D. Some participants generalized these disjunctive obser-
vations by noticing that 4+4=8 and also 2+6==8 and the constant difference
of 8 persisted in every column when skipping every second row. However,
attention to differences did not provide the impetus towards multiplicative
generalization. Instead, it created a focus on recursive reasoning discussed
in previous work on repeating patterns (Orton and Orton, 1999; Lee and
Warren, 1998). “In row A I could count up by 8’s to find a number, however
this could still take a long time for a large number”, summarized Shirley.
“If it is odd, I know that I will only be able to find it in columns A, C or
E. I could test if a number fits in columns A or E by subtracting 8 until
the last number in my pattern was discovered. I know this is too tedious. I
could test the middle number by subtracting 4 until I reached the desired
number”, summarized Kate. These claims demonstrate the dominance of
the recursive approach that prevents students from shifting their attention
to the general structure. The exhibited dominance of additive thinking
and lack of connection between additive and multiplicative structures is
consistent with prior research findings (e.g., Zazkis and Campbell, 1996).

Patterns were also spotted in using specific points of reference. For
example, the structure of multiples of 10 — that is, 10 in column B, 20
and 30 in column D, 40 and 50 in column B, 60 and 70 in column D,
etc., — was often determined. For some students it served as a shortcut in
counting up to a desired number, while for others it was “an interesting
pattern that will not help”. Another interesting focus of attention was on
multiples of 25, that Carol referred to as “main numbers”. Pam noticed that
consecutive multiples of 25 create the following pattern in their columns
ABCDEDCBABC .... Carol’s solutions employed a flexible use of mul-
tiples of 10 or 25, which was further developed as “flipping at 100” strategy,
discussed in further detail in the next section.

However, spotting a pattern did not always lead to a solution. For ex-
ample, Chris found that “column B has all the multiples of 8, but this
doesn’t help to find all the numbers in this column”. She further noted
that every number in column A can be written as 8 x [ ] + 1. However,
she wrote, this “only helps me to find out if the number is in column A
or not, it doesn’t help me to place numbers in other columns”. Chris was
not aware how a position of every number can be determined based on the
information she had revealed.
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Lee (1996) mentioned that students participating in her study had dif-
ficulty, not with spotting a pattern, but with recognizing an algebraically
useful pattern. Chris determined a pattern that we considered ‘algebraically
useful’, but failed to appreciate its usefulness. On the other hand, students
focusing on reference points were able to develop complete solutions from
patterns that we didn’t appreciate at first as ‘useful’. Therefore we suggest
that ‘usefulness’ of an identified pattern is best considered as a spectrum,
rather than as a dichotomy. Moreover, “usefulness” is not a feature of a
pattern but a perception of the beholder.

3.3. What numbers are ‘familiar’?

In the clinical interview students were presented with a slight variation of
the original array. They were asked to consider the following:

1 2 3 4
8 7 6 5

9 10 11 12
16 15 14 13

17 18 19 20

It was a unanimous view that this variation was easier than the original.
The reason for this perception is exemplified by Shirley’s comments:

Shirley: These are [Shirley added two more rows and pointed to the
numbers in the left column] times 8 table

Interviewer: How can it help you to find a location of a number, take 187
for example

Shirley: What is there times 8? 180 —no, 182 —no, 184 —yes. So 184

is in this column on the left, then you continue down-right,
185,186,187, so it will be here [Shirley points to column
D].
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[...]

Interviewer: Let’s go back to the original. Look at the left column. What
do you notice about the numbers?

Shirley: They are 8 apart.

Interviewer: Anything else?

Shirley: They are all odd.

Interviewer: Anything else?

Shirley: Not really. There is no times 8 or times 9 pattern or

something. Only the difference of 8 each time.

Shirley suggested that she could easily locate each number by considering
the closest multiple of 8. However, she wasn’t able to adapt this strategy
for the original array. Prior research on students’ understanding of arith-
metic sequences outlined a similar perception: In sequences of multiples
students were able to recognize both multiplicative (the essence of being
a multiple) and additive (constant difference) invariants. In sequences of
‘non-multiples’ only the additive invariant was acknowledged (Zazkis and
Liljedahl, 2001).

Orton and Orton (1999) mention arithmetic incompetence as one of
the obstacles in pattern generalization. It could be the case that further
competence with numbers and their possible arithmetic composition would
help Shirley notice that there is not “only a difference of 8 each time”, but
also an embedded multiplicative relation.

3.4. What’s the unit of repeat?

Perception of unit of repeat is critical in ‘seeing’ repeating patterns. (Threl-
fall, 1999). In this section we describe units of repeat identified by the
participants and the attributes that might have influenced their perception.

As stated earlier, the visual structure of the array repeats every two rows
or every eight elements. Consequently, the cycle of remainders in division
of the elements by 8 generates the implicit repeating numerical pattern.
However, only three of the participants attended to this unit of repeat as
an organizing theme to their solution. Several alternative approaches were
preferred.

Attending to the organizing structure of ‘4 numbers in a row’ was one
of the most popular methods of solution, suggested by 22 participants.
Dan wrote, “We ought to be able to use multiples of 4, a multiple of 4
is the largest number in each row — any number that is not a multiple of
4 will appear in the same row with the next multiple of 4 greater than
the number”. Most solutions circled around the idea of groups of 4 and
assigned the row and the column based on identification of the ordinal
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number of a row and its direction/indentation. (Further detail is provided
in section 3.7, ‘Routes towards generalization’). It is the case that attention
to 4 elements in a row and a familiar row/column organization prevented
participants from noticing, what could be considered as a more general
structure, a repeating unit of 8.

Another popular strategy, used by eight out of 36 students, was to con-
sider 100 numbers as a unit. Though only one student made the mistake of
claiming that adding 100 to a number will not change its position, that is,
x is in the same column as 100+x. The remaining seven students identified
that an increase of 100 will move the number into the ‘opposite’ column.
(A and E, B and D were considered as pairs of ‘opposite columns’, and
C was considered the opposite of itself). The perceived pattern was de-
scribed by students as ‘flipping” every 100 numbers. Therefore, in order to
determine a column position of a large number (e.g., 7386), students first
identified the position of the number determined by the last two digits (86
is in column D). From here some students simply ‘counted up’ by flip-
ping every 100 between columns D and B. A more sophisticated approach
along those lines suggested to ignore the thousands digit, explaining that
adding 1000 will not change the position of the number. Surprisingly, no
one looked at 200 as the unit of repeat, rather than 100 as the unit of ‘repeat
and flip’.

The unit of repeat identified by Celia deserves some attention. Celia
claimed that the pattern repeats every 40 numbers. Her initial strategy in
placing large numbers was based on subtracting multiples of 40 until the
result was smaller than 40 and on determining the position according to
this result. She further improved her strategy by considering the quotient
and the remainder in division by 40. For example,

392 +~ 40 = 9 remainder 32,
32 is in column B, 8th row, therefore 392 is in column B, 98th row.

During the interview Celia explained that 98 was the result of 90+8, since
40 numbers take 10 rows, and the quotient of 9 indicated to her that “there
were 9 sets of 40 (before the last set of 32) that occupied 90 rows”. Appre-
ciating the thoughtfulness and originality of this solution, the interviewer
wished to explore whether Celia could identify a different, smaller unit of
repeat. Celia insisted on working with 40 as the ‘smallest cycle possible’.
After considerable probing it became clear that Celia’s attention was fo-
cused on the pattern of last digits in column A: 1,9,7,5,3 alternating with
blank spaces, in the first 10 lines. The number 41 is placed “back in the
beginning of the pattern”, according to Celia. In the next ten lines, or 40
numbers, this pattern repeats. Like students in Lee’s (1996) study, Celia
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was reluctant to abandon her initial perception. With this last digit fixation
any other approach seemed faulty.

3.5. Algebraic symbols and algebraic generalization

Marge started her investigation by assigning letters to numbers. She as-
signed a and b for the first and last numbers in the first row, c to the first
number in the second row, d and e to the first and last numbers in the third
row, and f to the first number in the fourth row. She further recorded the
following equations, together with numerical substitution as justification:
b+d=c (4+4=8)

c+1=d (8+1=9)

e+d=f (12+4=16)

She continued the array for 32 rows and attempted to check what equations
were applicable. This seemed to be a dead end. Marge further reflected
on this attempt, by recording “I found myself so busy with the construc-
tion of the chart that I really didn’t pay too much attention to the obvi-
ous patterns. . .”. So Marge abandoned her equation building strategy and
continued by attending to ‘obvious patterns’ in division by 4.

Mason (1996, p. 75) provided an example (medieval eggs problem) of
students who rushed into building equations involving unknowns, but were
unable to do anything with their equations. “This is an algorithm seeking
question, not a simple algebra question” — noted Mason in explaining why
symbol manipulation wasn’t an appropriate strategy. We make a similar
observation. Marge’s symbols were not helpful as “this is a pattern seeking
question, not a simple algebra question”. Another example of symboliz-
ation detached from meaning could be seen in the work of Ann. In the
beginning of her investigation Ann spotted the ‘+8 pattern’ in columns A
and E. She recorded that numbers in column A can be written as 148r,
whereas numbers in column E can be written as 5+8r. (She didn’t specify
what r stands for). However, this observation did not provide a fruitful hint
for Ann. She continued in alternative directions. The next day of her invest-
igation she reported with excitement, “Eureka! Numbers in column A are
1 more than multiples of 8!” This finding allowed Ann first to determine
whether or not a given number is in column A and further to be able to find
a position of any number by considering a close number in column A. For
example, in order to place 86, Ann considered 89, which is “1 more than
a multiple of 8, and then counted down to 86 to determine its position in
column D.

Ann’s realization of the general structure of numbers in column A was
significantly delayed compared to her ability to describe numbers in column
A as 14+8r. The obvious expression of celebration in her “Eureka!” shows
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that the verbal generalization resulted from considering the numbers them-
selves, rather than the expression 1+8r generated earlier. The algebraic
symbolism was the result of an attempt to fit a formula, but originally these
symbols did not entail any meaning. The meaningful generalization, and
therefore the ability to ‘solve the pattern’, was expressed verbally, and not
connected to previously used symbols.

3.6. Connectedness of different representations

English and Warren (1998) suggest that understanding the notion of equi-
valence and recognizing equivalence in generalizations is important in
working with patterns.

Remainder in division by 8 seems to be an obvious indicator of the
8 possible placement options. Furthermore, consideration of remainder in
division by 4 (4 possible outcomes), together with evenness or oddness of
a quotient also produces 8 possible placement options. As stated earlier,
most students focused on division by 4 rather than 8. The equivalence
between the two perspectives was not recognized, even by students aware
of both options.

Andy noted early in her investigation that columns A, C, and E con-
tain odd numbers, while columns B and D contain even numbers. Later,
she reported a new observation: numbers in column D were ‘doubles’.
She exemplified this observation by showing that 4=2+2, 6=3+3, 12=6+6,
etc. The equivalence of naming numbers as even and recognizing them as
‘doubles’ was not noted.

Dan summarized his solution in the following way:

if 8Ix then x is in column B

if 8I(x+1) then x is in column C
if 8I(x+2) then x is in column D
if 8I(x+3) then x is in column E

if 41x but 8 does not, then x is in column D

if 41(x+1) but 8 does not, then x is in column C
if 41(x+2) but 8 does not, then x is in column B
if 41(x+3) but 8 does not, then x is in column A

It is not clear why Dan deserted the analysis presented in the first 4 lines of
his solution, where he determined the column of a number based on how
“far” it was from the multiple of 8. He could have continued the same line
of reasoning, claiming that if 8I(x+4) , then x is in column D, etc. Given
the unnecessary complexity introduced by considering divisibility by 4 and
by 8 simultaneously, we believe that Dan was unaware that, for example,
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divisibility of x by 4 and not by 8 entails the remainder of 4 in division by
8, or, in Dan’s preferred notation 8I(x+4).

Lena pointed out in her investigation that for odd-numbered rows the
remainder in division by 8 indicated the column position, that is, remain-
ders of 1, 2, 3, and 4 indicated the number’s position in column A, B, C,
and D respectively. In her attempt to place number 38 in the array, Lena
was confused by the remainder of 6 in division by 8, as previously the
value of the remainder equaled the number of the column. (We note that
Lena labeled columns by numbers and not letters). She concluded that if
the remainder in division by 8 was greater than 4, then the numbers were
found in an even-numbered row. Locating a column presented a challenge.
From the observation that 38 = 8 x 5 — 2, Lena concluded that remainder
of -2 indicated column D, or second column from the right. She extended
her “subtracting from a multiple” strategy, to conclude that remainders of
0, -1, =2, and -3 indicated columns B, C, D, and E respectively. From
her decision to desert a consideration of remainders and focus on what she
referred to as “negative remainders”, it is clear that Lena did not see the
equivalence between remainders 5, 6, 7 and the corresponding “negative
remainders” of —3, -2 and —1 respectively. It may be the case that the “four
in a row” structure of the array prevented both Lena and Dan from consid-
ering “big” remainders in division by 8. In both cases, a separate correct
strategy has been developed to accommodate “big” remainders. This is an
example of disjunctive generalization, discussed in the next section.

Ann, mentioned in section 3.5, didn’t recognize the equivalence between
algebraic expression (1+8r) and a verbal expression “one more than a mul-
tiple of 8”. In this section we discussed examples of students failing to
recognize the equivalence between different verbal representations (see the
discussion of Andy’s work above) and between equivalent computational
strategies (see the discussion of Dan’s and Lena’s work above). This lack
of awareness of equivalent expressions could be an obstacle to students’
attempts to generalize. In the next section we discuss several pathways
that students took in generalizing their solutions.

3.7. Routes to generalization

Among initial observations the constant difference between numbers in
columns A, C and E was noted by the participants. This led them to a
partial solution, considering, either implicitly or explicitly, remainders in
division by 8 and 4. That is,

If the remainder of n in division by 8 is 1, then n is in column A;
if the remainder of n in division by 8 is 5, then n is in column E;
if the remainder of n in division by 4 is 3, then n is in column C.
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An equivalent way to record these findings, with no explicit reference to
remainders, was preferred by some participants:

If (n-1)/8 is a whole number, then n is in column A;
if (n-5)/8 is a whole number, then n is in column E,
if (n-3)/4 is a whole number, then n is in column C.

Taken together with the observation that odd numbers were placed in
columns A, C and E, while even numbers were placed in columns B and
D, the above generalization scheme provides a column position for odd
numbers. A natural question then arises regarding the position of even
numbers. There are several strategies that our participants employed. In
fact, a minority opted to give up the investigation at this point, providing a
solution for odd numbers and claiming the even numbers would be found
in either column B or D. However, most students attempted to extend
their investigation to include even numbers as well. These extensions are
being considered here in the context of evolving levels of generalization
identified by Harel and Tall (1991) (see section 1.2).

For a majority of students (22 out of 36) the visual perception of 4 num-
bers in a row served as a guiding principle to consideration of remainder in
division by 4. However, this remainder did not provide a unique answer to
the column location. Therefore, the case of even numbers invited reconsid-
eration and attention to factors other than the remainder. Kelly noticed that
numbers divisible by 4 were in column D when the quotient was odd, and
in column B when the quotient was even. Since attention to the parity of
quotients proved useful, she extended this consideration for even numbers
that were not divisible by 4, that is, leaving a remainder of 2. Remainder
of 2 and odd quotient identified the number’s position in column B, while
remainder 2 and even quotient identified number’s position in column D.
Kelly did not attempt to reexamine her solution and see the applicability
of her new findings to the case of odd numbers. Therefore, we see her
generalization as disjunctive — a new case deserved a new treatment, a
new decision making scheme was constructed for even numbers. However,
we also recognize an element of expansive generalization in utilizing the
parity of quotients first in numbers divisible by 4 and then in those leaving
a remainder of 2.

Rachel, from a similar starting point above, considered remainders in
division by 8 for even numbers. She concluded that numbers in column
B “when divided by 8 will have O left over or 2 left over”, and numbers
in column D will have “either 4 or 6 left over”. This is an expansive gen-
eralization of previously considered cases for columns A and E. However,
Rachel left column C as a separate disjunctive case, identified by remainder



GENERALIZATION OF PATTERNS 397

of 3 in division by 4. She made no attempt to reconsider this case and to
accommodate it within her schema.

Laura, after giving separate consideration to even and odd numbers, ex-
tended her consideration of even and odd quotients in division by 4 to odd
numbers as well. This is an example of expansive generalization: a solution
that was developed for a specific case has been extended to accommodate
other cases, that is, the applicability range of a schema has been extended.

Jane’s final solution was very similar to Laura’s, but her route was dif-
ferent. Having observed that all numbers in column C leave a remainder of
3 in division by 4, she tried to extend this strategy to other rows. However,
other remainders did not provide a conclusive result. Numbers divisible by
4, as well as numbers having remainder of 2 in division by 4, were found
both in column B and in column D. Numbers leaving the remainder of
1 in division by 4 were found in columns A and E. Since the attempt of
expansive generalization failed, there was a need for reconstructive gener-
alization. The scheme was reconstructed by attending to the parity of the
whole number quotient. Numbers divisible by 4 were placed in column
D when the quotient was odd and in column B when the quotient was
even. Even quotient together with remainders 1, 2, and 3 indicated number
placements in columns A, B, and C respectively. Odd quotients together
with remainders 1, 2 and 3 indicated number placements in Columns E, D
and C respectively. Note that remainder of 3 points to column C regard-
less of the parity of the quotient. Therefore the new reconstructed scheme
includes the previously constructed scheme as a special case.

Reconstructive, as well as expansive, generalization were not a frequent
phenomenon in this group of students, if we consider these as applied to the
task as a whole. Once students found a solution by cases, even those who
were not entirely happy with the solution had little motivation to look back
and try to integrate different cases under one scheme. However, elements
of both reconstructive and expansive generalization were present when
considering separate components of the array. For example, extending a
consideration of remainder in division by 8 from column A to column E
can be seen as an element of expansive generalization.

The tendency to stay with disjunctive generalizations can be attrib-
uted to several factors. First, as Harel and Tall (1991) note, solution by
cases (disjunctive generalization), puts less cognitive demands on a learner.
Second, an equivalence between claims or computations may not be recog-
nized (as seen in cases of Rachel above and Dan and Lena in section 3.6),
and therefore, students do not ‘see’ how their separate cases fit together.
Possibly, students’ appreciation of the elegance and beauty of a complete
generalized schema has been insufficiently developed to seek it as their



398 RINA ZAZKIS AND PETER LILJEDAHL

goal. However, despite the low regard for disjunctive generalization (see
section 1.3), we suggest that it can provide an essential starting point in
approaching a new content and solving a new problem.

4. SYNTHESIS AND CONCLUDING REMARKS

School algebra instruction has been continuously criticized for “rushing
from words to single letter symbols” (Mason, 1996, p. 75). As an altern-
ative, several researchers have heralded pattern exploration as a preferred
introduction to algebra. Typically, this has involved the search for “algeb-
raically useful patterns” (Lee, 1996, p. 95), followed by a move towards
algebraic notation in order to generalize the perceived pattern. The ques-
tion regarding this two-step approach is, when does the algebraic thinking
emerge and what could indicate its presence?

When the term algebra is used it encompasses two distinct concepts:
algebraic thinking and algebraic symbolism. There is a lack of agreement
among researchers as to the relationship between the two. Some view the
algebraic symbols as a necessary component of algebraic thinking, while
others consider them as an outcome or as a communication tool. Further,
different perspectives are argued on the relationship between algebraic
reasoning and generalization.

For Kieran (1989), “generalization is neither equivalent to algebraic
thinking, nor does it even require algebra. For algebraic thinking to be
different from generalization, [...] a necessary component is the use of
algebraic symbolism to reason about and to express that generalization."
(p. 165). She further suggests that “for meaningful characterization of al-
gebraic thinking it is not sufficient to see the general in the particular, one
must also be able to express it algebraically” (ibid.). On the other hand,
Charbonneau (1996) considers symbolism as central to algebra, but “not
the whole of algebra” (p. 35). He considers symbolism as a language that
may condense the presentation of an argument and as a means to solve
problems.

A more recent tendency among researchers is to separate algebraic
symbolism from algebraic thinking. This separate consideration is fostered
by two factors: (1) further acknowledgment of the possibility of mindless
symbol manipulation and (2) a movement for ‘early algebra’, that is, focus
on structure rather than on computation in elementary school. For Kaput
and Blanton (2001), generalizing and formalizing patterns and constraints
is one of the forms of the ‘complex composite’ of algebraic reasoning (p.
346). They see “generalization (which includes deliberate argumentation)
and the progressively systematic expression of that generality [...] as un-
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derlying all the work we do [in algebra]” (ibid.). More specifically, by
algebraic reasoning Kaput (1999) refers to students’ activity of generaliz-
ing about data and mathematical relationships, establishing those gener-
alizations through conjecture and argumentation and expressing them in
increasingly formal ways.

Mason (1996) brings further itemization into algebraic thinking as an
activity. He sees the roots of algebraic thinking in detecting sameness and
difference, in making distinctions, in classifying and labeling, or simply in
‘algorithm seeking’. The very formation of this algorithm in the mind of
the student, in whatever form it is envisioned, is algebraic thinking. Algeb-
raic symbolism, according to Mason, is the language that gives voice to this
thinking, the language that expresses the generality. Dorfler (1991) sug-
gests that theoretical generalization needs a certain symbolic description.
However, he believes that symbolic description does not necessarily entail
the use of letters. According to Dérfler these symbols can be verbal, iconic,
geometric or algebraic in nature. This is consistent with Sfard (1995), who
uses the term algebra “with respect to any kind of mathematical endeavor
concerned with generalized computational processes, whatever the tools
used to convey this generality” (p. 18).

We adopt the latter, more inclusive, views on algebraic thinking. The
task set for the participants in our study does not lead to a ‘smooth’ algeb-
raic notation, presented in one ‘neat’ formula that connects the element n
to its location in the number array. An algebraic expression of the array
requires either function definition by cases or a composition of functions.
This was neither required nor expected from this group of participants.
However, in exploring patterns participants engaged in detecting same-
ness and differences, in classifying and labeling, in seeking algorithms,
in conjecturing and argumentation, in establishing numerical relationships
among components or, more generally , in “generalizing about data and
mathematical relationships” — activities identified as components of algeb-
raic thinking by Mason (1996) and Kaput (1999). We used a categorization
of Harel and Tall (1999) to describe and analyze the different kinds of gen-
eralization employed by participants. The task presented to participants in
this study provided an opportunity for a variety of approaches in exploring
the number array and generalizing its structure, as well as expressing this
structure in increasingly formal ways.

Moreover, our participants were actively engaged in seeking a way to
express their generalization. Their attempts to use algebraic notation, bey-
ond simple labeling of elements and columns, often appeared unhelpful.
The algebraic thinking emerged through alternate forms of communicat-
ing their findings; similar to Radford’s (2000) conclusion that the “stu-



400 RINA ZAZKIS AND PETER LILJEDAHL

dents were already thinking algebraically when they were dealing with
the production of a written message, despite the fact that they were not
using the standard algebraic symbolism” (p. 258). Furthermore, when our
participants demonstrated both algebraic thinking and the ability to use al-
gebraic notation, they lacked synchronization between the two. Therefore,
neither the presence of algebraic notation should be taken as an indicator
of algebraic thinking, nor the lack of algebraic notation should be judged
as an inability to think algebraically.

There is a gap between students’ ability to express generality verbally
and their ability to employ algebraic notation comfortably. This gap, to-
gether with the rush “to single letter symbols [that] has marked school
algebra instruction for over a hundred years” (Mason, 1996, p. 75), leaves
students with a feeling of inadequacy at not meeting expectations. Several
participants expressed an explicit concern that their solutions were incom-
plete because they lacked a ‘formula’. This is consistent with Schoenfeld’s
(1988) observation that, for students, form of expression is what matters
most and failing to use the proper form, regardless of the substance of
what has been produced, is being ‘unmathematical’. Rather than insist-
ing on any particular symbolic notation, this gap should be accepted and
used as a venue for students to practice their algebraic thinking. They
should have the opportunity to engage in situations that promote such
thinking without the constraints of formal symbolism. Problems that are
rich in patterns, such as the one presented to our participants, offer students
such opportunities. They are particularly useful for preservice elementary
school teachers, for whom these problems serve not only as a rich math-
ematical activity, but also as a venue to gain appreciation of various ways
of expressing generality.

A FINAL COMMENT

What are the significant products of research in mathematics education? I propose
two simple answers: 1. The most significant products are the transformations in
the being of the researchers. 2. The second most significant products are stimuli
to other researchers and teachers to test out conjectures for themselves in their
own context. (Mason, 1998, p. 357)

As stated in section 2.2, we started this journey with a predetermined solu-
tion in mind. It was based on one particular view of the array of numbers,
to which we initially referred as ‘the pattern’. The participants in our study
helped open our eyes to a variety of patterns that can be identified in the
array and its extension, and also changed our perception regarding the
‘usefulness’ of certain ways of perceiving patterns. This is a researcher’s
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transformation referred to by Mason (1998, p. 357) as “the most significant
products” of research in mathematics education. Only time will be able to
testify to Mason’s “second most significant products”.
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