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One of the most remarkable gifts human civilization has inherited from ancient Greece is 
the notion of mathematical proof.  The basic scheme of Euclid’s Elements has proved 
astoundingly durable over the millennia and, in spite of numerous revolutionary 
innovations in mathematics, it still guides the patterns of mathematical communication 
(Babai, 1992). 

Organization 
This chapter examines proof in mathematics, both informal justifications and the 

types of justification usually called mathematical proofs.  The introductory section below 
calls for what we label a “comprehensive perspective” toward the examination of the 
learning and teaching of proof, and identifies the various elements of such a 
comprehensive perspective.  Our viewpoint next centers on students’ outlooks on proof, 
as described by the “proof schemes” evidenced in students’ work; the second section 
elaborates on this proof-scheme notion and includes a description of various proof 
schemes as well as a listing of the various roles proof can play in mathematics.  The third 
section then gives a brief overview of how the idea of proof in mathematics has evolved 
historically, and why historical considerations could be a part of educational research on 
the learning or teaching of proof.  The fourth and fifth sections include a look at selected 
studies2 dealing with proof, at both the precollege and the college levels, with an effort to 
show the value of the proof-schemes idea.  The final section offers some questions 
prompted by the earlier sections. 

Comprehensive Perspective on Proof3 
No one questions the importance of proof in mathematics, and in school 

mathematics (Ball & Bass, 2003; Haimo, 1995; Schoenfeld, 1994).  Overall, the 
performance of students at the secondary and undergraduate levels in proof is weak, as 
the findings reported in this paper will show.  Whether the cause lies in the curriculum, 
the textbooks, the instruction, the teachers’ background, or the students themselves, it is 
clear that the status quo needs, and has needed, improvement.  Earlier reviews of research 
on the teaching and learning of proof (e.g., Battista & Clements, 1992; Hart, 1994; Tall, 
1991; Yackel & Hanna, 2003) have informed and inspired more recent studies of proof 
learning.  This chapter argues for “comprehensive perspectives” on proof learning and 
teaching and provides an example of such a perspective.  A comprehensive perspective 
on the learning and teaching of proofs is one that incorporates a broad range of factors: 
mathematical, historical-epistemological, cognitive, sociological, and instructional.  A 
unifying and organizing element of our perspective is the construct of “proof scheme.”  
This construct emerged from a long sequence of studies into the concept of proof (Harel 
& Sowder, 1998), and, in turn, was utilized to address a cohort of foundational questions 
concerning these factors:   

Mathematical and Historical-Epistemological Factors 
1. What is proof and what are its functions? 
2. How are proofs constructed, verified, and accepted in the mathematics 

community? 
3. What are some of the critical phases in the development of proof in the 

history of mathematics? 
Cognitive Factors 
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4. What are students’ current conceptions of proof? 
5. What are students’ difficulties with proof?   
6. What accounts for these difficulties? 

Instructional-Socio-Cultural Factors   
7. Why teach proof?    
8. How should proof be taught? 
9. How are proofs constructed, verified, and accepted in the classroom?       
10. What are the critical phases in the development of proof with the 

individual student and within the classroom as a community of learners? 
11. What classroom environment is conducive to the development of the 

concept of proof with students?   
12. What form of interactions among the students and between the students 

and the teacher can foster students’ conception of proof? 
13. What mathematical activities—possibly with the use of technology––can 

enhance students’ conceptions of proof?   
This list does not purport to be exhaustive or unique; other researchers may 

choose a different list of questions or formulate those that appear here differently in their 
attempt to form their comprehensive perspective to proof.  This list, however, represents 
those questions that we have confronted in a decade of investigations into the learning 
and teaching proof; hence, these questions constitute an essential part of the content of 
our comprehensive perspective on proof.  Nor is the classification of these questions as it 
is outlined here invariable.  Clearly, it is difficult—if not impossible—to classify these 
questions into pairwise disjoint categories of factors.  Our use of the labels indicates a 
loose association rather than a firm classification.  In particular, none of the questions 
should be viewed as a stand-alone question; rather they are all interrelated, constituting a 
cohort of questions that have guided the comprehensive perspective on proof offered here 
as an example.  Thus, even though the headings of the third, fourth, and fifth sections of 
the chapter correspond to the three categories outlined in the above list, the content of 
each section pertains to the other two.    

An important character of our perspective is that of subjectivity:  While the term 
“proof” often connotes the relatively precise argumentation given by mathematicians, in 
our perspective “proof” is interpreted subjectively; a proof is what establishes truth for a 
person or a community.  With this interpretation, “proof” connotes an activity that can 
permeate the whole mathematics curriculum, from kindergarten on as well as throughout 
the historical development of mathematics.  This subjective notion of “proof” is the most 
central characteristic of the construct of “proof scheme,” which will be defined shortly.  
When we wish to make clear that we mean the mathematically institutionalized notion of 
proof, we will write “mathematical proof,” otherwise the terms “proof” or “justification” 
will be used in this subjective sense.     

Subjectivity equally applies to how the above questions should be understood.  
Some of these questions, particularly the first three, might be interpreted as calling for 
objective, clear-cut answers.  Not so.  The meaning of proof, its role, and the way it is 
created, verified, and accepted may vary from person to person and from community to 
community.  One’s answers to these questions are greatly influenced by her or his 
philosophical orientation to the processes of learning and teaching and would reflect her 
or his answers to questions such as: What bearing, if any, does the epistemology of proof 



4                                                                           A Comprehensive Perspective on Proof 

in the history of mathematics have on the conceptual development of proof with 
students?  What bearing, if any, does the way mathematicians construct proofs have on 
instructional treatments of proof?  What bearing, if any, does everyday justification and 
argumentation have on students’ proving behaviors in mathematical contexts?  Our 
emphasis on subjectivity—a motive we will repeat a few times in this paper—stems from 
the well-known recognition that students’ construction of new knowledge is based on 
what they already know (e.g., Cobb, 1994; Piaget, 1952, 1973a, b, 1978; Vygotsky, 1962, 
1978), and hence it is indispensable for teachers to identify students’ current knowledge, 
regardless of its quality, so as to help them gradually refine it.  To avoid unnecessary 
misunderstanding we note here, and we will repeat later, that subjectivity toward the 
meaning of proof does not imply ambiguous goals in the teaching of this concept.  
Ultimately, the goal is to help students gradually develop an understanding of proof that 
is consistent with that shared and practiced in contemporary mathematics.   

Why are Comprehensive Perspectives on Proofs Needed?   
Comprehensive perspectives on proof are needed in an effort to understand 

students’ difficulties, the roots of the difficulties, and the type of instructional 
interventions needed to advance students’ conceptions of and attitudes toward proof.  A 
single factor usually is not sufficient to account for students’ behaviors with proof.  For 
example, while some of the difficulties students have with proof can be accounted for by 
the cognitive factor, such as the students’ lack of logical maturity and understanding of 
the need for proof, research studies conducted in the last two decades have given 
evidence that these sources are insufficient to provide a full picture of students’ 
difficulties with mathematics in general and proof in particular.  Balacheff’s (1991) 
research, for example, has shown that students “have some awareness of the necessity to 
prove and some logic” (p. 176) and yet they experience difficulty with proof. 

Official documents and research papers on the learning and teaching of proof 
almost never present their theoretical framework as a comprehensive perspective on 
proof, but stated curricular goals, instructional recommendations, research design, and so 
forth, may reveal some elements in the scholars’ (potential) perspective on proof.  For 
example, Balacheff (1991) points out that common to mathematics curricula in different 
parts of the world is the goal of training students in the construction and the formulation 
of “deductive reasoning,” which is defined as “a careful sequence of steps with each step 
following logically from an assumed or previously proved statement and from previous 
steps” (National Council of Teachers of Mathematics [NCTM], 1989, p. 144).  Balacheff 
points out that this characterization of proof, which is close to what a logician would 
formulate, is almost the same in mathematics curricula all over the world.  Remarks in 
these documents on the conceptual development of proof with students stress that proof 
“has nothing to do with empirical or experimental verification” and “call attention to the 
move from concrete to abstract” (Balacheff, 1991, p. 177).  This suggests a form-driven 
perspective, according to which the basis for one’s answer to the question, how should 
proof be taught, is the form in which mathematics is organized and accordingly presented 
in scientific papers or books. 

Approaching the concept of proof from an encompassing perspective such as the 
one suggested here is, in our view, a critical research need.  Balacheff, a world-
recognized pioneer in the area of the learning and teaching of proof, has addressed this 
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need by raising on several occasions (e.g., 2002) the question: “Is there a shared meaning 
of ‘mathematical proof’ among researchers in mathematics education?”  Balacheff was 
not referring to just the standard, more or less formal definition of mathematical proof.  
Rather, his question, as he puts it, is “whether beyond the keywords, we had some 
common understanding” (Balacheff, 2002, p. 23).  By “common understanding,” we 
believe he means agreed-upon parameters in terms of which one can formulate 
differences among perspectives into research questions.  We agree with Balacheff that 
without such an understanding it is hard to envision real progress in our field.  The 
comprehensive perspective on proof presented in this paper delineates a set of such 
parameters.        

The Concept of Proof Scheme    
Consistent with our characterization of a comprehensive perspective on proof, 

several critical factors must be considered in addressing the question, What is proof?  
First, the construction of new knowledge does not take place in a vacuum but is shaped 
by existing knowledge.  What a learner knows now constitutes a basis for what he or she 
will know in the future.  This fundamental, well documented fact has far-reaching 
instructional implications.  When applied to the concept of proof—our concern in this 
paper—this fact requires that an answer to the above question takes into account the 
student as a learner, that is, the cognitive aspects involved in the development of the 
concept of proof with the individual student.  Second, one must maintain the integrity of 
the concept of proof as has been understood and practiced throughout the history of 
mathematics.  Third, since the concept of proof is social—in that what is offered as a 
convincing argument by one person must be accepted by others—one must take into 
account the social nature of the proving process.  We see, therefore, that one’s answer to 
the above question attends to a range of factors: cognitive, mathematical, 
epistemological-historical, and social.  The approach we provide here takes into 
consideration these factors.  The conceptual framework of our answer has been formed 
over a long period of extensive work on students’ conception of proof, and it incorporates 
findings reported in the literature as well as from our own studies.  The latter included a 
range of teaching experiments and a three-year longitudinal study (see, for example, 
Harel & Sowder, 1998; Harel, 2001; Sowder & Harel, 2003) as well as historical, 
philosophical, and cultural analyses (e.g., Hanna, 1983, Hanna & Jahnke, 1996, Harel, 
1999, Kleiner, 1991).  The foundational element of this framework is the concept of 
“proof scheme.” 

Obviously, learners’ knowledge, in general, and that of proof, in particular, is not 
homogenous; most commonly, a high-school student’s conception of proof is different 
from that of a college mathematics major student, and a contemporary mathematician’s 
conception of proof is different from that of an ancient mathematician, which, in turn, 
was different from that of a Renaissance mathematician, etc.  “Proof scheme” is a term 
we use to describe one’s (or a community’s) conception of proof; it will be defined 
precisely below.  In Harel and Sowder (1998) we offer an elaborate taxonomy of 
students’ proof schemes based on seven teaching experiments with a total of 169 
mathematics and engineering majors.  The experiments were conducted in classes of 
linear algebra (elementary and advanced), discrete mathematics, geometry, and real 
analysis.  Later, in Harel (in press), this taxonomy was refined and extended to capture 



6                                                                           A Comprehensive Perspective on Proof 

more observations of students’ conceptions of proof as well as some developments of this 
concept in the history of mathematics.  In this paper we use our taxonomy of proof 
schemes to describe or interpret   

(a) historical developments and philosophical matters concerning the concept of 
proof (third section),  

(b) results from other studies concerning students’ conception of and performance 
with proof (fourth section), and  

(c) curricular and instructional issues concerning proof (fifth section).     

Definition of “Proof Scheme”  
The definition of “proof scheme” is based on three definitions. 
1. Conjecture versus fact.  An assertion can be conceived by an individual either 

as a conjecture or as a fact:  (A conjecture is an assertion made by an 
individual who is uncertain of its truth.)  The assertion ceases to be a 
conjecture and becomes a fact in the person’s view once he or she becomes 
certain of its truth.   

A critical question, to which we will return shortly, is the following: How in the 
context of mathematics do students render a conjecture into a fact?  That is, how do they 
become certain about the truth of an assertion in mathematics?   

The definitions of “conjecture” and “fact” are the basis for the notion of proving.   
2. Proving.  Proving is the process employed by an individual (or a community) 

to remove doubts about the truth of an assertion.   
The process of proving includes two subprocesses: ascertaining and persuading.   
3. Ascertaining versus persuading.  Ascertaining is the process an individual (or 

a community) employs to remove her or his (or its) own doubts about the truth 
of an assertion.  Persuading is the process an individual or a community 
employs to remove others’ doubts about the truth of an assertion.    

Mathematics as sense-making means that one should not only ascertain oneself 
that the particular topic/procedure makes sense, but also that one should be able to 
convince others through explanation and justification of her or his conclusions.  In 
particular, the convince-others, public side of proof is a social practice (e.g., Bell, 1976), 
not only for mathematicians but for all students of mathematics.  The definition of 
“persuading” aims at capturing this essential feature of proving.  As defined, the process 
of proving includes two processes: ascertaining and persuading. Seldom do these 
processes occur in separation.  Among mathematically experienced people and in a 
classroom environment conducive to intellectual interactions among the students and 
between the students and the teacher, when one ascertains for oneself, it is most likely 
that one would consider how to convince others, and vice versa.  Thus, proving emerges 
as a response to cognitive-social needs, rather than exclusively to cognitive needs or 
social needs—a view consistent with Cobb and Yackel’s emergent perspective (1996).    

As defined, ascertaining and persuading are entirely subjective, for one’s proving 
can vary from context to context, from person to person, from civilization to civilization, 
and from generation to generation within the same civilization (cf. Harel & Sowder, 
1998, Kleiner, 1991, Raman, 2003, Weber, 2001).  Thus, we offer the following 
definition:   
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4. Proof scheme.  A person’s (or a community’s) proof scheme consists of what 
constitutes ascertaining and persuading for that person (or community). 

We repeat here what we highlighted in Harel and Sowder (1998): Our definitions 
of the process of proving and proof scheme are deliberately student-centered.  Terms 
such as “to prove,” “to conjecture,” “proof,” “conjecture,” and “fact” must be interpreted 
in this subjective sense throughout the paper.  We emphasize again that despite this 
subjective definition the goal of instruction must be unambiguous—namely, to gradually 
refine current students’ proof schemes toward the proof scheme shared and practiced by 
contemporary mathematicians.  This claim is based on the premise that such a shared 
scheme exists and is part of the ground for scientific advances in mathematics. 

Taxonomy of Proof Schemes 
The taxonomy of proof schemes consists of three classes: the external conviction 

proof schemes class, the empirical proof schemes class, and the deductive proof schemes 
class.  Below is a brief description of each of these schemes and some of their 
subschemes.  Further elaboration of the different schemes is provided, as needed, 
throughout the paper.  Relations of our taxonomy to other taxonomies and to the 
functions of proof within mathematics are addressed at the end of this subsection.  (For 
the complete taxonomy, see Harel & Sowder (1998) and Harel (in press).)    

External conviction proof schemes.  Proving within the external conviction proof 
schemes class depends (a) on an authority such as a teacher or a book, (b) on strictly the 
appearance of the argument (for example, proofs in geometry must have a two-column 
format), or (c) on symbol manipulations, with the symbols or the manipulations having 
no potential coherent system of referents (e.g., quantitative, spatial, etc.) in the eyes of the 
student (e.g., ( ) /( ) ( ) /( ) /a b c b a b c b a c+ + = + + = ).  Accordingly, we distinguish 
among three proof schemes within the external conviction proof schemes class: 

• External conviction proof schemes class 
o Authoritarian proof scheme 
o Ritual proof scheme  
o Non-referential symbolic proof scheme 

Empirical proof schemes.  Schemes in the empirical proof scheme class are 
marked by their reliance on either (a) evidence from examples (sometimes just one 
example) of direct measurements of quantities, substitutions of specific numbers in 
algebraic expressions, and so forth, or (b) perceptions.  Hence, we distinguish between 
two proof schemes within the empirical proof scheme class:  

• Empirical proof schemes class 
o Inductive proof schemes  
o Perceptual proof schemes 

Deductive proof schemes.  The deductive proof schemes class consists of two 
subcategories, each consisting of various proof schemes: 

• Deductive proof schemes class 
o Transformational proof schemes  
o Axiomatic proof schemes 

All the transformational proof schemes share three essential characteristics: generality, 
operational thought, and logical inference.   
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 The generality characteristic has to do with an individual understanding that the 
goal is to justify a “for all” argument, not isolated cases and no exception is accepted.   
Evidence that operational thought is taking place is shown when an individual forms 
goals and subgoals and attempts to anticipate their outcomes during the evidencing 
process.  Finally, when an individual understands that justifying in mathematics must 
ultimately be based on logical inference rules, the logical inference characteristic is being 
employed (see also Harel, 2001).   

Unlike the proof schemes in the previous two classes (the external conviction 
proof schemes class and the empirical proof schemes class), the transformation proof 
schemes require a more elaborate demonstration.  Consider the following two responses 
(taken from Harel, 2001) to the problem: 

 
Prove that for all positive integers n , 

1 2 1 2log( ) log log logn na a a a a a⋅ ⋅ ⋅ = + + +" " .  
 
Response 1 
log(4 3 7) log84 1.924⋅ ⋅ = =     log(4 3 6) log72 1.857⋅ ⋅ = =  
log 4 log3 log7 1.924+ + =     log 4 log3 log6 1.857+ + =  
Since these work, then 1 2 1 2log( ) log log logn na a a a a a⋅ ⋅ ⋅ = + + +" " .  
  

A probe into the reasoning of the students who provide responses of this kind reveals that 
their conviction stems from the fact that the proposition is shown to be true in a few 
instances, each with numbers that are randomly chosen—a behavior that is a 
manifestation of the empirical proof scheme.     

 
Response 2 
(1) 1 2 1 2log( ) log loga a a a= +  by definition  
(2) 1 2 3 1 2 3log( ) log loga a a a a a= + .  Similar to log( )ax  as in step (1), where 

this time 2 3x a a= . 
Then 

1 2 3 1 2 3log( ) log log loga a a a a a= + +    
(3)  We can see from step (2) any 1 2 3log( )na a a a"  can be repeatedly broken 

down to  
1 2log log log na a a+ + +"  

 
It is important to point out that in Response 2 the student recognizes that the 

process employed in the first and second cases constitutes a pattern that recursively 
applies to the entire sequence of propositions, 1 2 1 2log( ) log log logn na a a a a a= + + +" " , 

1,2,3,n = … .    
In both responses the generalizations are made from two cases.  This may suggest, 

therefore, that both are empirical.  As is explained in Harel (2001), this is not so: 
response 2, unlike response 1, is an expression of the transformational proof scheme.  To 
see why, one needs to examine the two responses against the definitions of the two 
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schemes.  While both responses share the first characteristic—i.e., in both the students 
respond to the “for all” condition in the log-identity problem statement—they differ in 
the latter two: whereas the mental operations in Response 1 are incapable of anticipating 
possible subsequent outcomes in the sequence and are devoid of general principles in the 
evidencing process, the mental operations in Response 2 correctly predict, on the basis of 
the general rule, log( ) log logax a x= + , that the same outcome will be obtained in each 
step of the sequence.  Further, in Response 1 the inference rule that governs the 
evidencing process is empirical; namely, ( )( ( )) ( )( ( ))r R P r r R P r∃ ∈ ⇒ ∀ ∈ .  In Response 
2, on the other hand, it is deductive; namely, it is based on the inference rule 
( )( ( )) ( ) ( )r R P r w R P w∀ ∈ ∧ ∈ ⇒ .  (Here r  is any pair of real numbers a  and x , R  is 
the set of all pairs of real numbers, ( )P r  is the statement “ log( ) log logax a x= + ,” and 
w  in step n  is a pair of real numbers 1 2 1na a a −"  and na .)    

The axiomatic proof scheme too has the three characteristics that define the 
transformational proof scheme, but it includes others.  For now, it is sufficient to define it 
as a transformational proof scheme by which one understands that in principle any 
proving process must start from accepted principles (axioms).  The situation is more 
complex, however, as we will show in the section on historical and epistemological 
considerations (third section).  For the purpose of this chapter we will introduce only the 
Greek axiomatic proof scheme and the modern axiomatic proof scheme—as manifested, 
for example, in Euclid’s Elements and Hilbert’s Grundlagen, respectively.  The 
distinction between these two schemes is further discussed in the third section. 

Relations to Other Taxonomies 
In broad terms, the empirical proof schemes and the deductive proof schemes 

correspond to what Bell (1976) calls “empirical justification” and “deductive 
justification,” and Balacheff (1988) calls “pragmatic” justifications and “conceptual” 
justifications, respectively.  Balacheff further divides the pragmatic justification into 
three types of justifications: “naïve empiricism” (justification by a few random 
examples), “crucial experiment” (justification by carefully selected examples), and 
“generic example” (justification by an example representing salient characteristics of a 
whole class of cases).  “Generic example” in our taxonomy belongs to the deductive 
proof scheme category, for an analysis similar to that we applied to Response 2 (above) 
will show that “generic example” satisfies the three characteristics of the transformational 
proof scheme.  Balacheff further classifies conceptual justifications into two types: 
“thought experiment,” where the justification is disassociated from specific examples, 
and “symbolic calculation,” where the justification is based solely on transformation of 
symbols.  In our taxonomy, the latter corresponds to the referential symbolic proof 
scheme.  This scheme is the direct opposite of the non-referential proof scheme defined 
above.  Recall this is a scheme where neither the symbols nor the operations one 
performs on them represent a coherent referential reality for the student.  Rather, the 
student thinks and treats symbols and operations on them as if they possess a life of their 
own without reference to their functional or quantitative meaning.  In the referential 
symbolic proof scheme, to prove or refute an assertion or to solve a problem, one learns 
to represent the situation algebraically and performs symbol manipulations on the 
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resulting expressions, with the intention to derive information relevant to the problem at 
hand.  We return to this scheme in the next section.      

The above definitions and taxonomy are not explicit enough about many critical 
functions of proof within mathematics.  There is a need to point to these functions due to 
their importance in mathematics in general and to their instructional implications in 
particular.  For this, we point to the work of other scholars in the field, particularly the 
work by Hanna (1990), Balacheff (1988), Bell (1976), Hersh (1993), and de Villiers 
(1999).  de Villiers, who built on the work of the others mentioned here, raises two 
important questions about the role of proof: (a) What different functions does proof have 
within mathematics itself? and (b) How can these functions be effectively utilized in the 
classroom to make proof a more meaningful activity? (p. 1).  According to de Villiers, 
mathematical proof has six not mutually exclusive roles: verification, explanation, 
discovery, systematization, intellectual challenge, and communication.  At the end of the 
next section, after the relevant schemes are defined, we show that these functions are 
describable in terms of the proof scheme construct.   

Mathematical and Historical-Epistemological Factors:  Some Phases in the Development 
of Proof Schemes in the History of Mathematics4   

Deductive reasoning is a mode of thought commonly characterized as a sequence 
of propositions where one must accept any of the propositions to be true if he or she has 
accepted the truth of those that preceded it in the sequence.  This mode of thought was 
conceived by the Greeks more than 20 centuries ago and is still dominant in the 
mathematics of today.  So remarkable is the Greeks’ achievement that their mathematics 
became an historical benchmark to which other kinds of mathematics are compared.  We 
are here particularly interested in analyzing the proof scheme construct across three 
periods of mathematics: Greek mathematics, post-Greek mathematics (approximately 
from the 16th to the 19th century), and modern mathematics (from the late 19th century to 
today). For the sake of completeness we say a few words about pre-Greek mathematics.   

Proof schemes are applied to establish assertions in specific contexts.  In this 
respect, therefore, in addressing proof schemes one must attend to the nature of the 
context about which the assertions are made.  Also of importance is the motive—the 
intellectual need—that might have brought about the conceptual change from one period 
to the next.  Thus, our discussion will center on three interrelated aspects of the 
historical-epistemological development: (a) the context of proving, (b) the means of 
proving (i.e., proof schemes), and (c) the motive for conceptual change.  Understanding 
these elements can shed light on some critical aspects of the learning and teaching of 
proof, as we will see.  

Some Fundamental Differences     

Practical world versus ideal existence: the emergence of structure.   
Generally speaking, pre-Greek mathematics was concerned merely with actual 

physical entities, particularly with quantitative measurement of different objects.  Their 
“formulas” were in the form of prescriptions providing mostly approximations for 
measured quantities (area, volume, etc.).  Ancient geometry developed in an empirical 
way through phases of trials and errors, where conjectures were proved by means of 
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empirical—inductive or perceptual—evidence.  Even Babylonian mathematics, which, 
according to Kleiner (1991, p. 291), “is the most advanced and sophisticated of pre-Greek 
mathematics,” lacked the concept of proof as was understood and applied by the Greeks.  
Accordingly, it is safe to conclude that proving in pre-Greek mathematics is, by and 
large, governed by the empirical proof schemes.     

The Greeks elevated mathematics from the status of practical science to a study of 
abstract entities.  In their mathematics the particular entities under investigation are 
idealizations of experiential spatial realities and so also are the propositions on the 
relationships among these entities.  The difference between pre-Greek mathematics and 
Greek mathematics, however, is not just in the nature of the entities considered—actual 
spatial entities versus their idealizations—but also in the reasoning applied to establish 
truth about the entities.  In Greek mathematics, logical deduction came to be central in 
the reasoning process, and it alone necessitated and cemented the geometric edifice they 
created.  To construct their geometric edifice the Greeks had to create primary terms—
terms admitted without definition—and primary propositions—propositions admitted 
without proof—what the Greeks called axioms or postulates.  In contrast, the 
mathematics of the civilizations that preceded them established their observations on the 
basis of empirical measurements, and so their mathematics lacked any apparent structure; 
it consisted merely of prescriptions of how to obtain measurements of certain spatial 
configurations.   

Constant versus varying referential reality.   
In constructing their geometry, as is depicted in Euclid’s Elements, the Greeks 

had only one model in mind—that of imageries of idealized physical reality.  This is 
supported by the fact that the Greeks, in fact, strove to describe their primitive terms 
(e.g., “a point is that which has no parts”), which indicates that their sole imagery was 
that of physical space.  Hartshorne (2000) points out that this way of thinking did not 
start with Euclid.  About one hundred years before Euclid, Plato spoke of the geometers: 

Although they make use of the visible forms and reason about them, they are not 
thinking of these, but of the ideals which they resemble; not the figures which 
they draw, but of the absolute square and the absolute diameter, and so on … (The 
Republic, Book IV). 
From the vantage point of modern mathematics, neither the primitive terms nor 

the primary propositions in Greek mathematics were variables, but constants referring to 
a single spatial model (Klein, 1968; Wilder, 1967)—as is expressed in the ideal world of 
Plato’s philosophy.  This ultimate bond to a real-world context had an impact on the 
Greeks’ proof scheme.  Specifically, in his proofs Euclid often uses arguments that are 
not logical consequences of his initial assumptions but are rooted in humans’ intuitive 
physical experience (the method of superposition, which allows one to move one triangle 
so that it lies on top of another triangle, is an example).  In this respect, while proving in 
Greek mathematics was governed by the deductive proof scheme and can be 
characterized as an axiomatic proof scheme, it is different from that of contemporary 
mathematics where every assertion must be, in principle, derivable from clearly stated 
assumptions.  Wilder (1967) points to a crucial difference between Greek mathematics 
and modern mathematics:  Namely, in modern mathematics the primitive terms are 
treated as variables, not just undefined; they are free of any referent—real or imagined.  
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In Greek mathematics, on the other hand, they are undefined terms referring to humans’ 
idealized physical reality.  Treating primitive terms as undefined is fundamentally 
different from treating them as variables.  Wilder quotes Boole (from 1847) to stress this 
difference: 

The validity of the processes of analysis does not depend upon the interpretation 
of the symbols which are employed, but solely upon the laws of their 
combination.  Every system of interpretations which does not affect the truth of 
the relations supposed, is equally admissible…  (in Wilder, 1967, p. 116). 

Despite the monumental conceptual difference in the referential imageries between Greek 
mathematics and modern mathematics, the essential condition in applying deductive 
reasoning in both is the existence of primary terms and primary propositions (axioms).     

Content versus form. 
The deductive reasoning—or the axiomatic method, as it often is called—of the 

Greeks dominated the mathematics of the western world until the late 19th century and in 
essence is still intact today. The difference in referential imageries between Greek 
mathematics and modern mathematics entails another critical difference: In Greek 
mathematics proof is valid by virtue of its content, not its form.  Since the Greeks’ 
concern was about relationships among entities in their physical space, the form of the 
proof cannot be completely detached from the content of that space.  In this conception, 
one would not consider, for example, the question of whether there exists a consistent 
geometric model in which the parallel postulate does not hold.  In modern mathematics, 
on the other hand, proof is valid by virtue of its form alone.     

In Greek Mathematical Thought and the Origin of Algebra, Klein (1968) adds 
clarity to this distinction.  In Greek science concepts are formed in continual dependence 
on their “natural” foundations, and their scientific meaning is abstracted from “natural,” 
pre-scientific experience.  In modern science, on the other hand, what is intended by the 
concept is not an object of immediate insight.  Rather, it is an object whose scientific 
meaning can be determined only by its connection to other concepts, by the total edifice 
to which it belongs, and by its function within this edifice.  This difference accounts, for 
example, for the fact that the Greeks, while interested in idealized entities, were highly 
selective in their choice of these entities.  For instance, what we now call transcendental 
numbers, like the number π, disturbed the Greeks. “They were unhappy that their ideas of 
perfection in geometry and arithmetic seemed to be challenged by the existence of such a 
number” (Ginsburg & Opper, 1969, p. 214-215).  In modern mathematics, on the other 
hand, entities can be quite arbitrary.  Upon encountering transcendental numbers modern 
mathematics incorporated them into a mathematical structure, that of the real numbers, 
determined by a set of axioms. 

It should be highlighted that the idea that the objects are determined by a set of 
axioms was a revolutionary way of thinking in the development of mathematics.  An 
important manifestation of this revolution is the distinction between Euclid’s Elements 
and Hilbert’s Grundlagen.  While the Elements is restricted to a single interpretation—
namely that its content is a presumed description of human spatial realization—the 
Grundlagen is open to different possible realizations, such as Euclidean space, the 
surface of a half-sphere, ordered pairs and triples of real numbers, and so forth, including 
the interpretation that the axioms are meaningless formulas.  In other words, the 
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Grundlagen characterizes a structure that fits different models.  This obviously is not 
unique to geometry.  In algebra, a group or a vector space is defined to be any system of 
objects satisfying certain axioms that specify the structure under consideration.  To 
reflect this fundamental conceptual difference, we refer to the Greeks’ proving means as 
the Greek axiomatic proof scheme and to the proving means of modern mathematics as 
the modern axiomatic proof scheme.   

Operation versus results of an operation. 
Klein (1968) argues that the revival and assimilation of Greek mathematics during 

the 16th century resulted in fundamental conceptual changes that ultimately defined 
modern mathematics.  This conceptual transformation culminated in Vieta’s work on 
symbolic algebra, where the distinction between modern mathematics and Greek 
mathematics began to crystallize.      

The use of symbols in the modern sense is due mainly to Vieta, who was followed 
in this effort by Descartes and Leibniz.  Until then, mathematics had evolved for at least 
three millennia with hardly any symbols.  Symbolic notation was the key to a method of 
demonstration, and Liebniz—more than anyone else in his generation—advanced the role 
of symbolism in the process of mathematical proof.  He was the first to conceive of proof 
as a sequence of sentences beginning with identities and proceeding by a finite number of 
steps of logic and rules of definitional substitution—by virtue of symbolic notation—until 
the theorem was proved. 

The works of Vieta that led to the creation of algebra and that of Descartes that 
led the creation of analytic geometry illustrate another important difference between 
Greek mathematics and modern mathematics: the focus on “operation” versus “results of 
an operation.”  Ginsburg and Opper (1969) discuss the distinction as described by 
Boutroux, a mathematician, who analyzed the evolution of mathematical thought.  
According to Boutroux, the Greeks restricted their attention to attributes of spatial 
configurations but paid no attention to the operations underlying them.  As an example, 
Ginsburg and Opper mention the problems of bisecting and trisecting an angle by means 
of straightedge-and-compass only.  As is well known, the Greeks offered a simple way to 
solve the bisecting problem but the solution of the trisecting problem had to wait two 
millennia, until Galois, a French mathematician, solved it in the 19th century.  The 
Greeks attended to geometrical objects (rectilinear angles in this case) by investigating 
their attributes—whether an angle can be bisected or trisected, for example.  The 19th 
century mathematics, on the other hand, investigated the operation themselves—their 
algebraic representations and structures.  Specifically, the standard Euclidean 
constructions using only a compass and straightedge were translated in terms of 
constructibility of the real numbers (i.e., a real number is constructible if its absolute 
value is the distance between two constructible points).  This translation leads to an 
important observation about the structure of constructible numbers; namely, the 
constructible numbers form a subfield of the field of the real numbers.  A deeper 
investigation into the theory of fields lead to a proof of the impossibility of certain 
geometric constructions, including the impossibility of finding a single method of 
construction for trisecting any given angle with the classical tools.  More importantly, 
with this theory one can understand why certain constructions are possible whereas others 
are not.  The Greeks had no means to build such an understanding.  They did not attend to 
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the nature of the operations underlying the Euclidean construction, and hence were 
unable to understand the difference between bisecting an angle and trisecting an angle 
and why they were able perform the former but not the latter.   

Thus, not until the 17th century with the invention of analytic geometry and 
algebra did mathematicians begin to shift their attention from the result of mathematical 
operations to the operations themselves.  By means of analytic geometry, mathematicians 
realized that all Euclidean geometry problems can be solved by a single approach, that of 
reducing the problems to equations and applying algebraic techniques to solve them.  
Euclidean straightedge-and-compass constructions were understood to be equivalent to 
equations, and hence the solvability of a Euclidean problem became equivalent to the 
solvability of its corresponding equation(s).         

Cause versus reason. 
Consider Proposition I.32 and its proof in Euclid’s Elements (slightly adapted 

from Heath, 1956, pp. 316-317):  
In any triangle, if one of the sides is produced, then the exterior angle equals the 
sum of the two interior and opposite angles, and the sum of the three interior 
angles of the triangle equals two right angles.  
Proof: 
Let ABC be a triangle, and let one side of it BC be produced to D.  

B

A

C
D

E

 

I say that the exterior angle ACD equals the sum of the two interior and opposite 
angles CAB and ABC, and the sum of the three interior angles of the triangle ABC, 
BCA, and CAB equals two right angles.   

Draw CE through the point C parallel to the straight line AB (by Proposition I.31). 

Since AB is parallel to CE, and AC falls upon them, therefore the alternate angles 
BAC and ACE equal one another (by Proposition I.29). 
Again, since AB is parallel to CE, and the straight line BD falls upon them, 
therefore the exterior angle ECD equals the interior and opposite angle ABC (by 
Proposition I.29). 
But the angle ACE was also proved equal to the angle BAC. Therefore the whole 
angle ACD equals the sum of the two interior and opposite angles BAC and ABC. 
Add the angle ACB to each. Then the sum of the angles ACD and ACB equals the 
sum of the three angles ABC, BCA, and CAB (by Common Notion 2). 
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But the sum of the angles ACD and ACB equals two right angles. Therefore the 
sum of the angles ABC, BCA, and CAB also equals two right angles (by 
Proposition I.13 and Common Notion 1). 
 
This proof appeals to two facts, one about the auxiliary segment CE and the other 

about the external angle ACD.  Note that the property holds whether or not the segment 
CE is produced and the angle ACD considered.  One might then raise the question, what 
is the true cause of the property proved?  This question was a center of debate during the 
16th-17th centuries about whether mathematics is a science.  Philosophers of this period, 
according to Mancosu (1996), used this proof to demonstrate their argument that 
mathematics is not a perfect science because “implication” in mathematics is a mere 
logical consequence rather than a demonstration of the cause of the conclusion.  Their 
argument was based on the Aristotelian definition of science, according to which one 
does not understand something until he or she has grasped the why of it.  “We suppose 
ourselves to possess unqualified scientific knowledge of a thing, … , when we think that 
we know the cause on which the fact depends as the cause of the fact and of no other …” 
(Aristotle, p. 111-112).  

Mathematical statements of the form “A if and only if B” provided an additional 
argument against the scientificness (i.e., causal nature) of mathematics, for—these 
philosophers claimed—if mathematical proof were scientific (i.e., causal), then such a 
statement would entail that A is the cause of B and B is the cause of A, which implies A 
is the cause of itself—an absurdity.   

This position entailed rejection of proof by contradiction, for such a proof does 
not demonstrate the cause of the property that is being argued.  When a statement “A 
implies B” is proved by showing how not B (and A) leads logically to an absurdity, one 
does not learn anything about the causality relationship between A and B.  Nor does one 
gain any insight into how the result was obtained.  Consequently, proof by exhaustion 
(e.g., Archimedes’ known method of proof for calculating volume, area, and parameter of 
different objects), which is necessarily based on proof by contradiction, also was 
unsatisfactory to many mathematicians of the 16th and 17th centuries.  They argued that 
the ancients, who broadly used proof by exhaustion to avoid explicit use of infinity, failed 
to convey their methods of discovery. 

Not all philosophers of the time held this position.  According to Mancosu (1996), 
Barozzi, for example, argued that some parts of mathematics are more scientific (causal) 
than others; but that a proof by contradiction is not a causal proof, and therefore it should 
be eliminated from mathematics.  Others, like Barrow, argued that all mathematics proofs 
are causal, including proof by contradiction:   

It seems to me … that Demonstrations, though some do outdo others in Brevity, 
Elegance, Proximity to their first Principles, and the like Excellencies, yet are all 
alike in Evidence, Certitude, Necessity, and the essential Connection and mutual 
Dependence of the Terms one with another.  Lastly, that Mathematical 
Ratiocinations are the most perfect Demonstrations.  (Quoted in Mancosu, 1996, 
p. 23) 
Of particular interest is the position held by Rivaltus on the issue of causal proof 

in mathematics.  Mancosu (1996) illustrates this position by Rivaltus’ commentary on 
Archimedes proof for the theorem that the area of the surface of the sphere is four times 
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the area of a great circle of the sphere.  In this proof, Archimedes inscribes and 
circumscribes the sphere with auxiliary solids to show that the surface of the sphere can 
be neither smaller nor greater than four times the great circle—a typical Archimedean 
proof by exhaustion, which necessarily involves proof by contradiction.  So, there are two 
issues here: the use of proof by contradiction and the use of the auxiliary solids (as in the 
case of the proof of Proposition I.32).  Each of these two features render, in the eyes of 
some philosophers of the time, Archimedes’ proof non-causal.  Rivaltus rejects this 
possibility on the basis of a distinction between “cause” and “reason”:  

Ostensive demonstrations in mathematics are not considered more perfect than the 
ones by contradiction, since in these disciplines it is not made use of the cause of 
the thing, but of the cause of the knowledge of the thing. … The figures drawn are 
not truly the cause [italics added] of that equality but are reasons [italics added] 
from which we know it.  From whence it follows that whatever is more fit to 
knowledge is more appropriate to the mathematician.  But we know more easily 
that absurdities are impossible, false and repugnant by reason that we know the 
true things.  Indeed the truths are concealed and conversely the errors are obvious 
everywhere. … Again it is to be observed that the Geometers do not make use of 
the cause of a thing, but of the cause from which the thing is known.  Indeed it is 
sufficient to them to show the thing to be so and they do not enquire by which 
means it is so.  (Rivaltus, 1615; quoted in Mancosu, 1996, pp. 26-27) 
The Aristotelian theory of science and particularly its appeal to cause and effect 

manifested itself in another aspect of mathematical practice during the 17th century—that 
of the use of “genetic definitions.”  These definitions appeal to the generation of 
mathematical magnitude by motion; Euclid’s definition of a sphere as an object generated 
by the rotation of a semicircle around a segment taken as axis is an example.  An example 
of a non-genetic definition is that of a circle defined as a set of all points in the plane that 
are equidistant from a given point in that plane.  According to Mancosu (1996), although 
the insistence on the use of genetic definitions was not universal, important 
mathematicians of the time emphasized their importance because they were viewed as 
demonstrating cause, and, hence, conform to Aristotle’s epistemological position of what 
constitutes a science.  For example, Barrow stated that of all the possible ways of 
generating a magnitude, the most important is the method of local movements, and he 
uses motion as a fundamental concept in his work in geometry” (Mancosu, 1996, p. 96), 
and Hobbes and Spinoza, “emphasize the role of genetic definitions as the only causal 
definitions, thereby excluding the nongenetic definitions from the realm of science” (p. 
99). 

Motives 
The Greeks’ motive for constructing the remarkable geometric edifice that we 

now call Euclidean Geometry, was their desire to create a consistent system that is free 
from paradoxes.  Avoiding paradoxes constituted, in part, an intellectual need for the 
transition from Greek to modern mathematics.  According to Wilder (1967, based, in 
part, on Freudenthal, 1962), against the customary view that attributes the change to the 
introduction of non-Euclidean geometry,  

there was little evidence of excitement or even interest in the mathematical 
community regarding the work of Bolyai and Lobachevski, for at least 30 years 
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after its publication. … The … impact of the admissibility of non-Euclidean 
geometry into mathematics only promoted an evolution already under way (p. 
116). 

Hacking (1980) argues that the change in perspective occurred much before the late 19th 
century as is commonly held, but was pioneered by Leibniz.  In fact, Hacking insists that 
Leibniz was aware of the conceptual change and even explained why it did not develop 
earlier: 

Leibniz himself has a plausible explanation of why the concept of proof emerged 
at this time.  [The idea that proof is independent of its content] is not to be 
expected when geometry is the standard of rigor.  Geometrical demonstrations can 
appear to rely on their content.  Their validity may seem to depend on facts about 
the very shapes under study, and whose actual construction is the aim of the 
traditional Euclidean theorems. (p. 170)   
Here, too, Descartes’ contribution was crucial: What brought about Leibniz’ new 

way of understanding the concept of proof was Descartes’ algebrization of geometry.  By 
its nature algebra is a way of thinking where one can dispose of or reduce overt attention 
to content.  Together with the recognition that the non-Euclidean geometries are just as 
consistent as the Euclidean, there seems to have been a general feeling that both the 
Euclidean and the non-Euclidean systems were still only candidates as sciences of space.  

The change in proof scheme from Greek mathematics to modern mathematics was 
necessitated again by the attempt to establish a consistent foundation for mathematics—
just as the Greeks did to construct a consistent system—one that is free from paradoxes.  
The mathematicians who launched major attempts to form a consistent mathematics, like 
Zermelo and Russell and Russell and Whitehead, were largely motivated by the desire to 
meet the crisis in the foundations of mathematics caused by contradictions, primarily 
those resulting from the Cantorian theory of sets: 

(The) Greek situation, as the latter appears to us through the haze of centuries, is 
striking.  In both situations, crises had developed which threatened the security of 
mathematics; and in both cases resort was taken to explicit axiomatic statement of 
the foundations upon which one hoped to build without fear of further charges of 
inconsistency.  (Wilder, 1967, p. 117)  
Wilder (1967) also notes that like the Greek mathematicians, the modern 

mathematicians who launched major attempts to form a consistent mathematics (e.g.,  
Zermelo and Russell) had only one model in mind, albeit a different model.  In the case 
of Zermelo, he focused on “a portion of set theory sufficient for ordinary mathematical 
purposes, yet carefully limited to avoid the known contradictions” (p. 117).  Russell too, 
like Euclid and Zermelo, “had only one model in mind, and he aimed at making the 
conditions surrounding his system so stringent that there could be only one model” (p. 
118). 

Not everyone in the 19th-20th century gave his or her blessing to the new 
development in mathematics.  Both Poincare and Weyl, for example, while 
acknowledging the legitimacy and accomplishment of the axiomatic method, were 
disturbed by the widespread preoccupation with it.  They called for a return to problems 
of “mathematical substance” and argued that its role should be limited to giving precision 
to already created mathematical entities (Wilder, 1967).  Nor were all mathematicians of 
the 17th century enthusiastic about the emergence of a new context of mathematics.  The 
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modern notion of number is a case in point.  The emergence of negative numbers raised 
questions as to the utility of symbols without a concrete referent and especially without a 
geometrical referent.  How is it possible, for example, to subtract a greater quantity from 
a smaller one, where the mental image of “quantity” is nothing else but a physical amount 
or a spatial capacity?  Moreover, how is it possible to understand such a statement as (-
1)/1=1/(-1), where the quantity 1 is larger than the quantity –1, and therefore, the division 
of 1 by –1 must be greater than the division of –1 by 1? (See Mancosu, 1996.)              

Why Are These Historical-Epistemological Factors Relevant? 
What does this brief history account tell us about the learning and teaching of the 

concept of proof?  It is still an open question whether the development of a mathematical 
concept within an individual student or a community of students parallels the 
development of that concept in the history of mathematics, though cases of parallel 
developments have been documented (e.g., Sfard, 1995).  If this is the case, one would 
expect that the path of development would vary from culture to culture.  Are there 
common elements or phases to different paths of development across cultures?  Did the 
development of the concept of proof in, for example, China and India follow a similar 
path to that of the Western world or was there a leap in time from using perceptual proof 
schemes to modern axiomatic proof schemes?  What are some of the salient social and 
cultural aspects that might impact the trajectory of these paths?    Independent of these 
particular questions, whose treatment goes beyond the scope and goals of this paper, 
considerations of historical accounts can evoke other research questions whose answers 
can potentially direct the development and implementation of instructional treatments of 
mathematical concepts and ideas.  In what follows, we will discuss such questions about 
the concept of mathematical proof evoked by the historical account outlined above. 

Pre-Greek mathematics versus Greek mathematics.   
The Greeks had likely constructed their deductive mathematics on the basis of the 

mathematics of their predecessors, which was mainly empirical.  This mere fact evokes a 
pedagogical question as to the role of the empirical proof schemes in the development of 
the deductive proof schemes.  The empirical proof schemes are inevitable because 
natural, everyday thinking utilizes examples so much.  Moreover, these schemes have 
value in the doing and the creating of mathematics.  They are even indispensable in 
enriching one’s images by creating examples and non-examples, which, in turn, can help 
generate ideas and give insights.  The question is how to help students utilize their 
existing proof schemes, largely empirical and external, to help develop deductive proof 
schemes?  As a historian might ask what events—social, cultural, and intellectual—
necessitated the transition from pre-Greek mathematics to Greek mathematics, a 
mathematics educator should ask what instructional interventions can bring students to 
see a need to refine and alter their existing external and empirical proof schemes into 
deductive proof schemes.     

   As was indicated, while pre-Greek mathematics was concerned merely with 
actual physical entities, and its proving was governed by the empirical proof schemes, 
Greek mathematics dealt with idealizations of spatial and quantitative realities and its 
proving was deductive.  There seems to be a cognitive and epistemological dependency 
between the nature of the entities considered and the nature of proving applied.  To what 



19                                                                          A Comprehensive Perspective on Proof 

extent and in what ways is the nature of the entities intertwined with the nature of 
proving?  For example, students’ ability to construct an image of a point as a 
dimensionless geometric entity might impact their ability to develop the Greek axiomatic 
proof scheme, and vice versa.  As far as we know, this interdependency has not been 
explicitly addressed and its implications for instruction have not been considered.          

The motive for the Greeks’ construction of their geometric edifice, according to 
the historical account presented earlier, was their desire to create a consistent system that 
was free from paradoxes such as those of Zeno.  For example, to avoid Zeno’s paradoxes 
the Greeks based their geometric proofs strictly in the context of static concepts.  What 
does this tell us about how to help students see a need for the construction of a geometric 
structure, particularly that of Euclid?  What is the cognitive or social mechanism by 
which deductive proving can be necessitated for the students?   

Greek mathematics versus modern mathematics. 
As was noted, in constructing their mathematics the Greeks had only one model in 

mind—that of imageries of idealized physical and quantitative realities.  Further, it is 
these imageries that determined the axioms and postulates on which their geometric and 
arithmetic edifices stood.  In contrast, in modern mathematics entities can be quite 
arbitrary and one’s images of these entities are governed by a set of axioms.  This sharp 
construct is best manifested by Euclid’s Elements, on the one hand, and Hilbert’s 
Grundlagen, on the other: While the former is restricted to a single interpretation, the 
Grundlagen is open to different realizations.  Here too the question of intellectual 
necessity for the transition from Greek mathematics to modern mathematics is of 
profound pedagogical importance.  Historians like Klein and others characterize this 
transition as revolutionary: It marks a monumental conceptual change in humans’ 
mathematical ways of thinking.  More research is needed to systematically document 
these difficulties to better understand their nature and their implications for instruction.             

Another critical difference between Greek mathematics and modern mathematics 
has to do with form versus content.  In Greek mathematics, the form of the proof could 
not be completely detached from the content of the spatial or quantitative context.  In 
contrast, in modern mathematics proof is valid by virtue of its form alone.  Here, too, we 
know of no studies that document systematically students’ mathematical behaviors in 
relation to these fundamental characteristics of Greek mathematics—when students learn 
Euclidean geometry, for example, as compared to when they learn finite geometry as a 
case of modern mathematics.         

Post-Greek mathematics. 
Symbolic algebra, which began with Vieta’s work, seems to have played a critical 

role in the transition from Greek mathematics to modern mathematics, particularly in 
relation to the reconceptualization of mathematical proof as a sequence of arguments 
valid by virtue of their form, not content.  In the new concept of proof, one would begin 
with identities and by virtue of rules of symbolic definitional substitutions proceed 
through a finite number of steps until the theorem is proved.  With symbolic algebra, 
mathematicians shifted their attention from results of operations (e.g., whether and how 
an angle can be bisected or trisected) to the operations themselves (e.g., the underlying 
difference between bisecting and trisecting an angle).  A critical outcome of this shift was 
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the discovery that all Euclidean geometry problems can be solved by a single approach, 
that of reducing the problems to equations and applying algebraic techniques to solve 
them. 

The role of symbolic algebra in the reconceptualization of mathematics in general 
and of proof in particular raises a critical question about the role of symbolic 
manipulation skills in students’ conceptual development of mathematics, in general, and 
of proof schemes, in particular.  Can students develop the modern conception of proof 
without computational fluency?  And in view of the increasing use of electronic 
technologies in schools, particularly computer algebra systems, one should also ask: 
Might these tools deprive students of—or, alternatively, provide students with—the 
opportunity to develop algebraic manipulation skills that might be needed for the 
development of advanced conception of proof?  In addressing this question, it is 
necessary, we believe, to distinguish between two kinds of symbolic proof schemes: non-
referential and referential.  As we discussed earlier, in the former scheme, neither the 
symbols nor the operations one performs on them represent a quantitative reality for the 
students.  Rather, students think of symbols and algebraic operations as if they possess a 
life of their own without reference to their functional or quantitative meaning.  By 
contrast, in the symbolic referential proof scheme, to prove or refute an assertion or to 
solve a problem, students learn to represent the statement algebraically and perform 
symbol manipulations on the resulting expressions.  The intention in these symbolic 
representations and manipulations is to derive relevant information that deepens one’s 
understanding of the statement, and that can potentially lead her or him to a proof or 
refutation of the assertion or to a solution of the problem.  In such an activity, one does 
not necessarily form referential representations for each of the intermediate expressions 
and relations that occur in the symbolic manipulation process, but has the ability to 
attempt to do so in any stage in the process.  It is only in critical stages—viewed as such 
by the person who is carrying out the process—that one forms, or attempts to form, such 
representations.  This ability is potential rather than actual because in many cases the 
attempt to form quantitative representations may not be successful.  Nevertheless, a 
significant feature of the referential symbolic proof scheme, which is absent from the 
non-referential symbolic proof scheme, is that one possesses the ability to pause at will to 
probe into the meaning (quantitative or geometric, for example) of the symbols.  

Together with the emergence of symbolic algebra, a new conception of 
mathematical entity, particularly that of number, began to emerge.  A mathematical 
entity, in this conception, is not necessarily dependent on its “natural” pre-scientific 
experience but on its connection to other entities within a structure and its function within 
that structure.  For example, while the Greeks were highly selective in their choice of 
numbers—they rejected irrational numbers, for example—the post-Greek mathematicians 
began to accept them.  This conceptual change was not without difficulty.  For example, 
some mathematicians of the 17th century rejected the utility of negative numbers, which 
they viewed as symbols without real experiential referents.  The conceptual attachment to 
a context—whether it is the context of intuitive Euclidean space or that of nR —was 
dubbed the contextual proof scheme.  In this scheme, general statements, intended for 
varying realities, are interpreted and proved in terms of a restricted context.  The question 
of the developmental inevitability of the contextual proof scheme has not been fully 
addressed in mathematics education research.  Some evidence exists to indicate that even 
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students in an advanced stage in their mathematical education have not developed this 
scheme.   For example, it has been shown that many mathematics majors enrolled in 
advanced geometry courses have major difficulties dealing with any geometric structure 
except the one corresponding to their spatial imageries, and that mathematics majors 
enrolled in linear algebra courses interpret and justify general assertions about entities in 
a general vector space in terms of 2R  and 3R  entities (Harel & Sowder, 1989, Harel, 
1999).  Such findings have major curricular implications.  For example, they raise major 
doubts as to the wisdom of the practice of starting off college geometry courses with 
finite geometries or of introducing general vector spaces in the first course of linear 
algebra. 

The debate among philosophers during the Renaissance about the scientificness of 
mathematics and the mathematics practice that ensued is of particular pedagogical 
significance.  As we have outlined, the question was whether the mathematical practice in 
which “implication” is a mere logical consequence, rather than a demonstration of the 
cause of the conclusion, is scientifically acceptable.  This, in turn, raises questions about 
the acceptability of proof by contradiction and proof by exhaustion. Were these issues of 
marginal concern to the mathematicians of the 16th and 17th centuries, or had they been 
significantly affected by it?  To what extent did the practice of mathematics in the 16th 
and 17th centuries reflect global epistemological positions that can be traced back to 
Aristotle's specifications for perfect science?  These are important questions, if we are to 
draw a parallel between the individual's epistemology of mathematics and that of the 
community.  As noted by Mancosu (1996), this debate had a deep and profound impact 
on the practice of mathematics during the 15th to 18th centuries.  For example, the 
practices of Cavalieri, Guldin, Descartes, and Wallis reflected a deep concern with these 
issues by, for example, explicitly avoiding proofs by contradiction in order to conform to 
the Aristotelian position on what constitutes perfect science.  This history shows that the 
modern conception of proof was born out of an intellectual struggle—a struggle in which 
Aristotelian causality seems to have played a significant role.  Is it possible that the 
development of students’ conception of proof includes some of these epistemological 
obstacles (in the sense of Brousseau, 1997)—obstacles that may be unavoidable, for they 
are inherent to the meaning of concepts in relation to humans’ current schemes? 

We conclude this section on the relevance of history and philosophy of 
mathematics to the learning and teaching of proof with questions pertaining to the idea of 
“genetic definitions”—mathematical definitions that utilize motion to generate 
magnitudes—from the 17th century.  As we have indicated, the use of such definitions 
was viewed by some important mathematicians of the time to conform to the Aristotelian 
epistemological position on the centrality of causality in science.  Can this account for the 
positive impact that dynamic geometry environments might have on advancing students’ 
proof schemes? What is exactly the conceptual basis for the relationship between motion 
and causal proofs? In a later section we will report on several studies that have examined 
this effect. 

Functions of Proof 
Earlier, in the second section, we described a portion of our taxonomy of proof 

schemes.  The discussion that followed brought up several other schemes that emerged in 
the history of mathematics.  In the rest of this section, we depict all the schemes 



22                                                                          A Comprehensive Perspective on Proof 

mentioned in this paper (Table 1) and discuss their functions within mathematics.  This 
list is not complete; we only depict those schemes that are needed for the discussion in 
this paper (for the complete taxonomy, see Harel & Sowder, 1998).    
Table 1 
Proof Schemes  
External Conviction  Empirical  Deductive   
Authoritative   Inductive  Transformational 
Ritual    Perceptual       Causality 
Non-referential      Greek axiomatic      
       Modern axiomatic                                                            
 

As we indicated earlier (see the second section), de Villiers (1999) built on the 
work of others scholars—particularly Hanna (1990), Balacheff (1988), Bell (1976), 
Hersh (1993)—to address important questions about the role of proof.  Specifically, what 
different functions does proof have within mathematics itself and how can these functions 
be effectively utilized in the classroom to make proof a more meaningful activity?  de 
Villiers suggests that mathematical proof has six not mutually exclusive roles:  

• verification  
• explanation  
• discovery  
• systematization  
• intellectual challenge  
• communication   

In what follows, we will show that all of these functions but one (intellectual challenge) 
are describable in terms of the proof scheme construct.  Some of the proof schemes used 
to interpret these functions appeared in the taxonomy presented above.  A description of 
each—with our additions and modifications—follows.   

Verification refers to the role of proof as a means to demonstrate the truth of an 
assertion according to a predetermined set of rules of logic and premises—the axiomatic 
proof scheme. 

Explanation is different from verification in that for a mathematician it is usually 
insufficient to know only that a statement is true.  He or she is likely to seek insight into 
why the assertion is true.  We referred to this as the causality proof scheme.     

Discovery refers to the situations where through the process of proving, new 
results may be discovered.  For example, one might realize that some of the statement 
conditions can be relaxed, thereby generalizing the statement to a larger class of cases.  
Or, conversely, through the proving process, one might discover counterexamples to the 
assertion, which, in turn, would lead to a refinement of the assertion by adding necessary 
restrictions that would eliminate counterexamples.  Lakatos’ (1976) thought experiment 
on the proof of Euler’s theorem for polyhedra best illustrates this process.  In some cases 
one may ask whether a certain axiom is needed to establish a certain result, or what form 
the result would have if a certain axiom is omitted.  We considered this as a case of the 
axiomatizing proof scheme.   

Systematization refers to the presentation of verifications in organized forms, 
where each result is derived sequentially from previously established results, definitions, 
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axioms, and primary terms.  This too is a case of the axiomatic proof scheme.  The 
difference between systematization and verification is in the extent of formality.   

Communication refers to the social interaction about the meaning, validity, and 
importance of the mathematical knowledge offered by the proof produced.  
Communication can be viewed in the context of the two subprocesses that define 
proving: ascertaining and persuading. 

Intellectual challenge refers to the mental state of self-realization and fulfillment 
one can derive from constructing a proof. As we mentioned earlier, this role does not 
correspond to any of our proof schemes. 

With the notion of proof scheme as an organizing concept—appended with these 
functions—we will now present selected findings reported in the literature that pertain to 
students’ conceptions of proof.  Of course, we are unable to describe without speculation 
most of these findings in terms of the proof scheme construct, because these studies had 
not been conceptualized or designed with our proof scheme construct in mind.  However, 
as we will see, much can be said about these research findings in relation to proof 
schemes. 

Cognitive Factors:  A Literature Review of Status Studies with Interpretations in Terms 
of Students’ Proof Schemes 

Examining student performance in an area of mathematics is a natural first step in 
judging whether curricular and teaching efforts in that area seem to be adequate and not 
to require any special attention.  Hence, we first look at several status studies of proof 
performance. We interpret the results in terms of the (apparent) proof schemes involved 
in the results, following the proof schemes focus of this chapter.  The first two parts of 
this section will report, respectively, on precollege and college students’ conceptions of 
proof.  The findings provide evidence that the pervasive proof schemes among the two 
populations of students are those belonging to the external conviction proof scheme class 
and the empirical proof scheme class. 

With the deductive proof scheme playing a significant role in mathematics, there 
is also relevant information from examining performance in logical inferences—a critical 
characteristic of this scheme.  Any description of mathematical proof, the ultimate in 
justification, will include some mention of logical inferencing ability. Someone not 
versed in, for example, the mathematical meaning of an “if…, then….” statement, or who 
is not comfortable with reasoning patterns like modus tollens, or who does not understand 
quantified statements and the role of a counterexample, or who cannot deal correctly at 
some stage with negating “…and…” and “…or…” statements, or who cannot explain the 
logic of an indirect proof, surely cannot carry out or even understand many mathematical 
proofs (including disproofs).  Hence logical inferencing ability is a basic tool for the 
process of proving in mathematics and likely enters also into many justifications of a less 
sophisticated sort. But logic is central to the deductive proof schemes.  For example, the 
transformational proof scheme, which constitutes the essence of the proving process in 
mathematics and is expected to develop with at least college-bound students and 
mathematics major students, should be present in students’ mathematical behavior.  As 
we have discussed earlier, “logical inference” is one of the three essential characteristics 
of this scheme. A third part of this section will include findings reported in the literature 
that seem germane to the characteristics of these deductive proof schemes. 
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Status Studies:  Precollege Students 

NAEP studies 
A first place to look for data is the periodic National Assessment of Educational 

Progress in the United States [NAEP], involving, typically, students at ages 9, 13, and 17 
(and now reported by grade:  4, 8, and 12).   The wide geographic sampling and the large 
sample sizes, usually many thousands of students, in a NAEP indicates the U.S. picture, 
which can be further checked with smaller studies and contrasted with studies outside the 
U.S.  For our purposes, however, one limitation of the NAEP has been that only a few 
items on proof or logic can be included, because of the scope of the tests.  Another 
limitation is that since all the NAEP questions considered here are multiple-choice items, 
it is difficult to pinpoint the actual reasoning students employed in answering them.      

In the planning stage, the first NAEP mathematics assessment (1972-1973) 
included mathematical proof and logic as objectives to be evaluated, although only a few 
items tested these areas (Carpenter, Coburn, Reys, & Wilson, 1978, p. 10).  Later NAEPs 
used different designs for setting objectives to be tested.  The fourth NAEP (1985-1986), 
for example, included items testing “mathematical methods,” with a few intended to 
include “a general understanding of the nature of proof and axiomatic systems, and logic” 
(Carpenter, 1989, p. 3).  Analysts of the results concluded that “most 11th-grade students 
demonstrated little understanding of the nature and methods of mathematical 
argumentation and proof” (Silver & Carpenter, 1989, p. 11), citing results on items 
requiring the recognition of counterexamples (with success rates of 31%-39%—see 
Figure 1 for two items), on items testing understanding of the terms “axiom” and 
“theorem” (fewer that one-fourth and about half correct, respectively), and on items 
dealing with an undisclosed but “straightforward” item on indirect proof (about one-third 
correct) and mathematical induction (similar results)  ( pp. 17-18).  Even when only those 
students who had taken geometry were considered, results were just slightly better than 
those for students who had taken mathematics only through first-year algebra.  The 
overall performance led the analysts to conclude that “the generally poor performance on 
these items dealing with proof and proof-related methods suggests the extent to which 
students’ experiences in school mathematics, even for students in college-preparatory 
courses, may often fail to acquaint them with the fundamental nature and methods of the 
discipline” (p. 18).  
A. Larry says that n2 > n for all real numbers.  Of the following, which value of n shows 
the statement to be FALSE? 
-1/2  (23%)      0  (29%)      1/10  (39%)      1  (9%)   (9% not responding) 
B. Jim says, “If a 4-sided figure has all equal sides, it is a square.”  Which figure might 
be used to prove that Jim is wrong? 

(31%)(24%)(31%)(15%)
 

(46% not responding) 
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Fig. 1.  Sample NAEP items involving recognition of a counterexample (percents 
of those responding are in parentheses (after Silver & Carpenter, 1989, p. 17).  Note:  
Percents may total more than 100 because of rounding. 

The test framework for the sixth NAEP (in 1992) did not focus specific attention 
on proof and logic items.  But in commenting on performances on geometry items, the 
analysts (Strutchens & Blume, 1997, ch. 7) noted that many results could be explained by 
assuming that the students were basing their responses on the appearances in drawings—
the perceptual proof scheme—rather than through reasoning.  For example, when asked 
to choose from a set of triangles one that did not have a particular property, only 21% of 
the students made the correct choice (p. 180), but when asked whether four given 
statements applied to an illustrated construction of an angle bisector, 51% were correct on 
all four, leading the analysts to write, “Often a figure can foster correct reasoning….” 
(pp. 181-182).   

Seventy-seven percent of the Grade 8 students, however, were successful at 
recognizing a counterexample to a false statement about quadrilaterals.  It is interesting to 
note that the first NAEP (1972-1973) included a multiple-choice item on logic that 
involved recognizing the logical equivalent of “All good drivers are alert.”  Only about 
one-half of the 17-year-olds, 11th graders, chose the correct alternative (“A person who is 
not alert is not a good driver”).  The analysts for those NAEP results noted, however, 
“The logic exercises were probably answered as much by the semantic context of the 
problems as by any knowledge of logic” (Carpenter et al., 1978, pp. 126-127).  This is in 
line with the earlier observation that proof schemes can vary from context to context.  

Overall, then, the limited picture about proof understanding from the NAEPs is 
that at best only a small percent of high school students are equipped to deal effectively 
with the deductive proof schemes, with most apparently relying on the empirical proof 
schemes.    

Other status studies in the U. S. 
Studies in which justification and proof have been foci are perhaps more telling 

than the limited messages from the NAEPs.  Some have been large-scale studies and 
hence are particularly significant.  For example, Senk’s (1985) study involved 1520 U.S. 
geometry students in 74 classes in 11 high schools in 5 states within a month of the end 
of the course.  After items in which the student was asked to supply missing reasons or 
statements, each student was asked to give four proofs, with the first two requiring only 
one deduction beyond those from the given information, as in the example in Figure 2 
(72% correct).  But only 32% could prove the textbook theorem, The diagonals of a 
rectangle are congruent. 
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Given:   BD ≅ EC
             ∠ 1 ≅ ∠ 2
             ∠ B ≅ ∠ E
Prove:  AB ≅ EF

1         2

F

G

B                 C                 D                 E

A

 
Fig. 2.  A sample geometry proof item from Senk’s study (1985, p. 451). 

The overall results were dismaying for the course in the U. S. in which deductive 
proof schemes should be expected to develop:  “[The] data suggest that approximately 30 
percent of the students in full-year geometry courses that teach proof reach a 75-percent 
mastery level in proof writing….29 percent of the sample could not write a single valid 
proof” (Senk, 1985, p. 453).  At the time, about half of high school graduates took a 
course in geometry, so it is interesting to speculate about what more recent performances 
might be, when roughly 80% of U. S. high schoolers take geometry (U. S. Department of 
Education, 2000, p. 122).   

Other, smaller studies in the U.S. have also involved students in geometry or later 
courses, since virtually all formal work with proof has traditionally been introduced in the 
geometry course (9th or 10th year is most common).  But, for example, the interviewees in 
Tinto’s (1988) study felt that proof was used only to verify facts that they already 
knew—an antithesis to the discovery or explanation functions of proof discussed earlier.   

Thompson’s study (1991) is of special interest since her subjects were all 
advanced students taking the last course of a curriculum targeting university-bound 
students and emphasizing reasoning and proof as a major strand.  Yet Thompson 
expressed concern about the number of students who “proved” a statement by providing a 
specific example—a manifestation of the inductive proof scheme, and only about one-
third of her subjects could find a counterexample to a number theory statement (For all 
integers a and b, if a2 is divisible by b then a is divisible by b), in a “prove or disprove” 
context.  Thompson also referred to the “enormous difficulty that students had with 
indirect proof” (1991, p. 23), with only 3% able to complete one indirect proof (that the 
sum of a rational number and an irrational number is an irrational number).  Difficulties 
with indirect proof could well be related to the earlier discussion of the causal proof 
scheme. 

Knuth, Slaughter, Choppin, and Sutherland (2002) found that 70% of roughly 350 
students in grades 6-8 used examples (the empirical proof scheme) in justifying the truth 
of two statements (show that the sum of two consecutive numbers is always an odd 
number; show that when you add any two even numbers, your answer is always even, p. 
1696).  Only a few students attempted general arguments.  On a more positive note, 
across grade levels, the students did show an increasing sensitivity to adhering to a given 
definition. 
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Since the focus of these studies was proof performance, they provide even more 
striking evidence than the NAEP studies did, that most U. S. students, even those in 
college-preparatory programs, do not seem to utilize deductive proof schemes. 

Status studies outside the U. S. 
Another large-scale study of student performance in justification and proof shows 

that weak performance and reliance on less mature proof schemes is not solely a U.S. 
phenomenon. Healy and Hoyles (1998, 2000) conducted a study involving 2459 English 
and Welsh 14-15 year-olds (finishing ninth graders in 94 classes in 90 schools).  That the 
students were in the top 20%-25% on a national test is noteworthy, as is the fact that the 
English-Welsh national curriculum gives attention to conjecturing and 
explaining/justifying conclusions and is also, in U.S. terms, integrated with attention to 
both algebra and geometry, so presumably the items were reasonable for those grade 9 
students.  The students were asked to describe what proof means and what it is for, and to 
judge given proofs, as well as to decide on the truth or falsity and to construct their own 
proofs for two algebra and two geometry items. Over a quarter of these able students had 
little or no sense of the purpose of proof or its meaning (2000, pp. 417-418).  The average 
score on the constructed-proof items was less than half the maximum, with 14%-62% of 
the students, depending on the item, not even able to start a proof (1998, p. 2).  Of those 
able to start a proof, 28%-56% could proceed only minimally (1998, p. 2).  It is 
comforting that the students were better at selecting correct proofs, favoring general 
arguments and clear and explanatory arguments that they found convincing (1998, p. 3).  
When the stated purpose was to get the best mark, however, the students often felt that 
more formal—e.g., algebraic—arguments might be preferable to their first choices (1998, 
p. 3).  We interpret this last finding as an indication of the authoritarian proof scheme and 
the ritual proof scheme, in that in the eyes of these students proof must have a certain 
appearance (ritual) as determined by the teacher (authority).   

It is interesting that, in the large, the findings of this study are consistent with 
those of Coe and Ruthven (1994), who looked at the proof performances of a much 
smaller group of “advanced level” British students in university preparation schools, on a 
project for an end-of-course assessment. These students, like those in the Healy and 
Hoyles study, relied predominantly on examples and techniques for analyzing numerical 
data, but showed little feel for the purposes of proof.  Sample items from Healy and 
Hoyles’ and Coe and Ruthven’s studies are presented in Figure 3. 
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Proof or disproof 
construction (Healy & 
Hoyles, 1998) 

Prove whether the following statements are true or 
false.  Write down your answer in the way that 
would get you the best mark you can. 

 
1. When you add any 2 odd numbers, your answer 
is always even. 
 
2. If p and q are any two odd numbers, (p + q)x(p – 
q) is always a multiple of 4. 

 
 
 
 

“Starting point” item 
(Coe & Ruthven, 1994. 
p. 46) 

Any four-digit number is rewritten with its digits 
arranged in ascending and descending order of size.  
The smaller is then subtracted from the larger and 
the process is repeated. 
Example:  7345 gives 7543 – 3457 = 4086 
                  4086 gives 8640 – 0468 = 8172 
                  Then write 7543–>8640–>8721–>… 
Complete this chain and then try again with other 
four-digit numbers. 
Now try with 3 or 5 or 6 or n digits. 

Fig. 3:  Sample proof items (adapted from Healy & Hoyles (1998, 2000) and Coe & 
Ruthven (1994)). 

An older study by Reynolds  (reported in Lovell, 1971) also examined proof ideas 
held by British students.  Most revealing were the responses of 153 6th formers (final 
year of secondary school) in mathematics, with about 20% endorsing 16 examples as 
establishing a given statement—a manifestation of the empirical proof scheme.  On the 
other hand, about 70% of these 6th-formers could complete an indirect argument 
involving a geometric situation (to show the inequality of a pair of alternate interior 
angles in a drawing with non-parallel lines) that had been started (p. 75), in contrast to the 
very weak (3%) performance of Thompson’s (1991) U. S. students mentioned above. 

Still other studies outside the U.S. also indicate difficulties with certain proof 
ideas.  Galbraith (1981) studied the conceptions of proof held by 12-17-year-old 
Australian students, most of whom were 13-15 years old. He found that 28% of 130 
responses indicated a lack of understanding of what a given counterexample told one 
about a given statement.  On another problem, only 18% of his 73 students felt that one 
counterexample was sufficient to disprove a conjecture.  In commenting on how many 
counterexamples are sufficient, one student even suggested “’Sometimes one is enough 
and sometimes it isn’t’” (p. 19).  The confusion about the role of examples in direct 
proofs versus in indirect proofs versus in disproofs is consistent with our own findings 
(Harel & Sowder, 1998), a phenomenon we accounted for in terms of students’ empirical 
proof scheme.  Many students in Galbraith’s study were guided by their mental pictures 
of what a geometric term suggested rather than a given definition, and relied on just one 
diagram without considering other possibilities (p. 23)—a clear manifestation of the 
perceptual proof scheme 
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Porteous (1986, 1990) gave questionnaires to about 400 British students, ages 11-
16, and interviewed 50 of them.  From the questionnaires, he found that more than 40% 
of the responses endorsed completely a generalization on the basis of examples only, and 
only about 10% then offered proofs on their own when asked to explain their decisions 
(1990, p. 591).  Furthermore, 83% of those not offering a proof initially claimed to 
understand a given proof of an assertion, but only 61% of all the students, including the 
ones offering a proof on their own, were sure that the author was correct about the 
assertion after seeing a proof (1996, p. 8).  From the students’ reactions to given proofs, 
Porteous concluded that “It is only when a pupil devises a proof for himself that he is 
convinced of the truth of a statement.  A proof provided by a teacher may have some 
effect, but it is small in comparison with a d(i)scovered proof…we need to encourage 
pupils to investigate relationships for themselves, in order to produce their own reasons, 
or proof, for general statements.  This is not to say, of course, that empirical work has no 
real part to play in the learning process” (1996, pp. 21-22).        

Williams (1980) interviewed 11th grade Canadian students in a college 
preparatory program and concluded that fewer than 30% showed a grasp of the meaning 
of mathematical proof, that about half of the students saw no need to prove a statement 
that they regarded as obvious, roughly 70% did not distinguish between inductive and 
deductive arguments, and fewer than 20% understood how indirect proof works.  

Spanish researchers Recio and Godino (2001) conducted a study involving two 
groups (n = 429 and n = 193) of beginning university students. They found that about a 
third of the 429 students and less than a quarter of the 193 students could prove both of 
two elementary statements (the difference between the squares of consecutive natural 
numbers is odd and equal to the sum of the numbers, and the bisectors of adjacent 
supplementary angles are perpendicular). Also, fewer than half of the group of 429 were 
successful on each individual proof.  Roughly 40% used empirical reasoning: “Empirical 
inductive [proof] schemes were the spontaneous type of argumentation in a high 
percentage of students when they were confronted with new problems, in which it was 
necessary to develop new proof strategies, different from the learned procedures” (p. 91).  

In Israel, Fischbein and Kedem (1982) found that their high school students did 
not appear to understand that no further examples need be checked, once a proof was 
given, a finding confirmed by Vinner (1983), who also noted that many high school 
students (35%), even high attaining ones (39%), seem to regard a given proof as the 
method to examine and verify a later particular case.   

Similar results were found in a recent Japanese study (cited in Fujita & Jones, 
2003). The official curriculum of Japan calls for students to “understand the significance 
and methodology of proof.” However, even though most 14 to 15 year old students are 
successful at proof writing, “around 70% cannot understand why proofs are needed” (p. 
9).   

Internationally, overall the most positive conclusion seems to be that the proof 
glass is not completely empty but that it is by no means even close to full.  Even “good” 
performances may be tainted by little understanding or appreciation of the functions of 
proof.  The prevalence of empirical proof schemes for most students seems to be 
international. 
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Status Studies:  University Students 
One might expect that university students would perform better than secondary 

students on proof activities.  As the Recio and Godino (2001) study indicated, however, 
performance is disappointingly low in many entering university students.  There are only 
a few formal studies that have examined university students’ later conceptions of proof.  
In one example, up to 80% of prospective elementary school teachers derived the truth of 
a general statement from examples (Goetting, 1995), confirming a result by Martin and 
Harel (1989) about the pervasiveness of the empirical proof scheme among students.  
Martin and Harel had emphasized proof in their course for prospective elementary school 
teachers (who had had geometry in high school) and then asked them to judge whether 
particular arguments were mathematical proofs for a statement covered and proved in the 
course (If the sum of the digits of a whole number is divisible by 3, then the number is 
divisible by 3) or an unfamiliar one (If a divides b, and b divides c, then a divides c).  
The arguments were either inductive (based on specific instances) or deductive 
(assertions via general statements).  More than half of the 101 students considered 
inductive arguments to be mathematical proofs.  As many as half of these college 
students also accepted a false deductive argument as being a mathematical proof, 
apparently reacting to the appearance of the argument—indicating the dominance of the 
ritual proof scheme—and over a third found both inductive and deductive arguments to 
be acceptable mathematical proofs.  Morris (2002) echoed this last result, with 40% of 
her pre-service teachers affirming that both inductive and deductive arguments assured 
certainty and failing to distinguish between the two types of arguments.  

But prospective elementary teachers are often not very sophisticated in 
mathematics, so one might expect majors in technical fields, especially mathematics 
majors, to perform much better in proof settings.  Such is the case, but only for some 
students, judging from anecdotes from university mathematics faculty.  Furthermore, 
there are studies that point out areas of weakness, usually with small numbers of students.  
For example, case studies show that although some students may possess the 
transformational proof scheme, others seem to enter—and leave—university with little or 
limited abilities with, and views of, proof, mostly demonstrating external and empirical 
proof schemes (Sowder & Harel, 2003).   

For some university students, even recognizing whether a given argument 
constitutes a proof cannot be taken as a given.  In interviews, Selden and Selden (2003) 
asked their eight mathematics majors to judge whether four given mathematical 
arguments were valid, with only one of the arguments valid.  The students performed 
only at a 46% correct level with their first judgments but did improve to 81% correct by 
the end of the interview with their fourth judgments, with the Seldens crediting the 
improvement to the added experience and reflection during the interview. Although the 
study did not examine long-term effects, it suggests that repeated validating activities 
may be a valuable growth opportunity.   

Knowledge about what factors are important in devising proofs is limited.  In an 
expert-novice study, with four graduate students in mathematics as the experts and four 
undergraduates as the novices, Weber (2001) noticed that “an understanding of 
mathematical proof and a syntactic knowledge of the facts of a domain are not sufficient 
for one to be a competent theorem prover” (p. 107); experts have what Weber calls 
“strategic knowledge,” knowledge that undergraduates do not exhibit—knowledge of the 
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domain’s proof techniques (p. 111), knowledge of which theorems are important and 
when they are useful (p. 112), and knowledge of when, and when not, to use strategies 
based on symbol manipulation rather than deeper knowledge (p. 113).  In a similar vein, 
Raman’s (2003) interviews of mathematics students and faculty suggested the importance 
of a “key idea”—“an heuristic idea which one can map to a formal proof with appropriate 
sense of rigor” (p. 323).  She concluded, “For mathematicians, proof is essentially about 
key ideas; for many students, it is not” (p. 324).  In expert-novice studies, one often does 
not know how the experts acquired their expertise (or whether there is a selection factor 
involved), but knowing what differences exist may give ideas for instructional emphases.  
But in questioning university mathematics faculty about university mathematics majors’ 
proof understanding, a “twice is nice” theme emerged:  Exposure to the same material 
twice allows the student, on the second exposure, to focus on proof methods (Sowder, 
2004).  Perhaps these second exposures are helpful in attaining other aspects of Weber’s 
strategic knowledge and Raman’s key ideas, and in growing in deductive proof schemes.  
Marty (1991) felt that his explicit attention to proof methods, rather than the common 
focus on new mathematical content, helped his college students succeed in later 
mathematics courses. 

University students’ distinctions among axioms, definitions, and theorems are not 
sharp.  Vinner (1977), for example, found that only about half of a group of Berkeley 
sophomores and juniors in mathematics could correctly identify all of three statements 
about exponents as definitions, as opposed to theorems or laws or axioms.  Since much of 
algebra focuses on algorithms and these students had first studied the material in high 
school, perhaps the lack of such distinctions is expected.  Yet, when Brumfiel (1973) 
questioned a class of University of Michigan juniors and seniors, nearly all of whom had 
complete a university course in formal geometry, he found that their mastery of similar 
distinctions were shockingly deficient.  For example, collectively the students could 
recall only one axiom (two points determine a line), about half called a definition of 
isosceles triangle a theorem, and all were certain that, for two (given) independent 
postulates about points and lines, one could be deduced from the other.  In Israel, 
Linchevsky, Vinner, and Karsenty (1992) found that only about one-fourth of their 
university mathematics majors understood that it is possible to have alternate definitions 
for concepts.  These studies speak to about-proof topics.  But about-proof topics cannot 
be mastered without understanding the proof topics themselves.  In this case the topics in 
question involve the meaning and role of axioms and definitions.  These studies, then, 
suggest a weak, or even absent, axiomatic proof scheme among mathematics majors—an 
observation that is consistent with findings of our study with mathematics majors (Harel 
& Sowder, 1998).   

Findings Germane to the Transformational Proof Scheme 
Recall that the deductive proof scheme class consists of two schemes: the 

transformational proof scheme and the axiomatic proof scheme.  The former is a special 
case of, and a conceptual prerequisite for, the former.  The research findings we have just 
reported paint a gloomy picture as to the quality of students’ proof schemes.  The failure 
of mathematics instruction to help many students—even college-bound students and 
mathematics majors—construct the transformational proof scheme is evidenced in these 
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reports.  In this section we provide a closer look at the characteristics of the 
transformational proof scheme, particularly the deduction process characteristic. 

As was defined earlier, the transformational proof scheme has three 
characteristics: generality, operational thought, and logical inference.  As the language 
may suggest, our definition of the transformational proof scheme naturally draws one to 
Piaget’s theory of intellectual developmental (for example, Inhelder & Piaget, 1958).  
Battista and Clements (1992) focused on Piagetian thought in their discussion of proof in 
an earlier handbook (pp. 439-440), identifying three levels of justification/proof, with the 
third level being marked by the student being “capable of formal, deductive reasoning 
based on any assumptions” (p. 439)—the generality characteristic—whereas at the 
second level, the student’s reasoning has an empirical reality, with the student not 
realizing that an argument may cover all cases. The third level of thinking is often 
identified with Piaget’s “formal operational” level—the operational thought 
characteristic.  Although the nominal approximate age for the development of formal 
operational thought is early adolescence and there are different aspects of formal 
operational thought (e.g., proportional thinking, ability to control variables, propositional 
logic), studies suggest that many high school and college students have not reached the 
formal operational level in some areas important in mathematics.  For example, Lawson, 
Karplus, and Adi (1978) gave tasks in several areas, including propositional logic (one 
such item is Task 1 in Figure 4), to students at grades 6, 8, 10, 12, and 13-14.  They found 
“the lack of clear and substantial improvement with age for the propositional logic 
items,” with percents correct by grade on the Task 1 item being 1.0%, 2.1%, 10.1%, 
12.0%, and 16.2% (p. 469).  A study of 16-year-old English students found that only 30% 
tested at a level consistent with formal operational thought (cited in Adey, 1999).  It 
appears that it is risky to assume that logical reasoning at a high level develops 
automatically in the course of schooling, whether within or outside mathematical 
contexts. 

Psychologists other than Piaget have examined logical thinking for many years, 
with especially fascinating work done during the last thirty years (for example, Evans, 
1982; Rips, 1994; Wason & Johnson-Laird, 1972).  More recently, Johnson-Laird (2001) 
has observed that “deductive reasoning is under intense investigation.  The field is fast 
moving and controversial” (p. 441), with at least some of the controversy coming from 
different hypothesized mechanisms of reasoning for selected tasks.  There does not, 
however, seem to be controversy about the following findings.  Performance on logical 
inferences involving modus ponens is usually reasonably good, but performance on those 
tasks involving modus tollens is weak, as is a full understanding of inferences involving 
if-then statements.  Students are too willing to use invalid inference patterns like 
affirming the consequent (i.e., “if p then q” and “q” yielding “p”).  In general, humans do 
not seem to process negative statements as facilely as affirmative ones, and context is an 
extremely important variable in performance on deductive reasoning tasks (Wason & 
Johnson-Laird, 1972).  Figure 4, for example, gives logically isomorphic tasks on which 
the success rates of adults are strikingly different.  Only 2 out of 24 (about 8%) of the 
respondents correctly identified the two cases that must be considered for Task 1, but 
88% did so on Task 2 (reported in Wason & Johnson-Laird, 1972). Thus, our discussion 
here focuses primarily on findings and studies dealing with logic in mathematical 
settings, calling on known work from psychology when it seems particularly pertinent. 
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Task 1.  Given four envelopes with a 
letter on the front side and a number on 
the back, select just the envelopes 
definitely needed to be turned over to 
find out whether they violate the 
rule.Separate envelopes show on front:   
D and  C, and on back:  5 and  4. 
 
 
 
 
Rule to test:  If a letter has a D on one 
side, then it has a 5 on the other side. 
Percent correct (D, 4):  8% 

Task 2.  Given four envelopes with a 
space for a stamp on one side and 
sealed or not, select just the envelopes 
definitely need to be turned over to find 
out whether they violate the rule. 
 
Envelopes show    
(a) back of sealed envelope;  
(b) unsealed envelope with flap up;  
(c) front of an envelope with stamp;  
(d) front of an unstamped envelope. 
 
Rule to test:  If a letter is sealed, then it 
has a 5 pence stamp on it.Percent 
correct (a, d):  88% 

Figure 4.  Two logically isomorphic tasks with “abstract” [Task 1] and “concrete” 
[Task 2] contexts (after Wason & Johnson-Laird, 1972, pp. 191-192). 
 
Although our focus is mainly on studies dealing directly with mathematics, one 

sobering study involving everyday contexts deserves special note, because some of the 
data come from prospective secondary school mathematics teachers.  Using items from 
Eisenberg and McGinty (1974), Easterday and Galloway (1995) compared the 
performance of last-year university students planning to teach middle school or high 
school mathematics with those of 7-8th graders and 12th graders on a variety of reasoning 
tasks.  The tasks were based on everyday contexts that should be non-suggestive (e.g., “If 
John is big, then Jane is big. John is big.  Is Jane big?  Yes/no/maybe”). In particular, on 
modus tollens tasks, the college students scored 47%, about the same as the 12th grade 
calculus students but 20% less than the 7-8th graders' 67%.  These particular 7-8th graders 
were studying geometry and may therefore have been exposed to logic, but an earlier 
comparison in 1986 with 7-8th graders in advanced sections had given a similar result, 
with the 7-8th graders scoring 62% and the college students only 40% on the modus 
tollens tasks (Easterday & Galloway, 1995, p. 433). The authors concluded, “College 
students are barely performing better than children whom they may one day teach” (p. 
435), and neither group was by any means topping out in performance. 

There seem to be only a few data on students’ abilities with specific ideas from 
logic and within mathematics.  Mentioned earlier were the limited results from NAEP, 
and there the picture was clouded by the use of a non-mathematical context. The large-
scale Longitudinal Proof Project in England has, however, looked at students’ 
performance on if-then statements involving number theory ideas (Hoyles & Kuchemann, 
2002).  Among their findings was that 62% of 14-year-olds thought that a given if-then 
statement (for example, if the product of two numbers is odd, then the sum of the 
numbers is even) “said the same thing” as its converse.  However, the longitudinal nature 
of the study also allowed Hoyles and Kuchemann to find a 7% improvement on this item 
over that of the same students at age 13.  (In passing, it may be worth noting that so many 
theorems, especially in geometry, do have true converses, so it is easy to see how 
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students may be insensitive to the logical difference between an if-then statement and its 
converse.)   

Even advanced students have difficulty with quantifiers.  Dubinsky and Yiparaki 
(2000) found that university students at various levels, including some in an abstract 
algebra course, had much greater trouble giving the mathematical meaning of a doubly 
quantified statement when the existential quantifier appeared before the universal 
quantifier (“There is a positive number b such that for every positive number a  b ≤ a”—
19% correct) than when the quantifiers were reversed, universal before existential (“For 
every positive number a there is a positive number b such that b < a”—59%).  Selden and 
Selden (1995) noted that university mathematics students may have difficulties in even 
restating mathematical statements precisely, with their largely third- and fourth-year 
students often giving incorrect responses when quantifiers were involved.  Thus, although 
there may be areas of apparent strength in the use of logic (for example, the use of modus 
ponens), there appear to be many areas of weakness as well, and at a wide gamut of 
levels of schooling.  

An important point is that everyday usage of logical expressions may differ 
considerably from the precise usage in mathematics.  Epp (2003) has summarized the 
differences in a compelling way, and O’Brien, Shapiro, and Reali (1971) have referred to 
“child’s logic” in describing some of the differences.  For example, “or” in everyday 
usage is most often in the exclusive sense (“I’ll wear my sandals or my tennis shoes”), in 
contrast with the inclusive convention common in mathematics.  An everyday if-then 
statement (for example, “If you finish your work, then you can watch the game”) often 
connotes what would be an if-and-only-if statement in mathematics and to many children 
seems to be an “and” statement.  The disparities between everyday usages and 
mathematical usages are so marked that explicit instruction in logic as used in 
mathematics would seem to be necessary, with contrasts to the less precise everyday 
usages pointed out, yet, as Epp contends (2003), perhaps exploiting non-mathematical 
usages that do reflect the mathematically precise ones, as exemplars for the latter.  

Another interesting disparity between everyday usage and mathematical usage is 
that of indirect proof.  According to Freudenthal (1973) indirect proof is a very common 
activity.  Seven to eight year old children used contradiction in game playing and 
checking conjectures (Reid & Dobbin, 1998).  Antonini (2003) even found that indirect 
argumentations occurred spontaneously by students in his interviews with them about 
mathematical assertions.  Yet research has shown that students experience difficulties 
with proof by contradiction in mathematics.  Leron (1985), for example, observed that 
despite the simple and elegant form of certain proofs by contradiction, students 
experience what seem insurmountable difficulties. Lin, Lee, and Wu Yu (2003) see the 
ability to negate a statement as a prerequisite ability for succeeding at a proof by 
contradiction.  They found that the difficulty levels of students’ negating a statement can 
be ordered decreasingly as negating statements without quantifiers, negating “some,” 
negating “all,” and negating “only one.”   

In general, then, there are many weak spots in students’ likely grasp of the logical 
reasoning used in advanced proof schemes.  Is it a chicken-egg question, or can logical 
thinking and proof performance grow together?  Later in this section we summarize 
several studies in which explicit instruction in logical principles was incorporated into 
high school geometry courses. 
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Instructional-Social-Cultural Factors:  Evidence Pointing to Curriculum and Instruction 
Students’ instructional history is without question an important variable in 

studying their performance in justification/proof settings.  Hoyles (1997), in particular, 
makes a compelling case that studies of advanced learners’ performance are relatively 
meaningless without knowing what curricula (and what teaching emphases) they have 
received. Two important dimensions of instructional history are the curriculum and the 
teaching.  We begin with studies of teaching and teachers, giving some evidence of the 
delivered curricula.  Following this, we review a few studies that highlight the vast 
differences in curricula, primarily the intended curricula as evidenced by national or 
regional guides.  The earlier report of several status studies of students’ performance have 
given a glimpse of the learned curricula.  We then attend to some studies that give 
evidence of what might be achieved through revised curricula and teaching, as delivered 
by teachers with a different perspective on teaching, with the section including a review 
of a few studies that show the possibilities offered by technology.  We conclude with 
several studies that have focused explicitly on logic as a vital component for what we call 
the deductive proof schemes. 

Current Status 

Teachers and teaching. 
The emphasis that teachers place on justification and proof no doubt plays an 

important role in shaping students’ proof schemes.  “You get what you teach” is a 
common aphorism, and the intended curriculum may differ markedly from the delivered 
curriculum, especially across classrooms.  The essentiality of opportunity to learn must 
be recognized not only at the intended curriculum level but also in the teachers’ enacted 
curriculum.  Yet, a study involving 62 mathematics and science teachers in 18 high 
schools in six states allowed Porter (1993) to note that for the mathematics teachers, “On 
average, no instructional time is allocated to students learning to develop proofs, not even 
in geometry” (p. 4).  

Results on items allied to the areas of justification and proof in the 1996 NAEP 
mathematics assessment indicate not only that students perform much worse on items 
requiring explanation and justification, but also that at grade 8, the students of teachers 
who devote more time to “developing reasoning and analytical ability to solve unique 
problems” have noticeably higher overall scores than other students (Silver & Kenney, 
2000).  The importance of the role of the teacher (and the curriculum) in fostering 
justification and proof is further highlighted by the videotape study in the Third 
International Mathematics and Science Study (TIMSS), in which 30 eighth-grade 
sessions in each of Germany, Japan, and the U.S. were analyzed.  The report reaches the 
following conclusion. 

The most striking finding in this review of 90 classes was the rarity of explicit 
mathematical reasoning in the classes.  The almost total absence of explicit 
mathematical reasoning in Algebra and Before Algebra courses raises serious 
questions about the ways in which those subjects are taught.  In order for these 
courses to help introduce students to mathematical ways of knowing, some of the 
logical foundations of mathematical knowledge should be explicit.  Of course, the 
total absence of any instances of inductive or deductive reasoning in the analyzed 
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United States classes cries out for curriculum developers to address this aspect of 
learning mathematics.  (Manaster, 1998, p. 803) 

It should be clear that only an authoritarian proof scheme is likely to be fostered in these 
classrooms.   

Despite Porter’s (1993) finding of little attention to proof in high school, one 
would certainly expect more explicit attention to proof in the mathematics at those grade 
levels where proof most often is a conscious part of the curriculum.  Senk (1985) noted, 
however, that there were consistent differences across schools in the geometry students’ 
performances on her proof tasks.  Tinto (1988) too noted that one of her four teachers 
seemed markedly different from the others in his approach to geometry. In their large-
scale study of proof in British classrooms, Healy and Hoyles (1998) found that students 
who had been expected to write proofs and who had classes in which proof was taught as 
a separate topic performed somewhat better on proof items than other students. 
Thompson (1991), on the other hand, did not notice differences across her nine teachers 
and schools; her sample, however, included three private schools and two magnet schools 
and so was perhaps not representative.  Overall, it appears that at least some of the 
deficiencies in students’ acquisition of more sophisticated proof schemes may stem from 
the lack of opportunity to engage in proof-fostering activities, even in courses where one 
would expect much attention to proof. 

The evidence from the status studies of university students’ proof knowledge 
suggests that some, if not many, precollege teachers are unlikely to teach proof well, 
perhaps because their own grasp of proof was probably limited in college and may not 
have grown since then.  Knuth (2002a) examined the conceptions of proof of 16 
practicing secondary school mathematics teachers, most with backgrounds that would 
pass a face-validity test for knowledge of mathematics.  In interview settings, Knuth 
asked the teachers to respond to general questions about proof (e.g., What purpose does 
proof serve in mathematics?), to evaluate given arguments (both proofs and non-proofs), 
and to identify the arguments that were most convincing.  Although all of the teachers 
endorsed the verification role of proof, none mentioned the explanatory role of proof (see 
the section on the concept of proof scheme).  Six of the 16 thought it might be possible to 
find contradictory evidence of a (non-specified) statement that had been proved.  Four of 
the 16 tested a statement with a given, endorsed proof with further examples (cf. 
Fischbein & Kedem, 1982), even though all of the teachers eventually acknowledged that 
it would not be possible to find a counterexample.  Even though the teachers collectively 
correctly identified 93% of the correct arguments as being proofs, over a third of the non-
proof arguments were rated as being proofs!  Ten of the 16 accepted the proof of the 
converse of one statement as a proof of the statement.  Thirteen of the 16 teachers found 
arguments based on examples or visual presentations to be most convincing.  Although 
Knuth felt that their responses may have been directed toward personally-convincing 
rather than mathematically-convincing, that mathematics teachers would be convinced by 
such arguments more than by a mathematical proof is significant, because it reveals an 
apparent dominance of the empirical proof schemes among the teachers.  Knuth (2002b) 
further examined these teachers’ ideas about proof in the context of school mathematics 
(versus the earlier just-in-mathematics).  In view of  the NCTM  (2000) recommendation 
that reasoning and proof be considered fundamental aspects of the study of mathematics 
at all levels of study, it is disappointing that the teachers in Knuth's study  “…tended to 
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view proof as an appropriate goal for the mathematics education of a minority of 
students” (2002b, p. 83), with 14 not considering proof to be a central concern in school 
mathematics. And, to repeat, none even explicitly mentioned the explanatory role of a 
proof, although seven did mention its verification role—that a proof shows why a 
statement is true.  Thirteen regarded the development of logical thinking or reasoning as 
the primary role of proof in school mathematics.  Yet, the teachers did not completely 
reject justifications, but were willing to rely on informal “proofs” (e.g., examples and 
drawings) to support results, a practice that may mislead students into thinking that such 
are acceptable mathematical “proofs,” and reinforcing the acceptability of their empirical 
proof schemes. 

Curricula. 
That mathematics curricula differ in their treatments of proof is by no means a 

recent phenomenon.  For example, in his study of students’ proof explanations, Bell 
(1976) found that proof is the topic that shows the greatest variation in approaches 
internationally. He noted that this variation can be attributed to the tension between the 
recognition among teachers that deduction is essential to mathematics but that only the 
most capable students develop a good understanding of it. There is evidence that this 
condition remains true today as well. For example, Fujita and Jones (2003) compared the 
textbook treatments of geometry in lower secondary schools in Japan and Scotland and 
concluded the following.  

Our analysis indicates that…Japanese textbooks set out to develop students’ 
deductive reasoning skills though the explicit teaching of proof in geometry, 
whereas comparative UK [United Kingdom] textbooks tend, at this level, to 
concentrate on finding angles, measurement, drawing, and so on, coupled with a 
modicum of opportunities for conjecturing and inductive reasoning. (p. 1) 
It is, perhaps, natural to expect great variation in the treatment of curricular topics 

within countries that do not have national curricular and educational guidelines.  In the U. 
S., for example, how geometry, the primary locus of proof efforts until recently, should 
be handled has led to vastly different opinions and occasionally to different approaches or 
emphases in school geometry (cf., e.g., Hoffer, 1981; NCTM, 1973, 1987; Usiskin, 
1987). 

Examples of Curricula Aimed toward Enhancing Students’ Proof Schemes 
 We do not claim that the studies touched on below use our language of proof 
schemes, but it will be clear that students who have had such treatments should possess 
different proof schemes from those that apparently result from traditional teaching.  Of 
particular interest and importance, we think, are the feasibility studies that have involved 
children in elementary schools. 

Earlier feasibility studies. 
Perhaps because of the spirit of the “New Math” times, and the call of the 

Cambridge Conference Report to move toward more sophisticated mathematics earlier in 
the curriculum, some studies in the 1970s focused on proof with younger children.  To 
gauge whether and when children seem able to cope with proof or proof-like tasks, Lester 
(1975) devised a computer-delivered deductive system in a game-like form, with well-
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defined rules (i.e., postulates) and target configurations (i.e., theorems) to be attained by 
applying the rules (i.e., with proofs).  Hence, the students were dealing implicitly with an 
axiomatic system.   

Lester (1975) sampled 19 students from each of four groups, one group from 
grades 1-3, a second from grades 4-6, a third from grades 7-9, and the fourth from grades 
10-12, gave them practice with the rules, and studied their performances on the target 
tasks.  His grades 7-9 students performed as well as the students from grades 10-12, and 
the students from grades 4-6 solved about as many tasks as the older students, but took 
somewhat longer.  Lester suggested that “even students in the upper elementary grades 
can be successful at mathematical activities that are closely related to proof” (p. 23).  
Indeed, King (1970, 1973) thoroughly developed a 17-day unit dealing with some 
elementary number theory results (e.g., a number which is a factor of two numbers is also 
a factor of their sum).  He found that a group of 10 above-average sixth graders could 
reproduce the proofs initially developed with considerable teacher support (in contrast to 
a non-equivalent control group), but the evidence also suggested that the proofs were 
given from rote memory. 

Fawcett’s study of the late 1930s deserves special mention. The title and sub-title 
give a good summary:  The Nature of Proof, A Description and Evaluation of Certain 
Procedures Used in a Senior High School to Develop an Understanding of the Nature of 
Proof.  Whatever the reason—World War II, the usual inertia in curriculum—this study 
seemed to have had little impact, even though it was reported in a yearbook of the NCTM 
(Fawcett, 1938/1995).  His approach was surprisingly modern in tone.  Fawcett’s 
summary includes the following. 

    The theorems [of geometry] are not important in themselves.  It is the method 
by which they are established that is important, and in this study geometric 
theorems are used only for the purpose of illustrating this method.  The 
procedures used are derived from four basic assumptions: 
1. That a senior high school student has reasoned and reasoned accurately before 
he begins the study of demonstrative geometry. 
2. That he should have the opportunity to reason about the subject matter of 
geometry in his own way. 
3. That the logical processes which should guide the development of the work 
should be those of the student and not those of the teacher. 
4. That opportunity be provided for the application of the postulational method 
to non-mathematical material. 
     Non-mathematical situations of interest to the pupils were used to introduce 
them to the importance of definition and to the fact that conclusions depend on 
assumptions, many of which are often unrecognized.  To make definitions and 
assumptions and to investigate their implications is to have firsthand experience 
with the method of mathematics… (p. 117) 

  Fawcett’s teaching experiment, with a non-equivalent control group, continued 
through two school years, with the report covering just the first year.  As the excerpt 
above suggests, the students eventually composed, collectively, their lists of undefined 
terms, definitions, and assumptions.  The need for such elements arose in discussing 
everyday situations, such as the importance of definition in discussing how the governor 
of Ohio handled a particular bill (pp. 51-52).  Of course the teacher played a major role in 
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initiating such discussions and in providing fruitful leads for particular results, but in the 
large the students were responsible for conjecturing results and then proving them.  The 
evaluation of the experiment was based on a state geometry test and a test of the ability to 
analyze non-mathematical material.  Even though the experimental students, after one 
year of a two-year treatment, had not covered the usual material in the standard course, 
their performance (although not reported thoroughly) seemed satisfactory on the 80-point 
state geometry test:  Median 52.0, state median 36.5 (p. 102).  More telling was the 
experimental students’ performance on the analysis of non-mathematical material, where 
they out-performed by far the control group (change score of 7.5 vs a change score of 1.0; 
maximum possible not given) (p. 103).  Fawcett also quoted the laudatory reactions of 
visitors and of the students themselves, contrasting the students’ final remarks with the 
largely indifferent attitudes expressed at the beginning of the experiment. 
 One can only conclude from these studies that upper elementary school children 
can deal with proof ideas or actions, and that high school students can develop 
meaningful understandings of proof if they are taught appropriately. 

More recent feasibility studies. 
Several researchers have emphasized a sociocultural perspective in investigating 

and enhancing the development of students’ proof schemes.  According to this 
perspective, the development of any higher voluntary form of human knowledge cannot 
be understood apart from the social context in which it occurs.  As such, learning is 
necessarily a product of social interaction.  Key to this perspective is Vygotsky’s (1978) 
notion of “zone of proximal development” (ZPD): the difference between what the 
students can do under adult guidance or in collaboration with more capable peers and 
what they can do without guidance.  A direct and critical implication of this perspective is 
instructional scaffolding (Mercer, 1995), which refers to the provision of guidance and 
support that is increased or withdrawn in response to the developing competence of the 
learner.  Blanton and Stylianou (2003) further suggest:    

Since learning is viewed as a product of interaction, it follows that one’s 
development within the ZPD is affected by the intellectual quality and 
developmental appropriateness of these interactions (Diaz, Neal, & Amaya-
Williams, 1999).  In other words, the extent of one’s development within the ZPD 
is predicated in part upon how the more knowing other organizes, or scaffolds, the 
task at hand.  Thus, if we intend to understand development within the ZPD, we 
must be thinking about if and how tasks can be scaffolded to extend one’s 
learning. (p. 114) 
Blanton and Stylianou (2003) have investigated the nature and role of this 

scaffolding in the learning and teaching of proof.  Specifically, they addressed two 
questions: (a) What is the nature and meaning of instructional scaffolding in the 
classroom in the development of students’ proof ability? and (b) How do different types 
of scaffolding prompts from the teacher affect students’ self-regulatory thinking about 
proof?  Their results suggest  

… students who engage in whole-class discussions that include metacognitive 
acts as well as transactive discussions about metacognitive acts make gains in 
their ability to construct mathematical proofs.  Moreover, students’ capacity to 
engage in these types of discussion is a habit of mind that can be scaffolded 
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through the teacher’s transactive prompts and facilitative utterances.  … [This] 
suggests that students can internalize public argumentation in ways that facilitate 
private proof construction if instructional scaffolding is appropriately designed to 
support this. (p. 119) 
Some of the most promising work directly or indirectly related to students’ 

growth in elements of proof has been with elementary school children, as early as the 
primary grades and most often in problem-based settings where questions of proof have 
come up as intended by-products of the investigations.  Evidence exists to indicate that a 
classroom environment that is conducive to social interactions among students and 
between the teacher and the students can be productive.  Hence, these studies have often 
incorporated small-group work and whole-class discussions sharing how different 
children were thinking (that is, justifying their work) rather than just focusing on the 
numerical result. For example, Zack (2002) had two groups of fifth graders work on the 
following problem: Find all the squares on an n by n chessboard, first with n = 4, then n = 
5, then n = 10. What if it was a 60 by 60 square? Can you prove that you have them all? 
After working on this problem, her students offered eight different counter-arguments to 
an answer of 2310 (based on 6 times the established answer of 385 for a 10 by 10).  
Surely students who experience such instruction will develop different proof schemes 
than will children whose teachers always judge the correctness of an answer. In some 
cases (Cobb et al., 1991) researchers worked closely with classroom teachers in designing 
the tasks and studying the effects of the children’s work and their discussions.  In other 
cases (e.g., Carpenter, Franke, Jacobs, Fennema, & Empson, 1998), the teachers were 
provided with a great deal of background on children’s thinking strategies but left to their 
own in designing and carrying out lessons; however, an earmark of the classroom work 
was to call for students to give justifications.   

Other examples of early appearances of proof ideas come from work aiming 
toward algebra in the elementary grades (Schifter, Monk, Russell, Bastable, & Earnest, 
2003).  Some of their instruction deliberately but indirectly deals with such 
generalizations as commutativity of addition, although that language may not be used in 
the early exposures.  Key are the tasks and teacher questions.  Questions such as “Will it 
always work that way?” or “Why does it work out that way?” are a natural part of the 
instruction and indeed become an expected part of the lesson.  Their work shows that 
children’s conviction about at least some generalizations may follow an interesting path.  
For example, first graders, when asked “Will it always work that way?” after noting a 
specific example for commutativity of addition, may be uncertain that the idea will 
always work.  Later, they may be confident that the answer is “Yes” because they have 
tried lots of examples (an empirical proof scheme), but still later, they may return to 
uncertainty because they are aware that there are many untested cases and that they have 
not tried them all.  And, not unexpectedly, some students will over-generalize, accepting 
commutativity of subtraction as well. 

Several Italian studies have also examined the nature of students’ justifications as 
encountered in problem-based lessons (e.g., Boero, Chiappini, Garuti, & Sibilla, 1995; 
Boero, Garuti, & Mariotti, 1996).  One example is their grade 8 students’ study of 
shadows.  Using data that the students collected over a period of time about the shadows 
of two vertical sticks, they examined the question of whether the shadows of a vertical 
stick and an oblique stick can be parallel, and if so, when.  Small-group work, with 
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teacher help, led to clearly stated conjectures (e.g., If the sun’s rays belong to the vertical 
plane of the oblique stick, then the shadows are parallel) that were then examined further, 
with an eye toward establishing them “in general.”  In the analysis of these subsequent 
attempts at general arguments (i.e., proofs), the researchers noticed that in the successful 
proofs, there were connections with key observations made during the conjecture-
forming stage.  The researchers’ collective work has led to their hypothesis of “cognitive 
unity,” emphasizing the close connection between the reasoning during the formation of a 
conjecture and the reasoning in an eventual proof:   

(D)uring the production of a conjecture, the student progressively works out 
his/her statement through an intensive argumentative activity functionally 
intermingling with the justification of the plausibility of his/her choices; during 
the subsequent statement proving stage, the student links up with this process in a 
coherent way, organizing some of the justifications (‘arguments’) produced 
during the construction of the statements according to a logical chain (Boero, 
Garuti, Lemut, & Mariotti, 1996, p. 119-120).   

They also argue that such a process is followed by many mathematicians--during the 
conjecturing stage, the mathematician uses arguments that can later be adapted to support 
his or her mathematical proof—and make the case that much more instruction in 
mathematics should involve conjecturing. 

One series of studies (Maher, 2002; Maher & Martino, 1996; Martino & Maher,  
1999) carried out with instruction in a similar problem-based vein, is notable because of 
its long-term nature (occasional sessions over 14 years, usually separate from the regular 
mathematics classes) and because of proof behaviors—proof by contradiction, proof by 
cases, proof by mathematical induction—that arose naturally, if informally, even in 
elementary school, at least on the part of some students.  The nature and flavor of the 
sessions is communicated by these retrospections of a participant: 

Well, we break up into groups…like five groups of three, say, and 
everyone in their own groups would have their own ideas, and you’d argue 
within your own group, about what you knew, what I thought the answer 
was, what you thought the answer was and then from there, we’d all get 
together and present our ideas, and then this group would argue with this 
group about who was right with this…(Maher, 2002, p. 37)….You didn’t 
come in and say, “this is what we were learning today and this is how 
you’re going to figure out the problem.”  We were figuring out how we 
were going to figure out the problem.  We weren’t attaching names to that 
but we could see the commonness between what we were working on 
there and maybe what we had done in school at some point in time and 
been able to put those things together and come up with stuff and to do 
these problems to come up with, what would be our own formulas because 
we didn’t know that other people had done them before.  We were just 
kind of doing our own thing trying to come up with an answer that was 
legitimate and that no matter how you tried to attack it, we could still 
answer it…  (Maher, 2002, p. 32). 
As the excerpts illustrate, all of these student-centered, problem-based studies 

have involved a way of teaching that is in stark contrast to the stereotype of a 
mathematics class:  Students check homework, teacher illustrates something new, 
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students then do seat-work or homework to practice the new material.  The didactical 
contract (Brousseau, 1997) in the experimental classes was obviously quite different from 
that in the stereotypical one.  In particular, the “social norms” were quite different:  
Students were expected to work together rather than singly, students were to explain their 
solution methods, and students were to listen carefully and evaluate the explanations of 
other students--and hence perhaps learn different proof schemes. 
 Yackel and Cobb (1996) have sharpened the analysis of social norms to identify 
“sociomathematical norms,” those social norms that refer specifically to mathematical 
activity.  For example, coming to accept that an explanation is expected might be a 
general social norm, whereas what constitutes an acceptable mathematical explanation 
would be a sociomathematical norm (Yackel & Cobb, 1996).  Other sociomathematical 
norms might include norms dealing with when different explanations are mathematically 
different, or when a justification is acceptable, or when justifications or explanations 
convey efficiency or elegance. Indeed, Yackel, Rasmussen, and King (2000) focused on 
the norms that developed during a problem-based undergraduate differential equations 
course.  They found that students “frequently explained their reasoning without 
prompting, offered alternative explanations and attempted to make sense of other 
students’ reasoning and explanations, despite the fact that their prior experiences were 
with traditional approaches to mathematics instruction” (p. 276) and, in particular, there 
was evidence of the development of such sociomathematical norms as, what is an 
acceptable mathematical justification and what makes up a mathematically different 
explanation.  That the students, who had likely experienced mathematics classrooms with 
quite different social norms, developed such norms is particularly encouraging.  Yackel 
and Cobb point out that sociomathematical norms should be examined in teaching modes 
that are different from the inquiry mode in which they have been studied, because the 
classroom conduct, whether stereotypic or not, will automatically convey what is an 
acceptable norm. For example, one can wonder whether some students, young or 
experienced, might be more comfortable with a more directed approach.  Dweck (1999) 
has identified different goal orientations on the part of students.  Some students may be 
guided primarily by performance goals like grades, parent/teacher approval, high marks, 
or status with others, whereas others have what Dweck calls “learning goals”—their 
primary interest is in understanding or mastery.  A student’s extreme preference for 
performance goals may be an unfortunate aspect of schooling or society as it exists, of 
course, but it might also result in resistance to sociomathematical norms that do not 
obviously support perceived performance.  It is an interesting question as to whether 
different sorts of teaching might shape a student’s learning goals. 

In most of the studies above, outside support for the teacher was particularly 
important.  The question of what is feasible in classrooms without further teacher 
preparation or researcher involvement is crucial, as, for example, Yackel and Hanna point 
out (2003).  It is nonetheless exciting to envision learners, starting in the primary grades 
and continuing through high school and college, developing the social and 
sociomathematical norms about proof, and the proof schemes, that one might wish, but it 
is daunting to think of the changes needed in curricula and teachers (and testing 
programs) to support the development of such norms.  As an indication of areas of 
teacher preparation that are important, Martino and Maher (1999) suggest, based on their 
videotape analysis of their multi-year study, that there is a “strong relationship between 
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(1) [the teacher’s] careful monitoring of students’ constructions leading to a problem 
solution, and (2) the posing of a timely question which can challenge learners to advance 
their understanding” (p. 53).  And there may be useful norm-supporting ideas even for 
classes in which problem-based or inquiry-based instruction is not the mode.  For 
example, Blanton, Stylianou, and David (2003), based on their work with a college 
discrete mathematics course and extending the work mentioned earlier (Blanton & 
Stylianou, 2002), believe that an instructor’s attention to likely student understanding 
(and hence a zone of proximal development) can enable an instructional scaffolding that, 
along with a careful discussion of (preferably) students’ proofs,  can support students’ 
understanding of proof. 

Again, all of these studies illustrate how appropriate mathematical curricula, 
together with appropriate teacher intervention, can help students to develop critical 
elements of deductive reasoning and an openness to the ideas of mathematical proof.  As 
feasibility studies, these efforts have shown that even elementary school children can be 
remarkably able to make sense of mathematics, if given opportunities.  Their 
explanations not only help them in their communication skills, but the explanations are 
likely also to help their classmates, to give to their teachers insights into the children’s 
level of understanding, and to engender or foster students’ growth in their proof schemes 
and their grasp of sociomathematical norms. 

Use of technology. 
The increasing use of dynamic geometry software during the last couple of 

decades has provoked researchers to look closely into the learning benefits as well as the 
potential risks of this tool.  In this section we focus on studies conducted to investigate 
the impact of dynamic geometry environments (DGEs) on the learning proof, primarily 
because those environments have been involved in several studies.    

Generating and measuring many examples, as is now possible and easy with 
DGEs, would seem only to support the idea that examples prove a result (the empirical 
proof scheme) and hence interfere with any need for deductive proof.  Chazan (1993a,b) 
noted and corroborated that the ideas that evidence is proof and that proof is merely 
evidence were widespread. He interviewed 17 students who were taught geometry in a 
DGE environment (1993b) to see how students fared when they experienced a geometry 
curriculum that involved both measurement of cases and deductive proof, with the 
curriculum including attention to the different types of argumentation involved with the 
two methods.  He found both evidence-is-proof (the empirical proof scheme) and proof-
is-merely-evidence postures on the part of the students, and hence he noted that the 
“comparison and contrast of verification and deductive proof certainly deserves explicit 
attention in mathematics classrooms” (1993b, p. 382), with the teachers involved in the 
study feeling that more time should have been spent in dealing with students’ doubts 
about deductive proofs (1993a, p. 109).  However, he also noticed that “fewer students 
considered evidence to be proof…whereas more students were skeptical about the limits 
of applicability of deductive proofs…Some students seemed to become more skeptical 
about deductive proofs as a result of becoming more skeptical about measurement of 
examples” (1993a, p. 109).  He also suggested, based on interviewee comments, “that the 
explanatory aspect of proofs is a useful starting point for a discussion of the value of 
deductive proofs” (1993b, p. 383), that some students have no idea of what deductive 
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proofs are intended to do, and that some students resist the idea that a deductive argument 
can assure that there cannot be counterexamples. 

A special issue of the journal, Educational Studies in Mathematics (2000, 44), 
included four reports on teaching experiments involving DGE.  The first four are by 
Mariotti, by Jones, by Marrades and Gutierrez, and by Hadas, Hershkowitz, and 
Schwartz.  The last paper is by Laborde, and synthesizes the previous four, providing a 
connecting theme among them by using Brousseau’s construct of “milieu.”  We continue 
with these studies. 

One of the significant results of the four studies is that their findings address a 
major concern regarding the use of DGEs in the teaching of geometry in school: “the 
opportunity offered by [DGE] to ‘see’ mathematical properties so easily might reduce or 
even kill any need for proof and thus any learning of how to develop a proof” (Laborde, 
2000, p. 151). 

Jones’ study was a teaching experiment with 12-year-old students.  The 
intervention involved students working in pairs or small groups on the classification of 
quadrilaterals.  The instructional activities involved tasks where the students were to 
reproduce a figure that could not be “messed up” by dragging any of its components (a 
vertex or segment).  More advanced activities included tasks of producing a figure that 
can be transformed into another specified figure by dragging (e.g, from a rectangle to a 
square).  In each case the students had to explain why their constructed figure was the 
expected one.  Laborde (2000) points out that this type of explanation consists of giving 
the conditions that imply that the constructed figure is the expected type of quadrilateral, 
a necessary activity to understand how proof works.  From our perspective, these 
explanations in the context of a DGE involve movement, and, therefore—as we have 
discussed in earlier in the section—they are causal, and hence deductive.  Accordingly, 
Jones’ (2000) study suggests that the DGE does not necessarily eliminate the need for 
proof in the students’ eyes but can enhance students’ deductive proof scheme.  The 
developmental path of students’ conception in this study started where students were.  
Initially, according to Jones, students lacked the capability to describe or explain in 
precise mathematical language.  The instructional emphasis in this stage was on 
description rather than explanation, where students utilized perception rather than 
mathematical language to describe their observations.  As the emphasis extended to 
explanations, students’ language became more precise but was mediated by the DGE 
terminology (e.g., the term “dragging”).  By end of the teaching experiment, students’ 
explanations related entirely to the mathematical context. 

Mariotti’s study was a long-term teaching experiment with 15-16-year-old 
students.  Students were engaged in DGE activities through which the students 
themselves constructed a geometric system of axioms and theorems as a system of Cabri 
Geometry commands.  Similar to Jones, Mariotti emphasized activities where the task is 
for pairs of students to construct geometric figures, describe the construction procedure, 
and justify why the procedure produces the expected figure.  The basic conceptual change 
that Mariotti’s (2000) study achieved was in students’ status of justification, which 
transitioned from an “intuitive” geometry—a collection of self-evident properties—to a 
theoretical geometry—a system of statements validated by proof.  The theoretical 
geometry that Mariotti’s students had constructed seems to be more than a deductive 
system, in that students were not only constructing and proving theorems but also 
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establishing the axioms on which these theorems rest, and thereby laying the foundations 
for their axiomatic proof scheme.           

Hadas, Hershkowitz and Schwarz’ (2000) study was done in the context of a 
geometry course that emphasized the concept of proof.  They developed instructional 
activities involving students making assertions about certain geometric relations and later 
checking them with a DGE.  The choice and sequence of activities were such that upon 
checking their assertions with the DGE the students would find them to be false—a 
realization that would make the students curious as to the reason for the falsity of the 
conjecture.  For example, in one of the activities the students began with two tasks.  The 
first task was to measure (with the software) the sum of the interior angles in polygons as 
the number of sides increases, generalizing their observation, and then explaining their 
conclusion.  The second task was to measure (with the software) the sum of the exterior 
angles of a quadrilateral.  Following this, the students were asked to hypothesize the sum 
of the exterior angles for polygons as the number of sides increases, and to check their 
hypothesis by measuring (with the software) and explain what they found.  Hadas, 
Hershkowitz and Schwartz succeeded in creating in the students a need to find out the 
cause for their assertion to be untrue.  Laborde (2000) points out that such an 
achievement would have been impossible without the use of a dynamic geometry system, 
for “the false conjectures came after students were convinced of other properties thanks 
to the DG system. … [The] interplay of conjectures and checks, of certainty and 
uncertainty, was made possible by the exploration power and checking facilities offered 
by the DG environment” (p. 154).    

Marrades and Gutierrez investigated how DGEs can help secondary-school 
students (aged 15-16 years) enhance their proof schemes.  As in Hadas, Hershkowitz and 
Schwarz’ study, Marrades and Gutierrez showed that a DGE can help students realize the 
need for formal proofs in mathematics.  By interpreting their results in terms of our 
taxonomy of proof schemes, an important observation reported in their study is that 
students’ transition to deductive proof schemes is very slow; the total teaching 
experiment lasted 30 weeks, with two 55 minute class per week.  Of particular 
importance is their finding that for this transition to take place instruction must not ignore 
students’ current empirical proof schemes and must institute a didactical contract that 
attempts to suppress the authoritative proof scheme.  Their method was to repeatedly 
emphasize “the need to organize justifications by using definitions and results (theorems) 
previously known and accepted by the class” (p. 120).  Finally, another significant 
finding of this study is that the ability to produce deductive proof evolves hand in hand 
with students’ understanding of subject matter: the concepts and properties related to the 
topic being studied.  This is consistent with other findings.  Simon and Blume (1996), for 
example, illustrated that a learner may not fully understand another’s proof because of a 
limited grasp of the concepts addressed in the proof (p. 29).  One can argue that such 
exposure might lead to a disequilibrium and eventually a greater understanding of both 
the concepts and the proof.  

Hence, DGEs are a promising tool, but they do not automatically or easily lead to 
improved proof schemes.  Accomplishing that sort of growth apparently requires a 
carefully laid-out curriculum (cf. de Villiers, 1999) and considerable adjustment by a 
teacher accustomed only to telling as the mode of instruction.  Lampert (1993), for 
example, described some of the difficulties encountered by teachers who allowed 
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conjecturing with a DGE.  (Making conjectures, itself, may be difficult for students new 
to the expectation.  Koedinger [1998], with an eye toward possible software activities, 
noted that with his task of writing a conjecture about kites, given the definition of kite, 
about a quarter of the roughly 60 geometry students could not come up with a non-trivial 
conjecture within 20 minutes.)  Lampert noted that the change from “sage on the stage” 
to “guide on the side” required adjustments both for the teacher and the students, since a 
different sort of didactical contract was involved.  Teachers were also concerned about 
the coverage of a standard body of content (for external testing purposes, or for later 
courses), as well as the departure from the usual, familiar axiomatic development that 
often eventuated. 

Does Explicit Teaching of Logic Work? 
The use of deductive proof schemes, at least implicitly, involves logic. Calls for 

the explicit teaching of logic are easy to find.  More than 40 years ago, consensus at the 
future-oriented Cambridge Conference on School Mathematics (1963) was that “it is 
hardly possible to do anything in the direction of mathematical proofs without the 
vocabulary of logic and explicit recognition of the inference schemes” (p. 39).  There 
have been occasional caveats, as in Suppes' remarks: 

I would not advocate an excessive emphasis on logic as a self-contained 
discipline…What I do feel is important is that students be taught in an explicit 
fashion classical rules of logical inference, learn how to use these rules in 
deriving theorems from given axioms, and come to feel as much at home with 
simple principles of inference like modus ponendo ponens as they do with 
elementary algorithms of arithmetic” (1966, p. 72). 
Studies of the effects of an explicit attention to logic have not, however, indicated 

that there is then a pay-off in proof-writing.  School geometry has long had a goal of 
improving students’ logical thinking (cf. NCTM, 1970), and several studies have looked 
at the influence of including an explicit, concentrated treatment of logic in that course 
(e.g., Deer, 1969; Mueller, 1975; Platt, 1967).  Yet, the usual outcome, even when the 
logic treatment has involved up to four weeks (Platt) and/or a reasonable number of 
students (Mueller, 146 students; Platt, 12 classes), is a finding of no-significant-
differences in proof performance.   

It is reasonable to expect that the teacher’s emphasis on logical reasoning, even in 
the absence of explicit treatment in a curriculum, might influence the students’ use of 
logic themselves.  In a study of the influence of teachers’ language on performance, 
Gregory and Osborne (1975) explored whether the teachers’ use of logic influenced their 
students’ performance on a logic test, by examining audiotapes of five lessons of 20 
junior high school mathematics teachers.  Although acknowledging some design 
problems, they found a significant positive correlation between logic test performance for 
some types of inferences (e.g., when negatives were involved) and the usages of if-then 
statements by the five teachers with the greatest average use vs. usages of the five 
teachers with the lowest.  Eye-catching, however, was the range in the averages of the 
number of usages per lesson of if-then sorts of statements:  8.3 to 40.6, with individual 
lessons giving from 3 to 48 usages (p. 28).  Unfortunately, there was no control for 
content covered (some teachers were teaching number theory, some word problems, and 
some properties of geometric figures), so the range is only suggestive of what might be 
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an important element in students’ growth in deductive reasoning:  the frequency of use of 
logical statements and logical reasoning in the classroom. 

Thus there is much evidence that some important elements of deductive reasoning 
are not natural parts of students’ repertoires, at a variety of school levels.  How to 
develop these elements so that they are recognized and utilized in mathematical proofs is 
an open question, and may not be realized through a single, short unit.  As the 2000 
NCTM Principles and Standards assert, “Reasoning and proof cannot simply be taught in 
a single unit on logic, for example, or by ‘doing proofs’ in geometry” (NCTM, 2000, p. 
56). 

Reflection 
In this chapter we have presented a comprehensive perspective on proof 

learning—a perspective that addresses mathematical, historical-epistemological, 
cognitive, sociological, and instructional factors.  Comprehensive perspectives on proof 
are needed, we argued, in order to better understand the nature and roots of students’ 
difficulties with proof so that effective instructional treatments can be designed and 
implemented to advance students’ conceptions of and attitudes toward proof.  Our 
perspective grew out of a decade of investigations—empirical as well as theoretical—into 
students’ conceptions of proof.  In various periods and stages of these investigations we 
have repeatedly confronted questions that collectively address a combination of the five 
factors mentioned above. 

The notion of “proof scheme” serves as the main lens of our comprehensive 
prospective on proof.  Through it, for example, we analyze and interpret students’ 
proving behavior—in their individual work as well as in their interaction with others—
and understand the development of proof in the history of mathematics.  A proof scheme 
consists of what constitutes ascertaining and persuading for a person (or community).  
This definition was born out of cognitive, epistemological, and instructional 
considerations.  Specifically, a critical observation in our and other scholars’ work is that 
proof schemes vary from person to person and from community to community—in the 
classroom, with individual students as well as the class as a whole, and throughout 
history.  “Proof,” when viewed in this subjective sense, highlights the student as learner. 
As a result, teachers must take into account what constitutes ascertainment and 
persuasion for their students and offer, accordingly, instructional activities that can help 
them gradually refine and modify their proof schemes into desirable ones.  This 
subjective view of proof emerged from our studies and impacted many of the conclusions 
we drew from them.  For example, it influenced our conclusions as to the implications of 
the epistemology of proof in the history of mathematics to the conceptual development of 
proof with students, the implications of the way mathematicians construct proofs to 
instructional treatments of proof, and the implications of the everyday justification and 
argumentation on students’ proving behaviors in mathematical contexts.  The subjective 
notion of proof scheme is not in conflict with our insistence on unambiguous goals in the 
teaching of proof—namely, to gradually help students develop an understanding of proof 
that is consistent with that shared and practiced by the mathematicians of today.  The 
question of critical importance is: What instructional interventions can bring students to 
see an intellectual need to refine and alter their current proof schemes into deductive 
proof schemes (Harel, 2001)? 
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The status studies we have reviewed and presented in this paper show the absence 
of the deductive proof scheme and the pervasiveness of the empirical proof scheme 
among students at all levels.  Students base their responses on the appearances in 
drawings, and mental pictures alone constitute the meaning of geometric terms.  They 
prove mathematical statements by providing specific examples, not able to distinguish 
between inductive and deductive arguments.  Even more able students may not 
understand that no further examples are needed, once a proof has been given.  Students’ 
preference for proof is ritualistically and authoritatively based.  For example, when the 
stated purpose was to get the best mark, they often felt that more formal—e.g., 
algebraic—arguments might be preferable to their first choices.  These studies also show 
a lack of understanding of the functions of proof in mathematics, often even among 
students who had taken geometry and among students for whom the curriculum pays 
special attention to conjecturing and explaining or justifying conclusions in both algebra 
and geometry.  Students believe proofs are used only to verify facts that they already 
know, and have no sense of a purpose of proof or of its meaning.  Students have 
difficulty understanding the role of counterexamples; many do not understand that one 
counterexample is sufficient to disprove a conjecture.  Students do not see any need to 
prove a mathematical proposition, especially those they consider to be intuitively 
obvious.  This is the case even in a country like Japan where the official curriculum 
emphasizes proof.   They view proof as the method to examine and verify a later 
particular case.  Finally, the studies show that students have difficulty writing valid 
simple proofs and constructing, or even starting, simple proofs.  They have difficulty with 
indirect proofs, and only a few can complete an indirect proof that has been started. 

We believe there is a need for more longitudinal studies regarding students’ proof 
schemes.  The most difficult studies to carry out, for both financial and design reasons are 
longitudinal studies.  Yet we cannot gain a solid understanding of the effect on students 
of continued attention to justification and proof throughout their studies in mathematics, 
except through longitudinal studies.  A one- or two-year exposure (let alone a one-
semester treatment) to instruction and curricula attentive to reason-giving can be dwarfed 
by a multiple-year focus on instruction and curricula that, to use an extreme example, 
emphasize rote skills likely to be useful in some external testing program.  In the latter 
cases, being asked to give reasons and arguments might well be viewed as aberrations 
and irrelevant to the perceived “really important” side of mathematics. 

The findings from studies of teachers’ conceptions of proof do not look much 
better than those with students.  Overall, teachers seem to acknowledge the verification 
role of proof, yet for many the empirical proof schemes seem to be the most dominant, 
even in dealing with mathematical statements, and they do not seem to understand other 
important roles of proof, most noticeably its explanatory role.  Some teachers tend to 
view proof as an appropriate goal only for the mathematics education of a minority of 
students, not considering proof and justification to be a central concern in school 
mathematics, as has been repeatedly called for by the mathematics education leadership 
(e.g., NCTM, 1989, 2000).  Studies show that little or no instructional time is allocated to 
the development of the deductive proof schemes, not even in geometry.  In the U.S. 
explicit mathematical reasoning in mathematics classes is rare, and in algebra and pre-
algebra courses it is virtually absent.  Many teachers are unlikely to teach proof well, 
since their own grasp of proof is limited.  It is important to determine better the extent to 
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which teachers are equipped to deliver a curriculum in which proof is central.  Results 
from studies like those of Knuth (2002a) and Manaster (1998), if indeed typical of a 
widespread performance of mathematics teachers, demand attention both on the part of 
university mathematics departments, which have a primary responsibility for the 
preparation of mathematics teachers, and on school districts, which support the continued 
development of their existing faculty.  

The bright side of the findings is that students who receive more instructional 
time on developing analytical reasoning by solving unique problems fare noticeably 
better on overall test scores.  Likewise, students who have been expected to write proofs 
and who have had classes that emphasized proof were somewhat better than other 
students.  It also seems possible to establish desirable sociomathematical norms relevant 
to proof, through careful instruction, often featuring the student role in proof-giving.  
There has been a concern that the ease with which technology can generate a large 
number of examples naturally could undercut any student-felt need for deductive proof 
schemes.  Fortunately, several studies have shown that with careful, non-trivial planning 
and instruction over a period of time, progress toward deductive proof schemes is 
possible in technology environments, where such desiderata as making conjectures and 
definitions occur. 

An important element in deductive proof schemes is of course the use of logical 
reasoning.  Yet there is evidence that many students, and possibly even many teachers, do 
not have a good grasp or appreciation of some important principles of logic.  Nor is it 
clear as to how best to devise instruction to improve performance with logic in 
mathematical (and non-mathematical) contexts.  It is unclear to us how best to prepare 
students to deal with the logical reasoning essential in mathematical proofs and valuable 
in even informal justifications—osmosis, or explicit attention?  And, in particular, the 
knowledge of teachers of mathematics about logical reasoning may be a matter of 
concern (e.g., Easterday & Galloway, 1995).  We see a need for the incorporation of 
items on proof or logic (even multiple-choice ones) into the periodic National 
Assessments of Education Progress.  From the practical viewpoint, the NAEPs exist, and 
they offer a view of performance across the U.S.  Even more pleasing would be to see 
large-scale efforts devoted explicitly to the study of performance in proof and logic, like 
those in Great Britain (Healy & Hoyles, 1998, 2000; Hoyles & Kuchemann, 2002).   A 
deep look at the students and teachers’ knowledge of proof, on the one hand, and at the 
development of the deductive proof scheme in the history of mathematics, on the other, 
has provided us with important insights as to what might account for students’ difficulties 
in constructing this scheme and what instructional approaches can facilitate its 
construction.  In particular, considerations of historical-epistemological developments 
have led us to new research questions with direct bearing on the learning and teaching of 
proofs.  For example:  

1. To what extent and in what ways is the nature of the content intertwined with 
the nature of proving?  In geometry, for example, does students’ ability to 
construct an image of a point as a dimensionless geometric entity impact their 
ability to develop the Greek axiomatic proof scheme? 

2. What are the cognitive and social mechanisms by which deductive proving 
can be necessitated for the students?  The Greek’s construction of their 
geometric edifice seems to have been a result of their desire to create a 
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consistent system that was free from paradoxes.  Would paradoxes of the 
same nature create a similar intellectual need with students?       

3. Students encounter difficulties in moving between proof schemes, particularly 
from the Greek’s axiomatic proof scheme (the one they construct in honors 
high-school geometry, for example) to the modern axiomatic proof scheme 
(the one they need to succeed in a real analysis course, for example).  Exactly 
what are these difficulties?  What role does the emphasis on form rather than 
content in modern mathematics (as opposed to Greek mathematics where 
content is more prominent) play in this transition?  Can students develop the 
modern axiomatic proof without computational fluency?  What role does the 
causality proof scheme play in this transition?   

These questions are examples of what we have delineated as important 
contributions from the history of mathematics to our thinking about students’ proof 
schemes.  But there are likely to be other valuable ideas from further study of the growth 
or development of proof ideas in the history of mathematics.  How mathematical proof 
arose in other cultures—e.g., the basis for the Japanese temple drawings (Rothman & 
Fukagawa, 1998)—would in itself be fascinating and potentially instructive about how 
proof ideas might be introduced or developed today.  In this respect, our effort to form a 
comprehensive perspective on proof is an attempt to understand what might be called the 
“proving conceptual field,” a term analogous to Vergnaud’s (1983, 1988) “multiplicative 
conceptual field.”  Like the multiplicative conceptual field, the proving conceptual field 
may be thought of as a set of problems and situations for which closely connected 
concepts, procedures, and representations are necessary. 
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