

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Εθνικόν και Καποδιστριακόν Πανεπιστήμιον Αθηνών

Μοντέλα Γένεσης Κοιτασμάτων

Ενότητα 4: Κοιτάσματα των Στοιχείων της ομάδας του λευκοχρύσου ή PGE

Μαρία Οικονόμου Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας και Γεωπεριβάλλοντος Διεργασίες συγκέντρωσης των στοιχείων της ομάδας του λευκοχρύσου σε υδροθερμικά συστήματα:

Κατανομή παλλαδίου και λευκοχρύσου σε πορφυρικά συστήματα

PGE Σε κοιτάσματα πορφυρικού Cu

- Pd και Pt ως παραπροϊόντα σε πορφυρικά συστήματα.
- Εύρος αποθεμάτων και ξενιστές Pd & Pt σε πορφυρικές διεισδύσεις.
- Παράγοντες που ελέγχουν το δυναμικό πορφυρικών συστημάτων σε Pd & Pt.
- Μεθοδολογία ανάκτησης Pd & Pt από πορφυρικές διεισδύσεις.
- Ορυκτολογικά χαρακτηριστικά Pd,Pt-τελλουριδίων και η σημασία τους για την ανάκτησή τους ως παραπροϊόντων.

Κατανομή κοιτασμάτων πορφυρικού Cu±Mo±Au±Pd±Pt

Συχνότητα εμφάνισης μεγάλων κοιτασμάτων πορφυρικού χαλκού(1/2)

Figure 20. Tonnage and copper grades for porphyry copper deposits in Europe compared with the global porphyry copper data of Singer and others (2008). A, tonnage. B, copper grade.

Συχνότητα εμφάνισης μεγάλων κοιτασμάτων πορφυρικού χαλκού(2/2)

Αλκαλικά ή Κ-πλούσια ασβεσταλκαλικά πορφυρικά κοιτάσματα,

Αντιπροσωπεύουν σημαντική πηγή χρυσού (μεγάλα κοιτάσματα)

Κατανομή κοιτασμάτων πορφυρικού Cu(1/2)

Τα περισσότερα Αυ-πλούσια πορφυρικά κοιτάσματα είναι κατανεμημένα στον

δακτύλιο γύρο από τον Ειρηνικό ωκεανό

Κατανομή κοιτασμάτων πορφυρικού Cu(2/2)

Γεωτεκτονικό περιβάλλον

Τα ασβεσταλκαλικά ή αλκαλικά πορφυρικά κοιτάσματα,

Δημιουργούνται σ' ένα περιβάλλον σύγκλισης πλακών

Γεωτεκτονικό περιβάλλον κοιτασμάτων πορφυρικού Cu (1/3)

Eικόνα 5

Γεωτεκτονικό περιβάλλον κοιτασμάτων πορφυρικού Cu (2/3)

Αφυδάτωση του καταβυθιζόμενου ωκεάνιου πυθμένα που έχει ως αποτέλεσμα την ενυδάτωση της υπερκείμενης μανδυακής σφήνας είναι η πλέον αποδεκτή άποψη για την μαγματογένεση σ΄ένα περιβάλλον τόξου

Εικόνα 6 (Tosdal & Richards, 2004)

Γεωτεκτονικό περιβάλλον κοιτασμάτων πορφυρικού Cu (3/3)

- Το μάγμα δημιουργείται κατά την υποβύθιση και ανέρχεται στον γήινο φλοιό, κατά μήκος ζωνών ασυνέχειας, όπου σχηματίζουν μαγματικούς θαλάμους και σχηματίζονται πλουτωνίτες σε βάθος 6 χλμ και βαθύτερα.
- Αποφύσεις από τον μαγματικό θάλαμο διεισδύουν σε βάθος 1-3 χλμ από την επιφάνεια, όπου αποχωρίζεται αέρια φάση και κρυσταλλώνονται οι πορφύρες.

Τα μητρικά μάγματα

Θεωρούνται ότι είναι σχετικά πλούσια σε νερό, όπως υποδηλώνεται από την παρουσία ένυδρων ορυκτών

(αμφίβολος, βιοτίτης), για την ευστάθεια των οποίων απαιτείται τουλάχιστον 3 wt% H₂O στο μάγμα

Παράγοντες που ελέγχουν το δυναμικό των κοιτασμάτων - μεταλλογένεση

✓ Γεωτεκτονικό περιβάλλον

✓ Πηγές-Χημική σύσταση μάγματος

✓ Φυσικοχημικές συνθήκες

Χαρακτηριστικά των αλκαλικών διεισδύσεων

Οι αλκαλικές διεισδύσεις κυμαίνονται από υπερβασικούς λαμπροφύρες (<40 wt% SiO2) έως –Κ-πλούσιους ρυόλιθους (έως 75 wt% SiO2)

Τύποι Κοιτασμάτων πορφυρικού Cu-Αυ και Cu -Mo

Μεταλλοφορία πορφυρικών διεισδύσεων

Κατά παράδοση τα πορφυρικά κοιτάσματα αποτελούν πηγές για Cu, Au ή Mo.

Πρόσφατα, εκτός από τον χρυσό, το ερευνητικό ενδιαφέρον έχει εστιαστεί στη μελέτη της κατανομής του Pd και Pt

Σημαντικές περιεκτικότητες (> 5 ppm) κυρίως Pd και Pt

Έχουν βρεθεί σε μετάλλευμα πλούσιο σε

Βορνίτη-χαλκοπυρίτη και σε συμπύκνωμα (με την μέθοδο της επίπλευσης) από

κοιτάσματα Αυ-πλούσια μέση τιμή ≥ 0.4 ppm Au

Πορφυρικά κοιτάσματα του τύπου αυτού περιλαμβάνουν αλκαλικές διεισδύσεις στην:

British Columbia and Colorado

British Columbia (1/2)

British Columbia(2/2)

Περιεκτικότητες ευγενών μετάλλων σε κοιτάσματα πορφυρικού Cu της B.C.

Deposit	Ore tons	concentration (ppb)			
	(t x 106)	Pd	Pt	Au	Cu (wt%)
B.C., Cordillera					
Galore Creek	159	1300	80	64000	17
Galore Creek		260	16	4400	13
Mt. Milligan		6300	110	18500	6.8
Mt. Polley	49	320	33	23600	21
Ajax	284	140	8	990	26
Afton	69	130		1200	1.5
Cooper Mountain		2760	190	4800	28
Cooper Mountain		3250	50	4200	40

Πίνακας 1

Ανασκόπηση πορφυρικών κοιτασμάτων Cu±Mo±Au±Pd±Pt

Βαλκανο-Καρπαθικό σύστημα

Καρπαθο-Βαλκανικό σύστημα

Τα σημαντικότερα κοιτάσματα πορφυρικού Cu, ηλικίας Ανωτ. Κρητιδικό-Μειόκαινο, τα οποία εκτείνονται από Ρουμανία, μέσω Σερβίας και Βουλγαρίας στην Ελλάδα.

Το κοίτασμα πορφυρικού Cu-Au των Σκουριών (1/2)

Το κοίτασμα πορφυρικού Cu-Au των Σκουριών (2/2)

Εικόνα 13

Το κοίτασμα Σκουριών, ανήκει στην ΣΜΜ

Λόγω των πολλαπλών πορφυρικών διεισδύσεων συνήθως παρατηρείται αλληλοεπικάλυψη των τυπικών ζωνών εξαλλοίωσης που αναπτύσσονται γύρω από τις πορφυρικές διεισδύσεις

Αποθέματα:

~ 206 Mt at 0.54 % Cu, and 0.80 ppm Au. (TVX Gold Inc Hellas) EUROPEAN GOLDFIELDS Ltd

Εικόνες από SEM (1/2)

Εικόνες από SEM (2/2)

me: μερενσκιήτης, hs: εσσίτης, cp: χαλκοπυρίτης bn: βορνίτης

(Tarkian et al., 2003)

Κατανομή χρυσού και χαλκού

Κοιτάσματα των Στοιχείων της ομάδας του λευκοχρύσου ή PGE

Χαρακτηριστικά μεταλλοφορίας

μαγνητίτης, έως 10 vol% (μέση τιμή 6 vol%) βορνίτης-χαλκοπυρίτης, συνδέονται με τη Κούχο και προπυλιτική φάση εξαλλοίωσης, στα κεντρικά τμήματα του κοιτάσματος, και

Χαλκοπυρίτης-πυρίτης, στα περιφερειακά τμήματα του κοιτάσματος.

Θέσεις δειγμάτων πυρηνοληψίας

Εικόνα από ηλεκτρονικό μικροσκόπιο

Mineralogical composition of mafic xenoliths

Cr-ούχος μαγνητίτης

0.65 - 2.26 wt% Cr₂O₃,

• 0.29 wt% Cr₂O₃

• Σε αντίθεση με...

Νί, Co – ούχος πυρίτης

• 0.45 to 2.4 wt% Ni,

• 0.64 to 4.18 wt% Co.

Back scattered images from various drill cores of the Skouries porphyry deposit (1/13)

Abbreviations:

- mt = magnetite; cp = chalcopyrite;
- bn = bornite; gn = galena; el = electrum;
- hs = hessite; rt = rutile; ilm = ilmenite;
- zr = rircon; ep = epidote; all = allanite;
- mnz = monazite; ab = albite;
- or = orthoclase; bi = biotite;

phl = phlogopite

Back scattered images from various drill cores of the Skouries porphyry deposit (2/13)

Back scattered images from various drill cores of the Skouries porphyry deposit (3/13)

Chalcopyrite, and to a lesser extent bornite, contains exsolutions of galena

Back scattered images from various drill cores of the Skouries porphyry deposit (4/13)

Εικόνα 25

exsolutions of galena within chalcopyrite

Back scattered images from various drill cores of the Skouries porphyry deposit (5/13)

Εικόνα 26

exsolutions of galena, within chalcopyrite

Back scattered images from various drill cores of the Skouries porphyry deposit (6/13)

Εικόνα 27

Inclusions within magnetite

Back scattered images from various drill cores of the Skouries porphyry deposit (7/13)

Rutile and galena within chalcopyrite

Back scattered images from various drill cores of the Skouries porphyry deposit (8/13)

Εικόνα 29

Rare earth element (REE)-enriched silicates of the epidote-group (allanite)

Back scattered images from various drill cores of the Skouries porphyry deposit (9/13)

Back scattered images from various drill cores of the Skouries porphyry deposit (10/13)

Εικόνα 31

Παραγένεση χαλκοπυρίτη (cp) μς χρυσό (ελ) και τελλουρίδια αργύρου (hs)

Back scattered images from various drill cores of the Skouries porphyry deposit (11/12)

Precious metal minerals

Υαιοτού ηλεκτρονικό Οι ιστολογικές σχέσεις **μικρο κάστι (**να-ορυκτών και merenskyite (Pd-Te), & Agτελλουριδίων δείχνουν

> Την συνύπαρξη ευγενών μετάλλων cp & bn

Επομένως η ανάκτηση των ευγενών μετάλλων είναι δυνατή παράλληλα με τον χαλκό.

Back scattered images from various drill cores of the Skouries porphyry deposit (12/13)

Εικόνα 34

sylvine (KCl) associated with chalcopyrite

Back scattered images from various drill cores of the Skouries porphyry deposit (13/13)

Αναλύσεις των δειγμάτων από τις Σκουριές (1/3)

Sample	depth	Pd (ppb)	Pt (ppb)	Pd/Pt	Au (ppb)	Ag (ppm)	Cu (wt%)	Zn (ppm)	Pb (ppm)	Cr (ppm)	Ni (ppm)	Co (ppm)	Mo (ppm)
Sk.Po.F.C.		2400	40	60	2200 0	110	21	1700 0	110	20	90	76	20
*Sk.po		76	<10	>7,6	910	3	0,5	150	25	30	38	25	2
sku400	Surfac e	30	<10	>3	2210	4,1	1,31	50	30	30	40	20	2
sku99	60	290	40	7,2	5280	1,4	2,08	45	42	10	25	30	1
sk8	280	400	81	4,9	7550	3,9	1,58	30	20	9	28	41	2
sku100	275	340	46	7,5	4630	2,9	1,13	28	32	12	23	34	1
SOP01	219	27	38	0,96	1170	2,3	1,29	80	64	160	140	24	2
SOP01	326	54	43	0,8	4790	2,6	1,99	100	80	130	300	30	2
SOP01	328	53	42	0,8	4930	7	1,47	97	40	110	250	25	1
SOP01	635	5	<10	>0,5	190	<0,2	0,06	38	21	50	42	26	2
SOP01	636	3	<10	>0,3	50	<0,2	0,06	32	15	60	71	21	8

Πίνακας 2

Αναλύσεις των δειγμάτων από τις Σκουριές (2/3)

Sample	depth	Pd (ppb)	Pt (ppb)	Pd/Pt	Au (ppb)	Ag (ppm)	Cu (wt%)	Zn (ppm)	Pb (ppm)	Cr (ppm)	Ni (ppm)	Co (ppm)	Mo (ppm)
SOP06	363	85	20	4,2	683	3,6	0,51	39	52	3	8	31	1
SOP06	365	49	49	1	3880	>10	1,27	80	60	10	210	24	2
SOP06	525	29	22	0,76	549	1,3	0,68	110	34	260	310	62	1
SOP06	527	6	<10	>0,6	120	<0,2	0,14	77	32	80	224	38	4
SOP09	252	31	33	1,06	1410	<0,2	1,1	73	30	8	50	35	3
SOP18	142	42	64	1,52	3850	2,4	1,52	75	84	4	50	22	2
SOP39	446	610	73	8,3	9600	11,9	2,53	60	29	10	8	74	3
SOP43	200	15	<10	>1,5	1520	1,7	1,56	130	13	484	560	56	1
SOP46	50	1	<10	>0,1	70	<0,2	0,14	94	50	125	127	29	240
SOP76	170	2	<10	>0,2	590	0,6	0,71	180	12	690	504	41	100

Πίνακας 3

Αναλύσεις των δειγμάτων από τις Σκουριές (3/3)

Sample	depth	Pd (ppb)	Pt (ppb)	Pd/Pt	Au (ppb)	Ag (ppm)	Cu (wt%)	Zn (ppm)	Pb (ppm)	Cr (ppm)	Ni (ppm)	Co (ppm)	Mo (ppm)
SG-6	30	360	31	11,6	3050	3,3	3,1	50	23	17	13	27	7
SG-6	110	28	10	2,8	850	0,5	0,39	66	71	6	17	62	2
SG-6	465	410	26	15,8	5280	3,2	1,89	46	31	7	7	41	1
SG-6	494	420	150	2,8	12900	3,4	2,84	60	21	17	10	43	<1
SK8	671	140	<10	>14	1580	1,3	1,16	63	19	61	48	38	25

Αναλύσεις σταθερών ισοτόπων σε δείγματα χαλαζία από τις Σκουριές Χαλκιδικής

Samples	Depth meters	Cr (ppm)	(Pd+Pt) ppb	Pd/Pt	δ18O(V- SMOW) (minera,mea sured)	δD(V- SMOW) (mineral, measured)	δ18O (V- SMOW) per mil (water, calculated)
A-group							
SOP06	525	260	51	0,76	9,7	-73	4,33 – 6,53
SOP43	200	480	24	1,6	9,6	-110	4,33 – 6,43
SOP01	326	130	55	0,96	9,7	-96	4,43 – 6,53
Average		290	43	1,1	9,7	-93	5,43
B-group							
SOP09	479	8	64	1,1	12,6	-74	7,33 – 9,45
SOP18	178	4	42	1,6	11,3	-99	6,03 - 8,13
SG-6	465	7	436	16	9,6	-100	4,33 – 6,43
SOP06	367	10	98	1	9,6	-89	4,33 – 6,43
SOP39	446	10	679	8,3	10,9	-99	5,63 – 7,73
SKU99	60	10	328	7,2	11,5	-101	6,23 – 8,33
Average		8,2	274	5,9	10,9	-94	6,7

Πίνακας 5

Διάγραμμα κατάταξης κοιτάσματος Σκουριών

Αντίθεση γεωχημικών χαρακτηριστικών στο κοίτασμα των Σκουριών

> Διαφοροποίηση Cr- και Ni- εμπλουτισμός

Το κοίτασμα των Σκουριών χαρακτηρίζεται :

από σχετικά μεγάλες συγκεντρώσεις

Pd & Pt

Σκουριά Μέση τιμή 80 ppb Pd & 17 ppb Pt, (~15 kgs)

Χρηματοδότηση

- Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στο πλαίσιο του εκπαιδευτικού έργου του διδάσκοντα.
- Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Αθηνών» έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του εκπαιδευτικού υλικού.
- Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.

Σημειώματα

Σημείωμα Ιστορικού Εκδόσεων Έργου

Το παρόν έργο αποτελεί την έκδοση 1.0.

Σημείωμα Αναφοράς

Copyright Εθνικόν και Καποδιστριακόν Πανεπιστήμιον Αθηνών, Μαρία Οικονόμου, Καθηγήτρια. «Μοντέλα γένεσης κοιτασμάτων. Κοιτάσματα Στοιχείων της Ομάδας του Λευκοχρύσου ή PGE». Έκδοση: 1.0. Αθήνα 2015. Διαθέσιμο από τη δικτυακή διεύθυνση: http://opencourses.uoa.gr/courses/GEOL15.

Σημείωμα Αδειοδότησης

Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά, Μη Εμπορική Χρήση Παρόμοια Διανομή 4.0 [1] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων».

[1] http://creativecommons.org/licenses/by-nc-sa/4.0/

Ως **Μη Εμπορική** ορίζεται η χρήση:

- που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για το διανομέα του έργου και αδειοδόχο
- που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο
- που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. διαφημίσεις) από την προβολή του έργου σε διαδικτυακό τόπο

Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί.

Διατήρηση Σημειωμάτων

Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού θα πρέπει να συμπεριλαμβάνει:

- το Σημείωμα Αναφοράς
- το Σημείωμα Αδειοδότησης
- τη δήλωση Διατήρησης Σημειωμάτων
- το Σημείωμα Χρήσης Έργων Τρίτων (εφόσον υπάρχει)

μαζί με τους συνοδευόμενους υπερσυνδέσμους.

Σημείωμα Χρήσης Έργων Τρίτων (1/8)

Το Έργο αυτό κάνει χρήση των ακόλουθων έργων:

Εικόνες/Σχήματα/Διαγράμματα/Φωτογραφίες

Εικόνα 2,3: Συχνότητα εμφάνισης μεγάλων κοιτασμάτων πορφυρικού χαλκού. Copyright U.S. Geological Survey. Πηγή: Porphyry copper deposits of the world: Database and grade and tonnage models, 2008, by Singer D.A., Berger V.I. and Moring B.C. Σύνδεσμος: http://pubs.usgs.gov/

Εικόνα 4: Κατανομή κοιτασμάτων πορφυρικού Cu στον Ειρηνικό. Copyright U.S. Geological Survey. Πηγή: Explanatory notes for the mineral-resources map of the circum-Pacific region Southeast Quadrant, by Corvalan et al, 1996. Σύνδεσμος: http://pubs.usgs.gov/

Εικόνα 5,6: Γεωτεκτονικό περιβάλλον κοιτασμάτων πορφυρικού Cu. Copyright Geological Society of America, 2015. Πηγή: Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere, by J. Richards. In Geology (2009), 37:247-250

Σημείωμα Χρήσης Έργων Τρίτων (2/8)

Το Έργο αυτό κάνει χρήση των ακόλουθων έργων:

Εικόνες/Σχήματα/Διαγράμματα/Φωτογραφίες

Εικόνα 7: Διάγραμμα ταξινόμησης αλκαλικών διεισδύσεων. . Copyright Geological Society of America, 2015. Πηγή: Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere, by J. Richards. In Geology (2009), 37:247-250

Εικόνα 8: Τύποι Κοιτασμάτων πορφυρικού Cu-Au και Cu –Mo. Copyright Geoscience BC. Πηγή: Alkalic porphyry deposits in British Columbia, 2011. Σύνδεσμος: http://www.geosciencebc.com

Εικόνα 9: Πορφυρικό κοίτασμα British Columbia. Copyright Province of British Columbia, 2015.Σύνδεσμος: <u>http://www.empr.gov.bc.ca</u>. Πηγή: Platinum group elements in alkaline porphyry deposits, British Columbia, by Thompson, J.F.H., Lang, J.R. and Stanley, C.R., 2001. Exploration and Mining in British Columbia, Mines Branch, Part B, 57-64.

Σημείωμα Χρήσης Έργων Τρίτων (3/8)

Το Έργο αυτό κάνει χρήση των ακόλουθων έργων:

Εικόνες/Σχήματα/Διαγράμματα/Φωτογραφίες

Εικόνα 10: Πορφυρικό κοίτασμα British Columbia. Copyright Geoscience BC. Πηγή: Alkalic porphyry deposits in British Columbia, 2011. Σύνδεσμος: http://www.geosciencebc.com/

Εικόνα 11: Βαλκανο-Καρπαθικό σύστημα. Copyright Geological Society of Greece. Πηγή: XV Congress of the Carpatho-Balkan Geological Association, Special Publication, Athens 1995

Εικόνα 14: Γεωλογικός χάρτης Χαλκιδικής. Copyright Society of Economic Geologists. Πηγή: Platinum-Group Element and Gold Contents in the Skouries Porphyry-Copper deposit, Chalkidiki Peninsula, N. Greece, by Eliopoulos, D. G. and Economou-Eliopoulos, M., 1991. In Economic Geology 86, 740-749.

Σημείωμα Χρήσης Έργων Τρίτων (4/8)

Το Έργο αυτό κάνει χρήση των ακόλουθων έργων:

Εικόνες/Σχήματα/Διαγράμματα/Φωτογραφίες

Εικόνες 16-18: Εικόνες από το sem. Copyright Society of Economic Geologists. Πηγή: Platinum-Group Element and Gold Contents in the Skouries Porphyry-Copper deposit, Chalkidiki Peninsula, N. Greece, by Eliopoulos, D. G. and Economou-Eliopoulos, M., 1991. In Economic Geology 86, 740-749.

Εικόνες 19: Εικόνες από το sem. .Copyright Springer-Verlag. Platinum-group elements in porphyry copper deposits: a reconnaissance study, by Tarkian M. and Stribrny B., 1999.In. Mineralogy and Petrology 65:161-183.

Σημείωμα Χρήσης Έργων Τρίτων (5/8)

Το Έργο αυτό κάνει χρήση των ακόλουθων έργων:

Εικόνες/Σχήματα/Διαγράμματα/Φωτογραφίες

Εικόνα 20: Κατανομή χρυσού και χαλκού. Copyright Eldorado Gold. Σύνδεσμος: http://www.eldoradogold.com

Εικόνα 21: Θέσεις δειγμάτων πυρηνοληψίας. Copyright Society of Economic Geologists. Πηγή: Critical Factors Controlling Pd and Pt Potential in Porphyry Cu–Au Deposits: Evidence from the Balkan Peninsula, by Eliopoulos D. Economou-Eliopoulos M., Zelyaskova-Panayiotova M. In Geosciences (2014) 4(1):31-49

Εικόνα 22:Εικόνα από ηλεκτρονικό μικροσκόπιο. Copyright Society of Economic Geologists. Πηγή: Platinum-Group Element and Gold Contents in the Skouries Porphyry-Copper deposit, Chalkidiki Peninsula, N. Greece, by Eliopoulos, D. G. and Economou-Eliopoulos, M., 1991. In Economic Geology 86, 740-749.

Σημείωμα Χρήσης Έργων Τρίτων (6/8)

Το Έργο αυτό κάνει χρήση των ακόλουθων έργων:

Εικόνες/Σχήματα/Διαγράμματα/Φωτογραφίες

Eικόνα 23-32Back scattered images from various drill cores of the Skouries porphyry deposit. Copyright Society of Economic Geologists. Πηγή: Platinum-Group Element and Gold Contents in the Skouries Porphyry-Copper deposit, Chalkidiki Peninsula, N. Greece, by Eliopoulos, D. G. and Economou-Eliopoulos, M., 1991. In Economic Geology 86, 740-749.

Εικόνα 33: Εικόνα από μικροσκόπιο ιονισμού. Copyright Society of Economic Geologists. Πηγή: Platinum-Group Element and Gold Contents in the Skouries Porphyry-Copper deposit, Chalkidiki Peninsula, N. Greece, by Eliopoulos, D. G. and Economou-Eliopoulos, M., 1991. In Economic Geology 86, 740-749.

Σημείωμα Χρήσης Έργων Τρίτων (7/8)

Το Έργο αυτό κάνει χρήση των ακόλουθων έργων:

Εικόνες/Σχήματα/Διαγράμματα/Φωτογραφίες

Εικόνα 34-35: Εικόνες από μικροσκόπιο. Copyright Society of Economic Geologists. Πηγή: Platinum-Group Element and Gold Contents in the Skouries Porphyry-Copper deposit, Chalkidiki Peninsula, N. Greece, by Eliopoulos, D. G. and Economou-Eliopoulos, M., 1991. In Economic Geology 86, 740-749.

Εικόνα 36: Διάγραμμα κατάταξης κοιτάσματος Σκουριών. Copyright Society of Economic Geologists. Πηγή: Critical Factors Controlling Pd and Pt Potential in Porphyry Cu–Au Deposits: Evidence from the Balkan Peninsula, by Eliopoulos D. Economou-Eliopoulos M., Zelyaskova-Panayiotova M. In Geosciences (2014) 4(1):31-49

Σημείωμα Χρήσης Έργων Τρίτων (8/8)

Το Έργο αυτό κάνει χρήση των ακόλουθων έργων:

Πίνακες

Πίνακας 1: Περιεκτικότητες ευγενών μετάλλων σε κοιτάσματα πορφυρικού Cu της B.C. Copyright Geoscience BC. Πηγή: Alkalic porphyry deposits in British Columbia, 2011. Σύνδεσμος: http://www.geosciencebc.com

Πίνακας 2-5: Χημικές αναλύσεις δειγμάτων σκουριών Χαλκιδικής. Copyright Society of Economic Geologists. Πηγή: Critical Factors Controlling Pd and Pt Potential in Porphyry Cu–Au Deposits: Evidence from the Balkan Peninsula, by Eliopoulos D. Economou-Eliopoulos M., Zelyaskova-Panayiotova M. In Geosciences (2014) 4(1):31-49

