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Etcaywyn (1/2)

* The medieval economy was also changing in northern Europe
during the fourteenth and fifteenth centuries, although
developments were generally a bit behind those in Italy. And so
mathematics texts began to appear there to meet the new needs of
the society. We will consider here the work of Nicolas Chuquet in
France, Christoff Rudolff, Michael Stifel, and Johannes Scheubel in
Germany, Robert Recorde in England, and Pedro Nunes in
Portugal. There is much similarity among their works in algebra and
also similarities between these works and the Italian algebra of the
fifteenth century, so it is clear that these mathematicians all had
some knowledge of the contemporaneous work elsewhere in
Europe, even though explicit reference to the work of others is
generally limited or lacking entirely.

 Amnovuoia lomaviag
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Etcaywyn (2/2)

* But each of them also seems to have some original
material. It appears that the knowledge of Islamic algebra
had spread widely in Europe by the fifteenth century.

* Each person attempting to write new works used this
material and works in algebra from elsewhere in Europe,
adapted them to fit the circumstances of his own country,
and introduced some of his own new ideas.

* By the late sixteenth century, with the spread of printing,
new ideas could circulate more rapidly throughout the
continent, and those generally felt to be most important
were absorbed into a new European algebra.
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Algebra in France, Nicolas Chuquet (c. 1450-c.
1494) (1/2)

* Nicolas Chuquet (d. 1487) was a French physician who wrote his
mathematical treatise in Lyon near the end of his life. Lyon in the late
fifteenth century was a thriving commercial community with a growing
need, as in the Italian cities, for practical mathematics. It was probably to
meet this need that Chuguet composed his Triparty (Le Triparty en la
Science des Nombres par Maistre Nicolas Chuquet Parisien) in 1484, a
work on arithmetic and algebra in three parts, followed by three related
works containing problems in various fields in which the rules established
in the Triparty are used.

* These supplementary problems show many similarities to the problems in
Italian abacus works, but the Triparty itself is on a somewhat different
level in that it is a text in mathematics itself. Most of the mathematics in it
was certainly known to the Islamic algebraists and also to Leonardo of
Pisa. Nevertheless, since it is the first detailed algebra in fifteenth-century
France, we will consider some of its important ideas.
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Algebra in France, Nicolas Chuquet (c. 1450-c.
1494) (2/2)

* The first part of the Triparty is concerned with
arithmetic. Like the Italian works, it began with a
treatment of the Hindu-Arabic place value system and
detailed the various algorithms for the basic operations
of arithmetic, both with whole numbers and with
fractions.

* One of Chuquet’s procedures with fractions was a rule
“to find as many numbers intermediate between two
neighboring numbers as one desires.” His idea was
that to find a fraction between two fractions, one
simply adds the numerators and adds the
denominators.
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Regula Falsi (1/3)

between 1/2 and 1/3 is 2/5, and between 1/2 and 2/5 is 3/7. Chuquet gave no proof that the
rule is correct, but he did apply it to deal with finding roots of polynomials. For example,
to find the root of x> + x = 39%, Chuquet began by noting that 5 is too small to be a root,
while 6 1s too large. He then proceeded to find the correct intermediate value by checking, in
turn, 5%, 5%, 5%, and 5% and determining that the root must be between the two last values.

Applying his rule to the fractional parts, he next checked S%, which turns out to be the correct
answer.
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Regula Falsi (2/3)

Ifa/b < c/dthena/b < (a+c)/(b+
d) <c/d,

If a, b, c,d, are positive
Ifa/b < c/dthenad < bc.

On the otherhand: (a +c¢)b —a(b +d) =
cb—ad >0, so

a/b < (a+c)/(b+d)
Similarly the second inequality follows
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Regula Falsi (3/3)

In part two of the Triparty, Chuquet applied the rule to the calculation of square roots
of numbers that are not perfect squares. Noting that 2 is too small and 3 too large to be the
square root of 6, he began the next stage of his approximation procedure by determining that
2% 1s too small and 2% too large. His next several approximations were, in turn, 22, 2%, 2%,

2%, and 2%. At each stage he calculated the square of the number chosen and, depending
on whether it is larger or smaller than 6, determined between which two values to use his rule
of intermediates. He noted that “by this manner one may proceed, . . . until one approaches
very close to 6, a little more or a little less, and until it is sufficient. And one should know that
the more one should continue in this way, the nearer to 6 one would approach. But one would
never attain it precisely. And from all this follows the practice, in which the good and sufficient
root of 6 is found to be 2%, which root multiplied by itself produces 6 plus 1/39,204.°10

Chuquet evidently was aware of the irrationality of +/6 and had developed a new recursive
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Greek Dichotomy (1/2)

 KATZ. 12.2.1 France: Nicolas Chuquet, p.391
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Greek Dichotomy (2/2)

* The continuous, the final elimination of which was to occur
about a century later.

* Chuquet also displayed in the second part of his work the
standard methods for calculating the square and cube roots
of larger integers, one integral place at a time, but as is
usual in the discussion of these methods, he did not take
the method below the unit.

 He showed no knowledge of the idea of a decimal fraction.
If the standard method did not give an exact root, one
could choose between calculating using common fractions
by his method of intermediates or (and this is the method

he preferred) simply not bothering to calculate at all and
leaving.
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>UBoAa PLQikwv

the answer in the form R26 or R>12, his notation for our /6 and ~/12. Chuquet also used the
Italian p and m for plus and minus, but introduced an underline to indicate grouping. Thus,

what we would write as \/ 14 + /180, Chuquet wrote as R?14p R>180. He proceeded to use
this notation with complete understanding through the rest of this second part as he displayed
a solid knowledge of computations with radical expressions, both simple and compound,
including the necessary rules for dealing with positives and negatives in addition, subtraction,
multiplication, and division.

H AAyeBpa tng AvayEvvnong
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Exponent, actual negative numbers

(1/2)

The third part of the Triparty was more strictly algebraic, as Chuquet showed how
to manipulate with polynomials and how to solve various types of equations. As part of
his discussion of polynomials, he introduced an exponential notation for the powers of
the unknown, which made calculation somewhat easier than the Italian abbreviations. For
example, he wrote 122 for what we write as 12x~ and, introducing actual negative numbers
for the first time in a European work, wrote m12%" for —12x~2. He even noted that the
exponent O is to be used when one 1s dealing with numbers themselves. He then showed
how to add, subtract, multiply, and divide these expressions (diversities) involving exponents
(denominations) using the standard modern rules, even when one of the exponents 1s negative.
Thus, “whoever would multiply 8> by 7V it is first necessary to multiply 8 by 7 coming to
56, then he must add the denominations, that is to say 3p with lim coming to 2. Thus, this

H AAyeBpa tng AvayEvvnong
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Exponent, actual negative numbers

(2/2)

o T

multiplication comes to 562, and so should others be understood.”!! Not only did he give
this rule, similar to that of one of his Italian contemporaries, but he also justified it. He
wrote down in two parallel columns the powers of 2 (beginning with 1 = 2% and ending with
1,048,576 = 2°Y) and the corresponding denomination and then noted that multiplication in
the first column corresponded to addition in the second. For example, 128 (which corresponds
to 7) multiplied by 512 (which corresponds to 9) gives 65,536 (which corresponds to 16).
Because the addition rule of exponents works for numbers, he simply extended it to his
diversities. But although he showed that he understood the meaning of negative exponents,
his table for numbers did not include them, and, in fact, unlike al-Samaw’al, he made little
use of them in what follows.

H AAyeBpa tng AvayEvvnong
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EAadpa emektaolq

Chuquet also had a few innovations in his equation-solving techniques. First, he general-
ized al-Khwarizmi’s rules to equations of any degree that are of quadratic type, thus going
somewhat further than the Italian abacists. For example, he gave the solution of the equation
cx™ = hx™t" 4 xME2 gg

x = {/\/(5/2)2 +c— (b)2).

H AAyeBpa tng AvayEvvnong
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Rejection of Negatives (1/2)

Second, he noted that a particular system of two equations in three unknowns has multiple
solutions. To solve the system x + y = 3z, x 4+ z = 5y, he first picked 12 for x and then found
y= 3% and z = S%. Then he picked 8 for y and calculated x = 28 and z = 12. “Thus,” he con-

cluded, “it appears that the number proposed alone determines the varying answer.”'? Finally,
although he was not consistent about this, Chuquet was willing under some circumstances to
consider negative solutions to equations, again for the first time in Europe. For example, he
solved the problem % (20 — %x) = 10to getx = —7%. He then checked the result carefully
and concluded that the answer is correct. In other problems, however, he rejected negative
solutions as “impossible,” and he never considered 0 to be a solution.

H AAyeBpa tng AvayEvvnong
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Rejection of Negatives (2/2)

* The three supplements to the Triparty contained hundreds of
problems in which the techniques of that work were applied.

 Many of the problems were commercial, of the same type found in
the ltalian abacus works, while others were geometrical, both
practical and theoretical.

* This work may have been intended as a text, although probably not
in a university, but, unfortunately, the Triparty was never printed
and exists today only in manuscript form.

 Some parts of it were incorporated into a work of Estienne de |la
Roche (probably one of Chuquet’s students) in 1520, but neither
this work nor Chuquet’s itself had much influence.

e JXOA0: BaBOuaia NMpdéodog
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Algebra Germany (1/4)

* Germany: Christoff Rudolff (sixteenth century), Michael Stifel
(1487-1567), and Johannes Scheubel, (1494-1570)

* Germany: Christoff Rudolff, Michael Stifel, and Johannes Scheubel
Algebra in Germany first appeared late in the fifteenth century,
probably due to the same reasons that led to its development in
Italy somewhat earlier. It is likely, in fact, that many of the actual
techniques were also imported from Italy. The very name given to
algebra in Germany, the Art of the Coss, reveals its Italian origin.

e Coss was simply the German form of the Italian cosa, or thing, the
name usually given to the unknown in an algebraic equation. Two
of the most important Cossists in the first half of the sixteenth
century were Christoff Rudolff (sixteenth century) and Michael
Stifel (1487-1567).

a5 ) ,
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Algebra Germany (2/4)

e Rudolff (sixteenth century) and Michael Stifel
(1487-1567). Christoff Rudolff wrote his Coss,
the first comprehensive German algebra, in
Vienna in the early 1520s.

* |t was published in Strasbourg in 1525. As
usual, the book began with the basics of the
place value system for integers, giving the
algorithms for calculation as well as a short
multiplication table.
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Algebra Germany (3/4)

* In a section dealing with progressions, Rudolff included a
list of nonnegative powers of 2 alongside their respective
exponents, just as Chuquet had done. He also noted that
multiplication in the powers corresponded to addition in
the exponents. He then extended this idea to powers of
the unknown, again as Chuquet had done.

* Although Rudolff did not have the exponential notation
of his French predecessor, he did have a system of
abbreviations of the names of these powers, where his
naming scheme was similar to the Italian multiplicative
one (Sidebar 12.1).
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Algebra Germany (4/4)

12.2  Avrcesra IN France, GERMANY, ENGLAND, AND PorTUcAL 393

SIDEBAR 121 Rudolff’s System for Powers of the Unknown
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Cajori History of Mathematical Notations 1 and

¢ HAAyeBpa tng AvayEvvnong

2,p.134(1/2)
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Cajori History of Mathematical Notations 1 and
2,p.134(2/2)

e Zensus, Cesnsus, .

 zens de zens x%x? or (x?)??

 zenzicubus (x3)?, (not x3x?)

 zenszensdezens (((x%)?%)?, not x*x?*x?

* Cubo de Cubo (((x3)3), not x3x3

e Surd, Irrational, not logical

* Solidum, solid

e Sursolidum, the first prime number next to three, i.e. 5
e BisSursolidum, the next prime after solidum

 Third Sursolidum, i.e. 11

‘i‘ H A\yeBpa tng Avayévvnong
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Sursolidum, Rosenfeld Shenitzer Grant
History Of Non Euclidean
Geometry.djvu, p. 158 (1/2)

The Latin surdus—that gives rise to surda solida and surdisch (literally:
deaf)—isa translation of the Arabic asamm (dumb, deaf), the Arabic term for
the Greek alogos—inexpressible. The Greek, Islamic, and Western European
scholars used (respectively) the terms alogos, asamm, and surdus for irrational
roots. Later, surdus came to denote irrational numbers. This explains the term
surdic and irrational section. It means that it is not possible to obtain square
and cube roots of x3 and x7, that is, such roots of these powers of integers are
irrational. Also, we are explicitly told that sursolidum is short for surdum
solidum.

sl L |
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Sursolidum, Rosenfeld Shenitzer Grant
History Of Non Euclidean
Geometry.djvu, p. 158 (2/2)

To help the reader understand these terms, Rudolff gave as examples the powers of various
numbers. He then showed how to add, subtract, multiply, and divide expressions formed from
these symbols. Because it 1s not obvious how to multiply these symbols, unlike the situation in
Chuquet’s system, Rudolff presented a multiplication table for use with them, which showed,
for instance, that 2¢ times & was ¢f . To simplify matters, he then included numerical values
for his symbols. Thus, radix was labeled as 1, zensus as 2, cubus as 3, and so on, and he
noted that in multiplying expressions one could simply add the corresponding numbers to
find the correct symbol. In this section Rudolff also dealt with binomials, terms connected

H AAyeBpa tng AvayEvvnong
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* By an operation sign, and included, for the first
time in an algebra text, the current symbols of +
and - to represent addition and subtraction.

* These signs had been used earlier in an
arithmetic work of 1518 of Heinrich Schreiber
(Henricus Grammateus), Rudolff’s teacher at the
University of Vienna. Even earlier they had
appeared in a work of Johann Widman of 1489.

 There, however, they represented excess and
deficiency rather than operations.
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Rudolff’s symbol (1/5)

 1489. There, however, they represented excess and
deficiency rather than operations. Rudolff also introduced
in his Coss the modern symbol V for square root.

* He modified this symbol somewhat to indicate cube roots
and fourth roots but did not use modern indices. He did,
however, give a detailed treatment of operations on surds,
showing how to use conjugates in division as well as how to
find the square roots of surd expressions such as 27 + v200.

 He also introduced a symbol for “equals,” namely, a period,
asin 1.2 (x =2). Often, however, he relied on the German

gleich.
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Rudolff’s symbol (2/5)

The second half of Rudolff’s Coss was devoted to the solving of algebraic equations, but
Rudolff used his own eight-fold classification rather than the standard six-fold one. The rule
for the solution of each type of equation was given in words and then illustrated with examples.
Although Rudolff dealt with equations of higher degree than two in his classes, like Chuquet
he included only those that could be solved by reduction to a quadratic equation or by simple
roots. Thus, for example, one of his classes was that now written as ax” + bx"~1 = ex"2,
The solution given was the standard

H AAyeBpa tng AvayEvvnong
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Rudolff’s symbol (3/5)

His sample equations illustrating this class included 3x? + 4x = 20 and 4x”7 + 8x% = 32x°,
both of which have the solution x = 2. Like the other authors, however, Rudolff did not deal
with either negative roots or zero as a root.

H AAyeBpa tng AvayEvvnong
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Rudolff’s symbol (4/5)

After presenting the rules, Rudolff, as is typical, gave several hundred examples of
problems that could be solved using the rules. Many are commercial problems dealing with
buying and selling, exchange, wills, and money, or recreational problems, including a version
of the old 100-birds-for-100-coins problem. Most of the problems, especially the more
practical ones, were given as examples of Rudolff’s first class of equations, ax” = bx" 1,
for which the solution is x = %. The problems needing a version of the quadratic formula are
generally artificial ones, including the ubiquitous “divide 10 into two parts such that . . . ”
At the end of the text, Rudolff presented three irreducible cubic equations with their answers

H AAyeBpa tng AvayEvvnong
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Rudolff’s symbol (5/5)

but without giving a method of solution. He simply noted that others who come later will
continue the algebraic art and teach how to deal with these. Curiously, on the final page there
is a drawing of a cube of side 3 + +/2 divided into eight rectangular prisms. Whether Rudolff
intended this diagram to be a hint for the solution of the cubic equation is not known.

Michael Stifel brought out a new edition of Rudolff’s text in 1553, nine years after he
had published his own, the Arithmetica integra.’> In this latter work, Stifel used the same
symbols as Rudolff for the powers of the unknowns, but he was more consistent in using
the correspondence between these letters and the integral “exponents.” He went further than
Rudolff in writing out a table of powers of 2 along with their exponents, which included the
negative values —1, —2, and —3 as corresponding to %, %, and %, respectively, but he was
probably not aware of Chuquet’s similar work with negative exponents.
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Combining second degree equations

(1/4)

Although Stifel, like most of his contemporaries, did not accept negative roots to equations,
he was the first to compress the three standard forms of the quadratic equation into the single
form x> = bx + ¢, where b and ¢ were either both positive or of opposite parity. The solution,
expressed in words, was then equivalent to

where the negative sign was only possible in the case where b was positive and ¢ negative.
In that case, as long as (%)2 + ¢ > 0, there were two positive solutions. Combining the three
cases of the quadratic into one does not seem a major advance, but in the context of the
sixteenth century it was significant. It was another step toward the extension of the number
concept, although two centuries were to pass before all algebra texts adopted his procedure.

H AAyeBpa tng AvayEvvnong
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Combining second degree equations

(2/4)

Concept, although two centuries were to pass before all algebra
texts adopted his procedure.

Stifel’s work was also the first European work both to present the
Pascal triangle of binomial coefficients and to make use of the
table for finding roots (Table 12.1). (The triangle itself had been
published earlier on the title page of Peter Apianus’s Arithmetic of
1527, but Apianus made no use of the triangle in his book.) Stifel
noted that he had discovered these coefficients and the root finding
procedure only with great difficulty, as he had been unable to find
any written accounts of them.

Thus, although these coefficients had been used for that purpose
in China and in Islamic countries several centuries earlier, the
knowledge of this procedure evidently only reached Stifel
indirectly.
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Combining second degree equations

(3/4)

e Other texts by German authors over the next several decades also made
use of the Pascal triangle to find roots. For example, Johannes Scheubel
(1494-1570) displayed the triangle in his De numeris et diversis rationibus
of 1545 with the standard instructions for calculating its entries.

* Scheubel’s book, written in Latin, was evidently aimed at a different
audience than the books of Rudolff and Stifel. In particular, he made little
effort to include “practical” applications of the material.

* But he did spend many pages working through the method of extracting
higher roots using the entries in the Pascal triangle. Although Scheubel’s
De numeris was not an algebra text, in 1552 Scheubel published such a
text, again in Latin.

 This work, Algebrae compendiosa facilisque descriptio was printed,
however, in France and was the first algebra work printed there, with the
exception of de la Roche’s version of Chuquet’s Triparty.
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Combining second degree equations

(4/4)

304 CHAPTER 12 ALGEBRA IN THE RENAISSANCE

BIOGRAPHY
Michael Stifel (1487-1567)

ichael Stifel was ordained as a priest in 1511. Reacting
Mto various clerical abuses, he became an early follower
of Martin Luther. In the 1520s he became interested in what
he called wortrechnung (word calculus), the interpretation of
words through the numerical values of the letters involved.
Through interpreting certain Biblical passages using his nu-
merical methods, he finally came to the belief that the world
would end on October 18, 1533. He assembled his congrega-
tion in the church on that morning, but to his great dismay,

nothing happened. He was subsequently discharged from his
parish and for a time placed under house arrest. Because he
had now been cured of prophesying, however, he was given
another parish in 1535 through the intervention of Luther. Sub-
sequently, he devoted himself to the study of mathematics at
the University of Wittenberg and soon became an expert in al-
gebraic methods, publishing his Deutsche Arithmetica in 1545,
one year after the Arithmetica integra. Later in life, however, he
resumed his wortrechnung and wrote two books on the subject.
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Algebra in England Robert Recorde (1510-
1558) (1/4)

Robert Recorde (1510-1558)

obert Recorde graduated from Oxford in 1531 and was

licensed in medicine soon thereafter. Although he prob-
ably practiced medicine in London in the late 1540s, his only
known positions were in the civil service, positions in which he
was not notably successful. On the other hand, he did write sev-
eral successful mathematics textbooks besides The Whetstone
of Witte, including The Ground of Arts (1543) on arithmetic,

The Pathway to Knowledge (1551) on geometry, and The Cas-
tle of Knowledge (1556) on astronomy. His works show that he
was especially interested in pedagogy. In particular, his books
were set in the form of a dialogue between master and pupil,
in which each step in a particular technique was carefully ex-
plained.
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Algebra in England Robert Recorde (1510-
1558) (2/4)

12.2.3 England: Robert Recorde

The Arithmetica integra and Stifel’s 1553 revision of Rudolff’s Coss were very important in
Germany, influencing textbook writers well into the next century and helping to develop in
Germany, as had already been done in Italy, mathematical awareness in the middle classes.
They also had influence in England, where they were the major source of the first English
algebra, The Whetstone of Witte, published in 1557 by the first English author of mathematical
works in the Renaissance, Robert Recorde (1510-1558) (Fig. 12.2).
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Algebra in England Robert Recorde (1510-
1558) (3/4)

The Whetstone of Witte had little that was original in technique, because it was based on
the German sources and even used the German symbols for powers of the unknown, but
there are a few points of interest in the text, which taught algebra to an entire generation
of English scientists. First, Recorde created the modern symbol for equality: “To avoid the
tedious repetition of these words—is equal to—I will set as I do often in work use, a pair
of parallels, or gemow [twin] lines of one length, thus , because no 2 things can be
more equal.”’'* Second, he modified and extended the German symbolization of powers of
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Algebra in England Robert Recorde (1510-
1558) (4/4)

the unknown to powers as high as the 80th, setting the integer of the power next to each symbol
and noting that multiplication of these symbols corresponded to addition of the corresponding
integers. In fact, he showed how to build the symbol for any power out of the square %, the
cube ¢f , and various sursolids (prime powers higher than the third) *B (where * stands for
a letter designating the order of the prime). The fifth power is written B, the seventh power
as B (second sursolid), and the eleventh power as “f} (third sursolid). Then, for instance, the
9th power is written ¢f¢f (cube of the cube), the 20th power as 336 (square of the square
of the fifth power), and the 21st power as ¢f. ”B (cube of the seventh power). Finally, to help
students remember the various rules of operation, he gave them in poetic form. His verse
giving the procedure for multiplying and dividing expressions of the form ax”, where the
power # is called the “quantity” of the expression, included the standard rule of signs for
those operations as well as the rule of exponents:
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Algebra in Portugal

 Pedro Nunes (1502—-1578)
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Xpnuoatodotnon
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eKTtaLOEVTIKOU €pyou Tou dtdbdokovta.

* To £pyo «Avoikta Akadnpaika Madnipata oto Naveniotipio ABnvwv»

EXEL XpNUaTodOTACEL LOVOo TNV avadlapopdwaon Tou eKTOLOEUTIKOU
UALKOU.

* To £pyo vAomoleital oto rAaiolo Tou Emyelpnotakol MpoypapaToq
«Ekmaiidevon kot Ata Blou Mabnon» kat cuyxpnuatodoteital amo tnv

Evpwnaikn Evwon (Evpwmaiko Kowvwviko Tapeio) kot oo eBVIKoug
TTOPOUC.

EMIXEIPHZIAKO MPOrPAMMA
EKI'IAIAEYZH KAI AIA BIOY MAGHZH & Ez rIA

YNOYPIFEIO MAIAEIAX KAl BPHIKEYMATAQON

E iiko6 K 6 Tapei
SRRSO SGRImNAaT Me tn ouyxpnpatrodoétnon tn¢ EAAGadag kat tn¢ Evpwnaikig Evwong
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2 NUELWLOTOL



>NUElwpa lotoplkovu Ekbooewv Epyou

To tapov €pyo amotelel tnv €kdoon 1.0.

ggk
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>NUElwpa Avodopac

Copyright EBvikov kat Kamodiotplakov Mavemniotipwov ABnvwy,
Nanaotaupidng Ztavpoc. «lotopia Neotepwv MabBnuatikwy, H AAyveBpa tng
Avaygvvnonc». Ekdoon: 1.0. ABriva 2015. AwaBgotpo amo tn Stktuokn
SdtevBuvon: http://opencourses.uoa.gr/courses/MATH113/.
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>NUElwpa Adetodotnong

To tapov LVALKO SlatiBetal pe toug 0poug tng adeslac xpnong Creative Commons
Avadopd, Mn Eumopwkn Xprion MNapopota Atavopn 4.0 [1] R petayevéotepn, AleBvng
‘Exkboon. E&atlpolvtal ta autoteAn €pya Tplitwy m.x. dwroypadiec, Staypappota
K.A.TT., TOL OTIOLOL EUTIEPLEXOVTOAL OE QLUTO Kall Ta oTtoia avadEpovtal pall e Toug
OpPOUC XPNOoNC Toug oto «XZnueiwpa Xpriong Epywv Tpitwv».

©OE0)

[1] http://creativecommons.org/licenses/by-nc-sa/4.0/

Q¢ Mn Epmopkn opiletal n xpnon:

* 1ou 6ev mePAOPPAVEL AUECO 1] EUECO OLKOVOLLKO OPEAOC Ao TNV Xprion Tou €pyou, yLa
TO SlovopEa Tou €pyou Kot adelodoyo

* 1ou 6ev meplAapPaveL olkovouLKr) ouvaAlayn we npolnoBeon yla tn xpnon n npooBaocn
OTO £pyO

* 1ou 6ev nmpoomopilel oto SLavopEa Tou £pyou Kal adelod0X0 ELUECO OLKOVOULKO OPEAOC
(rt.x. Stapnuioelc) arod tnv npoPfolr Tou €pyou o SLASLKTUAKO TOTIO

O Swaovyo¢ pmopel va rapexel otov adelodoyo Eexwplotr adeLa va XpnOLLLOTIOLEL TO €pYO yLa
EUTTOPLKNA Xpnon, epocov auto tou {ntnbeLl.
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[1] http:/creativecommons.org/licenses/by-nc-sa/4.0/

Alatnpnon ZNUELWHATWY

Ornoladnmnote avamapoywyn N dSlookeun Tou UALKOU Ba TtpeETmeL
va cUUTTEPLAQLUBAvVEL:

" 10 2nueilwpa Avadopadc

" 10 2nueilwpo Adelodotnong

= N 6nAwon Alathpnong ZNUELWUATWY

= 10 2nueilwpa Xpriong Epywv Tpitwv (edodoov umdpxel)

noll pe touc cuvodEUOUEVOUC UTIEPOUVOECHOUC.

¢ HAAyeBpa tng AvayEvvnong
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>NUelwpa Xpnong Epywv Tpltwv

To Epyo auTO KAVEL Xprjon Twv aKOAoUuBwv £pywv:
Ewkoveg/Zxnuata/Awaypappato/Dwrtoypadieg

Ewkova 1: Rudolff’s system for powers of the unknown. Algebra in France, Germany,
England and Porugal.

Ewkova 2: Fig. 58, from Rudolff’s Coss.
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