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• Representation of illumination phenomena in CG : 

 Based on the laws of optics 

• Laws that make the most difference in practice are implemented 

• Computational cost must be considered 

 

Role of an Illumination Model: 

• Light illuminates a point p of an object (directly or via 

reflections)  changes object’s color  at p according to: 

 Direction of the incident light 

 Direction of observation 

 Surface normal at p 

 Reflectivity of the material 

 … 

Introduction  
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• Effects of illumination and texturing should not be confused: 

 

 

 

 

• Two trends in Computer Graphics: 

 1st uses practical illumination models: 

 Produces acceptable illumination effects 

 Low computational cost 

 Suitable for real-time applications 

 2nd implements a large part of available illumination theory: 

 Produces the most convincing illumination effects 

 High computational cost 

 Suitable for demanding, non real-time applications 

 

 

 

 

 

 

 

 

Introduction (2)  
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• Essential difference between the two approaches: 

 The 2nd considers the interaction of light between objects or how 

objects are indirectly illuminated by light reflected from other objects 

 1st approach constitutes the local illumination models 

 2nd approach constitutes the global illumination models 

 

• Distinction between illumination models and algorithms: 

 An illumination model encapsulates a set of physical illumination laws 

 An illumination algorithm implements an illumination model efficiently 

 

 

 

 

 

 

 

Introduction (3)  
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• Incident Light= reflected light  + scattered light + 

          absorbed light + transmitted light 

• Depending on the structure (roughness) of the object’s surface 

portions of the incident light will be: 

 Reflected in the “mirror” of the incident direction (specular reflection)  

 Scattered in all directions (diffuse reflection) 

 Absorbed, increasing the object’s temperature 

 Transmitted through the object (if transparent) 

 

 

 

 

 

Physics of Light-Object Interaction I  
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• Radiant energy (Q): emitted from a light source or reflected 

from a surface and transferred through space as photons 

 Radiant energy is the total energy emitted as radiation of all wavelengths 

in a defined period of time and is measured in joules 

• Radiant power (or flux Φ): the rate at which radiant energy 

passes a spatial reference and is measured in watts:    

     Φ = dQ / dt    (12.1)  

• Energy emitted or reflected from a point:  

 may be restricted to certain directions or   

 may be spreading equally in all directions  

• Radiant intensity (Ir): radiant power per unit of solid angle ωr in 

a certain direction:  

     Ir = dΦr / dωr    (12.2)  

 Intensity is measured in watts/steradian (overloaded term) 

Physics of Light-Object Interaction I (2)  
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• Radiance (L): Assume an infinitesimal surface dA with normal 

vector   forming an angle θ with the direction of incident or 

outgoing illumination   . Radiance is defined as the radiant 

power per unit solid angle leaving or entering the infinitesimal 

area dA from a certain direction per unit projected surface area 

in that direction:  

          

        (12.3)  

 

Physics of Light-Object Interaction I (3)  

n̂

l̂

ˆˆ/ ( cos ) / ( ( · ))L d d dA d d dA      n l
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• Radiance: 

 

 

 

 

 

• Radiance is inversely proportional to the square of the distance 

from the light source and is measured in watts/(steradians · m2) 

• Albedo (ρ): Ratio of scattered to incident electromagnetic 

radiation across the spectrum 

 Albedo defines the color of a material without the effect of illumination 

Physics of Light-Object Interaction I (4)  
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• Irradiance (Ei): Incident flux per unit area in the vicinity of a 

point  

 Irradiance can be visualized as the power per unit area incident from all 

directions within a hemisphere onto an elementary surface located at the 

center of the base of that hemisphere:  

     Ei = dΦi / dA     (12.4) 

 Measured in watts/m2 

• Radiosity (B): flux per unit area exiting a surface:  

     Er = B = dΦr / dA    (12.5) 

 Also measured in watts/m2 

• Incident intensity (Ii): incident flux on a point per unit solid angle:  

     Ii = dΦi / dωi    (12.6)  

• Relation between incident intensity & irradiance by combining 

(12.4) & (12.6):   Ei = Iidωi/dA.    (12.7)  

Physics of Light-Object Interaction I (5)  
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• From the definition of solid angle:  

 

 

    where dA· cosθi: projection of the elementary surface dA onto a 

plane normal to the direction  of illumination  

 d: distance from the light source to the elementary surface 

 

 

 

 

 

Physics of Light-Object Interaction I (6)  
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• Photometry law (from (12.7) and solid angle definition):  

         (12.8) 

 

• In Computer Graphics we are interested in the relationship 

between the incident light from a certain direction onto a surface 

and:  

 The reflected light in another direction 

 The transmitted light through the object 

• Relationship is captured by the bidirectional reflectance 

distribution function (BRDF) 

Physics of Light-Object Interaction I (7)  

2 2
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• BRDF depends on:  

 Lighting and observation directions  

 Wavelength  

 Shadow casting  

 The optical properties of the object  

 Reflectivity  

 Absorption  

 Emission  

• BRDF can only be approximated  

• BRDF associates the outgoing radiance dLr in direction (θr,φr) to 

the irradiance dEi from the incident direction (θi,φi):  

         (12.9) 

 

Physics of Light-Object Interaction I (8)  

r

i
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• BRDF 

 

 

 

 

 

• BRDF expresses how objects look differently when seen from different 

angles or when illuminated from different directions, e.g.: 

 Light source opposite observer  Light source behind observer 

Physics of Light-Object Interaction I (9)  
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• Simplest illumination model for body reflection  

• Assumes that incident light at vicinity of a point p on a surface is 

equally diffused in all directions on the incident hemisphere  

• BRDF of the body surface is constant in all directions and 

invariant with respect to wavelength and polarization 

• A perfectly diffuse surface is called Lambertian  

• Diffuse illumination mostly accounts for reflected light due to 

body reflectance 

 (In contrast, specular illumination corresponds to light reflected off the 

surface) 

• Lambert’s cosine law: The total radiant power observed from a 

Lambertian surface is directly proportional to the cosine of the 

angle θr between the observer’s line of sight and the surface 

normal.  

The Lambert Illumination Model*  
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• Consequence of Lambert’s law: when an elementary surface dA is 

viewed from an arbitrary direction within the hemisphere Ω 

surrounding dA, it exhibits the same radiance   

 

 

 

 

 

• Explanation: As the radiant power dΦr observed at a direction 

(θr,ϕr) diminishes according to Lambert’s cosine law, so does the 

solid angle dξ subtended by the surface patch dA and viewed from 

a distant patch dS around the observer location  equal decrease 

of both terms, which eventually cancel out 

 

The Lambert Illumination Model (2)  
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• Imagine that receiving patch dS were positioned directly above 

dA, perpendicular to the normal vector of dA  

 

 

 

 

 

 

• Since θr=0, from the definition of radiance (12.3)  the observed 

radiance is: 

 

 

 

The Lambert Illumination Model (3)  
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• Let us position dS at a different viewing angle, away from the 

normal direction of dA, always perpendicular to the corresponding 

viewing direction vector (see previous figure) 

• According to Lambert’s cosine law, the new radiance at this 

arbitrary outbound direction is:  

   

         (12.11) 

• As dA is very small, the new solid angle dξ’ is proportional to the 

projection of dA on the light transfer direction (dξ’ = dAcosθr/r
2), 

and therefore:  

     dξ’  = cosθrdξ    (12.12)  

The Lambert Illumination Model (4)  

0 0( cos ) cosr rd d
L
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• Replacing the new solid angle in (12.11) yields: 

         (12.13) 

 

 

• We next derive constant BRDF (fd) for the Lambertian surface  

• Radiant flux is evenly distributed over the hemisphere subtended by 

the surface patch at vicinity of p, BUT  fd is not equal to 1/2π 

• Outgoing radiance is constant  does not depend on the reflected 

light direction on the hemisphere:  Lr(θr,ϕr) = Lr  

• Irradiance is not attenuated by the material & is equally spread to 

every outgoing differential solid angle  reflectance factor                 

   (ratio of total reflected light to incident light from                       

 ) equals 1  

The Lambert Illumination Model (5)  
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• From definition of irradiance, radiosity, and radiance ((12.4), 

(12.5), (12.3)) we get:  

         (12.14) 

 

 

         (12.15) 

 

• Using the results from (12.14) & (12.15), the unit reflectance 

becomes:  

  

         (12.16) 

The Lambert Illumination Model (6)  
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• From definition of BRDF & taking into account that BRDF for the 

Lambertian surface is constant, we have: 

 

 

          (12.17) 

 

• Now we can return to (12.16) and substitute Lr from (12.17): 

 

 

 

         (12.18) 

         

 

 

 

 

 

The Lambert Illumination Model (7)  
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• Summing up: 

 The radiance associated with an infinitesimal surface patch of area dA around 

point p is proportional to the cosine of the angle θi between normal vector at p 

and the incident direction 

 The above happens due to the flow of energy that passes through the 

(projected) area dA of the patch with respect to the incident light direction 

 

 

 

 

 

 

 

 

 

 

 

 

The Lambert Illumination Model (8)  
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• The classic local empirical model  

 Does not take into account the interaction of light between objects  

• Some of the terms used do not directly derive from physical laws 

• Gives a reasonable approximation of reality  

• Modest computational cost  widespread adoption 

• Proposes a simplified BRDF which:  

 Relates incoming light intensity from direction (θi,φi) to reflected light 

intensity in direction (θr,φr) for an object point p 

 Estimates visible intensity as sum of 4 components:  

 Emission  

 Ambient reflection  

 Diffuse reflection      (12.19) 

 Specular reflection  

 

The Phong Illumination Model 

 e g d s I = I + I + I + I
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• Components of the Phong Model: 

 

 

 

 

 

• Emission component Ie: caters for objects with self illumination  

• Ambient component Ig: compensates for the fact that the Phong is a 

local model (thus a surface not directly illuminated by a light source 

will not appear completely un-illuminated) 

 ambient light Ia: a constant value is assumed 

 each object reflects ambient light according to its ambient reflectance 

coefficient ka:   Ig = Ia ka (0 ≤ ka ≤ 1)    (12.20) 

The Phong Illumination Model (2) 
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• Light that hits an object directly from a light source is split into 2 

reflected components:  

 Diffusely reflected light, which is uniformly scattered in all directions 

 Specularly reflected light, which has max value in the “mirror” of the lighting 

direction 

• Diffuse & Specular reflection coefficients kd and ks depend mainly 

on the object’s surface properties 

 The rougher the surface the more light is diffusely reflected 

 The shinier the surface the more light is specularly reflected 

 We have: 

                              0 ≤ kd, ks ≤ 1, kd +ks ≤ 1 

 Sum of kd and ks may be slightly smaller than 1 to account for light that is 

transmitted or absorbed by the object 

 Diffuse component assumes a Lambertian surface & distributes incident light 

evenly in all directions 

The Phong Illumination Model (3) 
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• Diffuse component does not depend on the viewing direction  

 Its value is proportional to the irradiance Ei which is replaced by intensity Ii 

according to the photometry law (12.8) 

• The distance d is ignored by assuming the light source at infinity: 

 

 where Ii the intensity of the point light source, 

 θ the angle between     and  

 ( kd also depends on the wavelength of the  

     incident light, not modeled here ) 

 

 

 

The Phong Illumination Model (4) 

l̂ n̂
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• Vectors        should be unit vectors  

• Id is constant over a planar surface since  the      vectors are constant  

• cosθ should be non-negative: 

• Diffuse component alone gives objects a totally matte appearance 

 

• Specular component follows the rule of the mirror  

 A perfect mirror will only specularly reflect in the direction of reflection  

The Phong Illumination Model (5) 
ˆ ˆ,l n

ˆ ˆ,l n

ˆˆmax(0, · )d i dI I k n l

r̂
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• Most surfaces have a diminishing function of specular reflection 

that attains its max value when the viewing direction    coincides 

with   :  

          (12.22)  

 where  ,   are unit vectors & n an empirical value that corresponds 

to surface shininess 

• Specular reflection is responsible for the highlights that are visible 

on shiny objects  

• The cosnα term intuitively approximates the spatial distribution of 

the specularly reflected light  

The Phong Illumination Model (6) 

r̂
v̂

r̂ v̂

ˆ ˆcos ( · )n n
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• Effect of the material exponent n : 

 

 

 

 

 

• n increases to the right, ks increases upwards: 

The Phong Illumination Model (7) 
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• Small values of n correspond to coarse materials where the size of 

the highlight is relatively large and scattered 

• Large values of n correspond to shiny objects with a small and crisp 

highlight 

• Specular reflection takes the color of the light source 

• Example: If a blue object is illuminated by a white light source, the 

color of the diffuse reflection will be blue but that of the specular 

reflection will be white 

• The value of the specular factor cosnα should not take on negative 

values, so we can replace it by max(0,cosnα) 

 

• The Phong model computes the illumination value as:  

         (12.23) 

 

The Phong Illumination Model (8) 
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• To simplify computations: Light source & observation point can be 

assumed to be at infinity  constant values for        vectors over the 

area of planar objects 

• Efficient variant of the specular reflection calculation uses the 

halfway vector     which is the average of      : 

          

         (12.24)  

 

The Phong Illumination Model (9) 
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• Angle               , angle              , and since θ = 2ϕ +α, we deduce that  

 

 

• We can thus replace       by       , and adjust n:  

         (12.25)  

• The    vector is much cheaper to compute than    

• If         are constant then     is also constant 

•     can be thought of as the normal vector to the plane for which the 

observer at   would see the max value of the specular reflection 

from the light source at   

• Since we assumed the light source at infinity, the contribution of the 

specular and diffuse terms depends on the intensity of the light 

source and the ambient term is constant  

The Phong Illumination Model (10) 
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• Objects with same properties & orientation but different distances 

from light will, wrongly, have the same intensity of illumination  

• Can be corrected by including a factor dependent on the distance of 

the object point from the light source  

 Distance factor (physically correct square term often ignored for efficiency): 

 

• The model thus becomes 

 

• Multiple point light sources can also be handled: 

 

 

• For monochromatic light, the original gray level value v of an object 

point p is thus modified by the result I of the intensity computation: 

v’ = v I 

The Phong Illumination Model (11) 
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• Color can be handled by giving the color of the light source to the 

specular reflection 

• The color of the ambient & diffuse components depends on the 

color coefficients of the object material  

• 3 intensity values, one for each of the 3 primary colors, are then 

computed: 

 

         (12.28) 

 

 

• Specular reflection contributes equally to the 3 equations, 

simulating a white light source 

 If (r,g,b) is the original color of an object at point p, this is modified by the 

result of the color intensity computation as: (r', g', b')=(r Ir, g Ig, b Ib) 

The Phong Illumination Model (12) 
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• Let us assume that we want to estimate the intensity value for a 

point p which, for ease of calculations, lies at the origin of the 

coordinate system p=[0,0,0]T. Let the normal to the object at p, the 

light and the viewing vectors respectively be: 

 

• Suppose the values of the emitted, ambient and incident intensity 

from the light source are: 

 Ie = 2 , Ia = 1,  Ii = 12  

• and that the constant values are: 

 ka = 0.3,  kd = 0.3,  ks = 0.6  

 and  n = 3 

 

Numerical Example 

[0,2,0] [1,1,0] [0,,  1] 1, ,T T Tn l v  
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• Light source is twelve times more intense than the ambient light and 

the object is self-illuminated and emits twice the ambient intensity 

• kd + ks = 0.9  10% of the incident light is absorbed by the object  

• Before applying the Phong formula we must compute the halfway 

vector and normalize all the vectors involved: 

  

 

 

 

 

 

 

 

 

Numerical Example (2) 
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• We can now apply equation (12.25): 

 

 

 Final intensity value corresponds to the specified viewing angle and is related 

to the input intensities  

 The angle between the directions of reflection and viewing is: 

 

 

 If the viewing direction coincided with the direction of reflection (i.e. 

                            ) then the specular reflection would attain its max value  

  

 since                  : 

Numerical Example (3) 

31 2
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• The Phong model requires a number of vectors for the computation 

of the illumination value at a surface point, namely:  

 

 

 

 

 

• Important to use efficient formulae for the computation of these 

vectors, since such computation is repeated for every point where 

the model is applied 

Phong Model Vectors 
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• Defined as a vector perpendicular to a surface at a certain point 

• Direction of normal vector defines the orientation of the surface 

• Very useful in computer graphics 

Normal vector for implicit surfaces:  

• Implicit surfaces are defined by an equation of the form:  

f (x, y, z) = 0 

• The normal vector at a point p = [a,b,c]T of such a surface is given 

by the gradient vector in the vicinity of p: 

 

The Normal Vector 

/

/

/
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• In the case of a planar surface defined by:  

f (x, y, z) = ax+by+cz+d = 0 

• The normal vector, which is constant over the entire planar surface, 

is: 

 

Normal vector for parametric surfaces:  

• Surfaces are often represented parametrically 

• In 3D, a surface is represented by 3 parametric equations in terms of 

2 parameters u and v: 

The Normal Vector (2) 
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• The normal vector is then: 

 

         (12.29) 

 

 

 

 

 

Normal vector for polygons: 

• Polygons are the usual building element for model composition  

• In practice the equation of a polygon’s plane is not known and the 

polygon is given in terms of a list of its vertices  

The Normal Vector (3) 

/ /

, / , /

/ /

x x x

y y y

z z z

where

f f u f v

f f u f v

f f u f v

 
 
 

        
      

      
      
             

f f
n

u v

f f
f

u v



Graphics & Visualization: Principles & Algorithms                             Chapter 12 
41 

• Given 3 consecutive, non-collinear vertices of a polygon vi−1, vi, 

and vi+1, we can compute the normal vector: 

 

• Cross product is not associative  

• The above computation follows the right-hand rule:  

 

 

 

 

 

 

The Normal Vector (4) 

( ) ( )   
i+1 i i-1 i

n v v v v
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• Must select correct orientation, otherwise normal computations will 

be reversed & objects will take an “inside-out” look 

• For polygons with more than 3 vertices, a slight non-planarity may 

exist  

 We may compute the polygon normal as the average of the normal vectors 

given by each pair of consecutive polygon edges 

 Another technique, due to Martin-Newell:  

 if [xi, yi, zi]
T, i =1,2, ...,n are the n vertices of a polygon, then the coefficients a,b,c 

of an approximating plane are computed as: 

 

 

 where ⊕ represents addition modulo n  

 The d (constant) coefficient of the plane equation can be computed using the 

coordinates of a polygon vertex: 

 

 

The Normal Vector (5) 

1 1 1 1 1 1

1 1 1
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• Another way of computing the normal vector of a polygon: 

 if [x1, y1, z1]
T, [x2, y2, z2]

T, and [x3, y3, z3]
T are 3 non-collinear points, 

then they must satisfy the plane equation: 

 

 

 

• Or 

 

 

 

• Or   XC = D 

• So  C = X−1D 

 

The Normal Vector (6) 
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• Given polygon with vertices v1 = [0,0,0]T, v2 = [1,0,0]T, v3 = 

[1,1,0]T, and v4 = [0,1,0.5]T (slightly non-planar). Compute its 

normal vector 

 

 

 

 

 

 

 

• We shall consider two suitable methods:  

 1) Average of the normals for each pair of successive edges  

 2) Martin-Newell’s technique 

Numerical Example 
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Method 1: 

• We first compute 4 normal vectors 

• Normals are indexed by the vertex onto which both edges are incident 

 

 

 

 

 

• Next, compute the polygon normal by averaging the above  

• Normalize vectors before summation  give equal weight to all 

edges: 

 

 

 

 

Numerical Example (2) 
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Method 2: 

• Using Martin-Newell’s technique ,we get: 

 

 

 

 

 

• Thus: 

 

 

 

 

Numerical Example (3) 
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• Polygonal meshes are often used to approximate objects with smooth 

change of their surface normal vector 

• Assume objects that consist of a single manifold surface  

• In illumination, we need the normal vector to an object’s surface at a 

discrete set of points covered by the surface : 

 Determine the normal at the vertices  

 of the polygonal mesh as a weighted average of  

 the normals to the adjacent faces to the vertex  

 Use this normal to perform bilinear  

 interpolation along edges and finally across  

 edges, on points of the underlying grid 

• The polygons adjacent to a vertex are  

 the 1-ring neighbors or the star of the vertex 

  

Vertex Normal Vector for Polygonal Meshes 
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• Vertex normal refers to a weighted average of the normals to the 

faces of the vertex’s star 

• 3 common approaches for computing the unit vertex normal    

Approach 1: 

• Weights can be taken to be equal  

• Achieved by normalizing the normals of the faces of the star          

  before averaging: 

  

         (12.31) 

  

where 

   m: number of faces in the star 

Vertex Normal Vector for Polygonal Meshes (2) 
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Approach 2: 

• This approach observes that larger polygons should contribute more 

than smaller ones  

 Face normals are thus weighted by the area of the corresponding polygons  

• For triangular faces, this amounts to taking the face normals as 

computed by the outer product of the vectors represented by 2 of the 

triangle’s edges  

 This is because the outer product is equal to twice the area of the triangle 

 

 

         (12.32) 

 

Vertex Normal Vector for Polygonal Meshes (3) 
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Approach 3: 

• This approach observes that in order to ensure that vertex normals 

are invariant to mesh restructuring, a good weight is the incident 

angle θ of the faces of the star 

• Angle θ can be computed by taking the arccos of the dot product of 

the vectors defined by the incident edges that form it: 

 

         (12.33) 

 

 

 

• Note: Vertex normals should be computed before the perspective 

division (projection) 

 

Vertex Normal Vector for Polygonal Meshes (4) 
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• In the following figure m is 6 as there  

 are 6 polygons in the star  

• In order to evaluate all the vertex  

 normal expressions above, we need  

 to compute the  

• Take the first triangle v0v1v2: 

  

  

 

 

 

• Similar computations are performed for the other five triangles in the 

star and expressions (12.31) – (12.33) can then be evaluated 

Vertex Normal: Symbolic Example 
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• Reflection vector     is computed by noticing that:  

 Angles between pairs of vectors              are equal   

              are coplanar  

 

 

 

 

 

 

 

Reflection Vector 
r

ˆ ˆ ˆ( , )  ,   ( , )l n n r
ˆ ˆ,  ,  l n r
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• Let     be the vector defined by the projection of     onto the axis of   : 

  

 since    is a unit vector, so: 

  

 We also have: 

  

• Thus: 

  

• 6 multiplications and 5 additions are required 

• When performance is an issue, the reflection vector is replaced by 

the halfway vector 

Reflection Vector (2) 
1
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• Light and View vectors         are:  

 either given constant vectors, if the light & view points are placed at infinity,  

 or simply computed as: 

         (12.35) 

         (12.36) 

  

 where  p: object point  

                 l: light point 

   v: view point  

 

• Halfway vector   , useful for specular reflection, is then computed as: 

         (12.37) 

Light, View & Halfway Vectors 
,  l v
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• Illumination is applied to produce realistic synthetic images 

• Warnock (1969): 

 intensity diminishes according to depth  

 objects were illuminated according to their distance from the light source 

• Gouraud (1971):  

 interpolation of intensity values within polygons from intensity values computed 

at the vertices  

• Phong :  

 compute intensity values at every pixel by linearly interpolating vertex normals  

 using the model he introduced in 1975  

 there are instances where the linear interpolation of the vertex normals does not 

work well 

• Overveld (1997) : 

 proposed a quadratic interpolation scheme  

Illumination Algorithms History 

55 



Illumination Algorithms based on the Phong Model 

• Constant shading 

 

• Gouraud shading 

 

• Phong shading 
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• Is the simplest algorithm for polygonal objects 

• Applies a constant illumination value to each polygonal facet 

• Incorporated: 

 Constant ambient lighting 

 Diffuse reflection 

• No Specular reflection 

• The light & view points: 

 Are both placed at infinity and coincide, 

 Eliminates shadows 

             is constant for each polygon 

Constant Shading 

57 
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• If the light & view points are on the +z-axis: 

   

   

• Illumination equation: 

 

• I  is computed once for each polygon 

 used for all pixels that the polygon covers 

• Problem: 

 A polygon mesh often samples a curved surface 

 The human eye is sensitive to intensity discontinuities 

 Polygon silhouettes stand out   objects have a “polygonal look” 

• One solution: 

 Use some form of illumination interpolation 

Constant Shading (2) 

58 
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• Is a simple illumination interpolation algorithm 

• If the sampling density is sufficiently high, it can capture local 

maxima (highlights) and minima of shading distribution over the 

polygon mesh 

• It computes intensity values for pixels inside a polygon: 

i. Interpolate the intensity values at its vertices 

 Intensity values at vertices estimated using the Phong model 

 Use vertex normals to evaluate the Phong equation at the vertices 

ii. Bi-linearly interpolate the vertex intensities along the polygon edges & 

between the edges (along the scanlines) 

 Scalar interpolation 

 

Gouraud Shading  

59 
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• Intensities I1, I2, I3 are computed using the Phong model 

• Ia, Ib : using interpolation between (I1, I2, I3 ): 

 

 

 

• Is : using interpolation between Ia, Ib : 

 

 

Gouraud Shading (2)  
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• Intensity values are computed incrementally within a scanline: 

• If s1 and s2 are the indices of 2 pixels on the same scanline, then: 

 

 

 

• Subtracting the above equations: 

 

 

• In the case of neighboring pixels (Δx=1): 

 

• Incremental intensity computation: 

Gouraud Shading (3)  
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• Problems of Gouraud Shading: 

 The sampling density is rarely sufficient to capture highlights 

 The shading vectors are not interpolated within the polygon but are used 

to capture intensities at the vertices only 

 No elimination of mach-bands:  

 the linear intensity interpolation leaves second-order intensity 

discontinuities 

 

 

 

 

 

• The Phong algorithm solves the problems of Gouraud shading by 

applying the Phong model to each pixel covered by a polygon 

 

Phong Shading   
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• Phong algorithm computations: 

 

 

 

 

 The unit normal vectors: bi-linear interpolation from the unit vertex normals 

 

 

 

 

 For neighboring pixels on the same scanline, use incremental computation 

 

                                              where 

Phong Shading (2) 
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• The Phong algorithm: 

 Is a significant improvement over Gouraud 

 Requires considerably more computations 

 Is implemented on graphics accelerators 

 

 

 

Constant – Gouraud – Phong shading example:  

Phong Shading (3) 
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• Phong shading algorithm 

 polygonal mesh sufficiently dense  acceptable quality 

 large polygons  shading artifacts 

• The silhouette edge problem:  

 In e.g. below, normal vectors do not vary at all over the surface 

 Completely flat illumination appearance  

 This is at odds with the appearance of the silhouette 

 

 

 

 

Quadratic Interpolation of Vertex Normals 
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• Vertex normal interpolation essentially aims to reconstruct a surface 

from discrete samples 

• Reconstruction cannot add information 

• Tries to come up with a reconstructed surface consistent with the 

sampled data: 

 interpolates the vertex normals  

 is perpendicular to the face normals 

• The linear interpolation of vertex normals in Phong shading is not 

consistent in this sense (previous e.g.) 

 

 

Quadratic Interpolation of Vertex Normals (2) 
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• Overveld and Wyvill showed that the quadratic interpolation of 

normals achieves better results 

• If     ,       : the normal vectors to be interpolated and 

          : the vector defined by the subtraction of the 1st from the last          

  interpolation point 

• Then the interpolated vector           is: 

 

 

 

• As expected: 

• Implemented by taking the forward differences of the quadratic 

function, at a cost of 2 vector additions per pixel 

Quadratic Interpolation of Vertex Normals (3) 
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• Linear (left) vs Quadratic (right) vector interpolation: 

 

 

 

 

 

 

 

 

 

 

 

                flat                       quadratic                   linear              linear/dense mesh 

 

 

 

 

 

 

Quadratic Interpolation of Vertex Normals (4) 
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• Given the triangle mesh: 

 

 

 

 

 

• Assume emitted, ambient & incident intensities from light source: 

   Ie = 2,    Ia = 1,    Ii = 12 

• And constant values: 

    ka = 0.3 ,    kd = 0.3,    ks = 0.6,     n = 3 

• Also assume the light and view points at infinity on the +z-axis : 

Numerical Example 
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• Compute the polygon normal: 

 

 

 

• From equation I = Ie + Ia ka + Ii kd nz: 

Numerical Example – Constant Shading 

70 

( ) ( ) [0,0,12]

ˆor  

   

[0,0,1]

T

T

    



1 0 2 0n v v v v

n

2  1 · 0.3  12 ·0.3 · 1  .I     5 9



Graphics & Visualization: Principles & Algorithms                             Chapter 12 

• Normalize the vertex normals: 

 

 

• Use the Phong model to compute the intensities at the vertices: 

 

 

 

• From Gouraud shading equation:  

Numerical Example – Gouraud Shading 
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• Compute the normals at the edge points a, b from the unit vertex 

normals (by linear interpolation): 

 

 

 

• Convert them to unit vectors: 

 

• Compute the unit normal vector at scanline point s 

 

 

• Apply the Phong model using the unit normal vector     : 

Numerical Example – Phong Shading 
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• Phong shading gives significantly higher intensity value compared 

to Constant or Gouraud shading 

• This is explained by the existence of a highlight at s 

• The quadratic interpolation scheme computes Is similarly to Phong 

 The only difference is the quadratic formulae used for the computation of  

Numerical Example 
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• Problems with the Phong model: 

 Objects often appear too plastic 

 The metallic shine or the off-specular-direction highlights are not captured 

correctly for many shiny materials 

 The reflected light scattering distribution due to the geometric variation of a 

rough surface cannot be captured  

• Cook – Torrance Model: 

 Extension of the Phong model 

 General illumination model for rough surfaces 

 Takes into account the directional distribution and the wavelength 

dependence of the reflected light 

 

The Cook-Torrance Illumination Model* 
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• Distinguishes the reflected light into : 

 The ambient term 

 The diffuse scattering  

 T he specular highlight 

• Provides a modeling & parameterization of  the BRDF fr of a material 

• The BRDF fr  is linearly composed of : 

 a pure diffuse term 

 a pure specular term 

 

 

 

 

The Cook-Torrance Illumination Model (2) 
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• The Cook-Torrance reflectance model for NL light sources: 

 

 

 where: 

        : the incident light intensity from light source l located at a direction             

              through a solid angle  

      :  the normal vector at the given surface location 

• Ia fa is the ambient term & Ia can be regarded as constant 

• fd is the diffuse BRDF of a Lambertian surface  

• fa uses the same distribution as fd 

•  The specular part of the BRDF depends on: 

 the relative location of the observer  

 the properties of the material 

 

The Cook-Torrance Illumination Model (3) 
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• In the original paper Ia  was multiplied by a visibility factor f : 

 f  is the amount of incoming ambient light that was not blocked by the   

     surrounding  environment 

  A distant uniformly luminous hemisphere radiates light toward the inspected 

surface point p 

 Uses a binary visibility function                 with max value 1 when there is a 

clear line of sight between point p and the surrounding distant hemisphere in 

direction      :  

 

 

The Cook-Torrance Illumination Model (4) 
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• The micro-facet model of Torrance and Sparrow is used for the 

derivation of the specular term fs  

 a surface is assumed to be composed of long symmetric V-shaped grooves 

 each groove consists of two planar facets 

• The facets: 

 Are tilted at equal but opposite angles to the surface normal at dA 

 Are considered perfect mirrors  

 Reflect light only in the direction of perfect reflection 

 The slope of the facets (polar angle) θa                   determined by a statistical  

 The orientation of the cavities (azimuth) φa            distribution for the material  

 

 

The Cook-Torrance Illumination Model (5) 
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• da : the area of a micro-facet 

• dA : the inspected area, where reflectance is calculated 

• In order for the Torrance-Sparrow model to work: 

  da  <<  dA 

 wavelength λ of the incident light << micro-facet dimensions  

 avoid interference phenomena  

 be able to work with geometrical optics  

 dispense with wave theory 

• Cook-Torrance model depends on 

 Micro-facet distribution term D 

 Geometric term G 

 Fresnel term F 

 

The Cook-Torrance Illumination Model (6) 
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The Micro-facet distribution D 

• Is the fraction of micro-facets aligned with direction  

• The contribution of each facet is binary : 

 light reflected fullyfrom direction 

 or, no light reflected at all 

• Determines the fraction of incident light reflected back to the environment 

in the direction of view. Several possibilities: 

• Gaussian distribution (easier to compute) 

 

• Beckmann distribution (more physically correct) 

 

  

 where m: the RMS slope of the surface  

    θa : the angle between the normal     of dA and     of da 

The Cook-Torrance Illumination Model (7) 

80 

ĥ
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Graphics & Visualization: Principles & Algorithms                             Chapter 12 

• The larger m is: 

 the more rough the surface   

 the specular highlight is spread out 

• Small m : 

 Micro-facets with normal vectors closer to  

 The material has a polished look  

 Specular highlight is tighter 

The Cook-Torrance Illumination Model (8) 
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Incoming light interception 

• Some of the outgoing light in the direction of     is attenuated due to 

the interception by blocking geometry 

• The amount of blocking depends on  

 the outgoing direction  

 the slope of the micro-facet relative to 

• The amount of light blocked due to light interception                     is: 

The Cook-Torrance Illumination Model (9) 
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Shadow 

• Some of the light incoming from a direction     on a facet da is 

blocked by the opposite facet of the groove 

• This leaves the lower part of the micro-facet in shadow 

 

 

 

Combining, Geometric attenuation factor G 

The Cook-Torrance Illumination Model (10) 
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• Spectral composition for Cook-Torrance model: 

1. Diffuse part of BRDF 

 Is constant 

 Equal to the reflectance at normal incidence 

2. Specular part of BRDF 

 Is associated with the angle of incidence 

 It leads to a color shift when the direction of incidence and reflection are at 

grazing angles 

 

The Cook-Torrance Illumination Model (11) 
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The Fresnel term F 

• Describes how a single micro-facet reflects light  

• Implements the dependence on: 

 n: the relative index of refraction of the material 

 k: the extinction coefficient In the Cook-Torrance model 

• For k = 0 and unpolarized light, the Fresnel equation is: 

 

 

 

 where 

 

The Cook-Torrance Illumination Model (12) 
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The Fresnel term F 

• F1  

 The angle between 

 When we look at the direction of the light source from a very low position 

with respect to the surface (grazing angle) 

 Is independent of the n and k values 

 At a grazing angle, the spectral composition of the reflected light is the same 

as that of the light source 

• F ≠ 1 for other angles 

• k = 0 is also true for non-metals 

• The Fresnel equation produces a good approximation for metals 

 

The Cook-Torrance Illumination Model (13) 
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• The specular part of the BRDF:  

 Gathering D, G, F in a single equation: 

 

 

               maximizes the specular highlight when viewing the light source from 

a grazing angle 

 

Approximation of Cook and Torrance: 

 Since the calculation of the Fresnel term is expensive 

1. Measure/estimate the reflected color at normal incidence F0 via the 

Fresnel equation  

The Cook-Torrance Illumination Model (14) 
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2. At grazing angle                for all wavelengths  

 (R, G, B) of the reflected light = (R,G,B) of the incident light 

 The reflected specular color component at an angle               may be 

interpolated: 

 

 

 where  

 ci : the color components (i=R,G,B ) of the resulting color  

 ci,π/2: the color components of the material color at normal incidence  

 ci,0 : the color components of the incident light color 

3. The final color ci is: 

 

 

 

The Cook-Torrance Illumination Model (15) 
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The Cook-Torrance Illumination Model (16) 
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• So far the diffuse component of illumination was based on the 

Lambertian principle, i.e. equal brightness from all view directions 

 Works well for smooth surfaces 

 Rough surfaces are not in general Lambertian 

 E.g.  Full Moon, clay, cement and sand 

• A rough surface exhibits phenomena such as  

 Light masking and shadows  

 Secondary reflections of light on the walls of the irregular microscopic 

structures 

 => Brightness of the reflected light increases as the viewing direction 

approaches the light direction 

• Oren and Nayar model: 

 Incorporates the above factors to predict the diffuse behavior of rough materials 

 Adopts the micro-facet model of Torrance-Sparrow 

 A rough surface consists of long V-shaped grooves  

 

The Oren-Nayar Illumination Model 
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• The facets are Lambertian surfaces (not perfect mirrors) 

 The reflected light in direction (θr , φr) from incident direction    is computed as: 

i. The 1st order reflected radiance 

 The light directly reflected in direction     from a micro-facet 

ii. The 2nd reflected radiance 

 The light reflected in the same direction after having bounced off the 

opposite facet of the groove 

 

The Oren-Nayar Illumination Model (2) 
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• Projected Radiance the contribution of a facet to the total radiance 

of patch dA 

 

where θa   : the slope of the facet wrt surface tangent plane 

• From the relation between L, E and Φ:  

 

 

 

• Substituting radiant flux in (12.53),                 becomes 

The Oren-Nayar Illumination Model (3) 
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• Micro-facets are Lambertian  BRDF is constant & equal to 1/π 

• From the definition of BRDF: 

 

 

 where  ρ = the surface albedo 

      E0 = the irradiance from the source at normal incidence 

• Replacing the radiance in (12.55):  

 

The Oren-Nayar Illumination Model (4) 
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• The contribution of all facets facing in the direction of  

 

 

• Geometric factor is a generalization of the Cook-Torrance factor G 

 works for any facet normal 

 not necessarily the halfway vector     between the viewing and the incident 

direction 

 

 

• Taking also into account the blocked incident and reflected light, 

(12.58) becomes: 

 

The Oren-Nayar Illumination Model (5) 
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• Radiance from second-order reflections : 

 

The Oren-Nayar Illumination Model (6) 
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• The overall radiance leaving patch dA in the direction                 :  

 

 

• Simplification of the original model: 

 

The Oren-Nayar Illumination Model (7) 
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• The BRDF is acquired by applying the BRDF definition to (12.61):  

 

 

 

The Oren-Nayar Illumination Model (8) 
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• Illumination models based on geometrical optics (Blinn, Cook-

Torrance and Oren-Nayar) 

 Produce very realistic shading  

 But, use actual physical parameters found in material science which are 

generally unintuitive for users (e.g. artists) 

• The Phong model  

 Cannot effectively capture the appearance of metallic surfaces  

 The specular exponent is specified as an unbounded positive number  

 Cannot easily produce a balanced shininess between a dull surface & a fully reflective one 

by adjusting its value between two limits 

 The shininess adjustment is complex  

 Two seemingly independent parameters (the exponent and the specular coefficient) control 

the same material attribute 

The Strauss Illumination Model 
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• Strauss Illumination Model: 

 Borrows many lighting calculations from Phong 

 Incorporates features like  

 metallic appearance 

 off-specular reflections  

 unified shininess control 

 through intuitive normalized parameters 

 Empirical model (targeting animators and 3D modelers) 

• Normalized parameters that control surface appearance:  

i. The material color c = (r, g, b) : represents the albedo of the surface 

ii. The smoothness s : – ranges from 0 (dull surface) to 1 (perfect mirror)  

        – controls : the specular/diffuse contribution ratio 

                   the size of the highlight 

i. The metalness m : – is ranges from 0 to 1 (metallic surface) 

      – affects the color of the specularly reflected light 

 

The Strauss Illumination Model (2) 
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• The intensity of the reflected light per color channel cr  : 

 

  where  

 ci :  the corresponding incident light component 

 Qd, Qs, Qa : the diffuse, specular and ambient components of  the Strauss 

model 

 

• The amount of diffuse illumination Qd : 

 Depends on the shininess of the surface s 

 The more shiny the surface, the less it behaves as a Lambertian reflector 

 Decreases with the increase of the metalness m 

 Depends on the angle of incidence 

The Strauss Illumination Model (3) 
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• The Strauss diffuse and ambient components are: 

 

 

 

 where :  

 t: the transparency of the surface (0 (fully opaque)  1 ) 

 c: one of the red, green or blue components of the surface color 

 (1-s3) is experimentally chosen to account for a linear perceptual transition 

from a dull surface to a perfect mirror, with a corresponding linear change in 

the s parameter 

The Strauss Illumination Model (4) 
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• The specular component Qs is: 

 

 where  

 rs: the specular reflectivity, defines the shape of the highlight      

 cs: the specular color is interpolated for metallic surfaces between the surface 

color and the light color  

• The specular reflectivity  rs :  

 Depends on the angle between the mirror reflection direction & the view vector 

 Is raised to a power to tighten the highlight 

 

The Strauss Illumination Model (5) 
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• The adjusted reflectivity  rj  encapsulates  

 the specular attenuation due to the Fresnel term  

 the geometric attenuation factor 

• rj  depends on the reflectivity of the surface at normal incidence 

 rn = 1 - t – rd    so:  

 where  

 F(x) : an empirical Fresnel-like function  

 G(x) : a geometric attenuation function 

 

 

 

 

 The constants kj , kf, kg are experimentally chosen  

 Strauss suggests the values kj = 0.1 , kf =1.12 , kg =1.01 

The Strauss Illumination Model (6) 
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The Strauss Illumination Model (7) 
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• All previous lighting models possessed an isotropic BRDF 

 Reflected light did not depend on the azimuth angle of incidence  

• Many real materials and treated surfaces exhibit a distinctive 

directional bias 

• Anisotropic specular reflection is caused by the microscopic 

geometric structures of the surface 

• Most anisotropic reflective materials possess a characteristic grain 

or a set of very small grooves which are roughly oriented in a 

specific direction 

• The grooves appear parallel within a magnified surface area 

• Good examples of anisotropic reflectors 

 brushed metals (e.g. brushed aluminum)  

 varnished wood  

 vinyl music records 

Anisotropic Reflectance 
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Anisotropic Reflectance (2) 

106 



Graphics & Visualization: Principles & Algorithms                             Chapter 12 

• Model the surface according to the micro-facet approach  

 Assume that the surface grain lays on a longitude direction φg 

 The distribution of the facets da with respect to their normal direction                                

                    is clearly directional 

 θa = 0 for φa = φg,  φg + π  

 θa ranges from  -θs to θs  for φa = φg ± π/2  

 θs : the maximum slope 

• Observing the surface from a macroscopic level  

 Incident light coming from (θi,φi)  

 In the extreme case where all grooves are aligned with φg  
 The surface becomes a perfect mirror when φi = φg,  φg + π  

 The surface has a wider spread of the highlight as φi  φg ± π/2  (maximum anisotropy) 

 

 

 

Anisotropic Reflectance (3) 
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• Several models to deal with anisotropy 

 Kajiya  

 Poulin-Fournier  

• For arbitrary geometry it is difficult to represent the direction of 

maximum (and minimum) reflectance on the surface, which is 

dependent on the azimuth angle φg 

 This direction is a local attribute of the model 

 Cannot in general be expressed relative to the object or world reference frame 

 Most implementations rely on local tangent space (e.g. using texture 

mapping) 

 

 

Anisotropic Reflectance (4) 
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• Local illumination models regard ambient illumination as constant  

 Ambient term is the irradiance that reaches a surface as the summed 

contribution of the emitted or reflected light from the environment and  

 Accounts for the exchange of energy between a patch dA and all other 

possibly contributing patches in a scene 

• A constant ambient illumination is clearly a very rough 

approximation, even for simple scenes 

• Exchange of energy in a closed environment is simulated via a 

global illumination method (Chapter 16) 

• One aspect of the global energy exchange that affects the ambient 

term, the darkening effect in obscured parts of a scene, can be 

simulated in a more efficient manner 

• Ambient occlusion: Assuming a uniform (ambient) distant 

environment irradiance from every direction, estimates the portion 

of it that finally reaches a small patch dA 

Ambient Occlusion 
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• Equivalent to calculating the visibility of a patch due to the 

presence of the rest of the geometry 

 i.e. portion of the solid angle around the patch, from where dA is visible  

• Inversely, the obscurance of a patch dA is the portion of the 

hemispherical solid angle around the patch that is blocked by other 

geometry 

 

 

 

 

 

 

Ambient Occlusion (2) 
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• The higher the obscurance, the darker the patch 

 dA is blocked at many incident directions by other patches  less light from 

the environment can hit the surface 

• Obscurance w(p) reflects the “openness” of a patch dA centered at a 

point p 

 A purely geometric property  

 Does not depend on any particular lighting conditions or viewing direction 

 Is usually pre-calculated and stored as vertex data 

• w(p) can be multiplied with a constant ambient term & provides a 

convincing estimate of the incident light from the environment 

Ambient Occlusion (3) 
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• Note that ambient occlusion is not a physical simulation model and 

does not provide an accurate global illumination calculation: 

 Misses the high-order bounces of energy that eventually hit the surface 

 Regards irradiance  to be constant in all incident directions 

• Assumptions: 

 No specific light sources in the environment 

 The (uniform) incident ambient illumination can be modeled as a perfectly 

diffuse light that radiates from all directions towards dA 

 Light is not emitted from some infinite medium far from the scene itself, but 

the geometry is immersed in a radiating, non-absorbing, gaseous medium.  

• Let d(p,θi,φi): distance between p and the closest surface point in 

direction (θi,φi): 

               (12.71) 
 

Ambient Occlusion (4) 
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• The farther from p an intersection point is, the more light reaches 

the surface of the patch dA  

• If the hemispherical solid angle above the patch is completely open 

up to a distance dmax, the obscurance w(p) is set to 1 

• Obscurance becomes 0 only in degenerate cases or where 2 surfaces 

firmly touch each other  

• dmax is the maximum distance at which the contribution of the 

surrounding geometry is non-negligible  

• Intensity of reflected light from patch dA centered at p, due to 

ambient illumination coming from hemisphere Ω above dA can be 

approximated as: 

 

         (12.72) 
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• Function μ(x) maps the distance x = d(p,θi,φi) to a normalized 

obscurance factor 

 It represents the energy emitted by the gaseous medium in the line of sight 

from p to the closest surface in the direction (θi,φi)  

• μ(x) must be: 

 Monotonically increasing and smooth  

 0 for zero distance and 1 at infinity with 

     a decreasing slope  

 

 

 

  

 

 

              (12.73) 

Ambient Occlusion (6) 

2

2

  0, 0 0,( ) ( )
( ) , 0

1, 0, othe e
,

rwis

x xd x d x
x

x dx dx

 


   
   

   



Graphics & Visualization: Principles & Algorithms                             Chapter 12 
115 

 

• Common family of functions that conforms to the requirements: 

     μ(x) = 1−e−τ x   (12.74) 

• Parameter τ regulates the spread of the shadowed area  

• Since dmax defines a range of distance from p beyond which no patch 

is taken into account, μ(x) has to be modified to normalize this input 

range 

 

Ambient Occlusion (7) 
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• Let us now introduce NL light sources with intensities:  

 IL( j), j = 1. . .NL,  

 at distance dj from the patch dA & direction of incidence  

• Assuming Lambertian surfaces, these light sources contribute to the 

illumination of the patch both in the ambient & the diffuse term 

• The resulting illumination for a point p of the patch is: 

 

         (12.75) 

 

 where  

δ (p, j) is a visibility factor that:  

 becomes 1 if the jth light source is visible from the patch  

 becomes 0 if the patch is in shadow for the specific light source 

Ambient Occlusion (8) 
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• EXAMPLE 

• Obscurance estimation for  

 various values of the distance  

 limit dmax (left). R is the scene 

     radius.  

• Scene rendered with constant  

 ambient illumination  

 (top right) & with  

 obscurance-weighted  

 ambient-diffuse illumination  

 (bottom right). 

 

 

 

Ambient Occlusion (9) 
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//##### Cook-Torrance Model #####// 

//##### Vertex program ##########// 

varying vec3 N,P; 

void main()  

{ 

 gl_Position = gl_ModelViewProjectionMatrix * 
gl_Vertex; 

 N = normalize ( gl_NormalMatrix * gl_Normal ); 

 P = vec3 (gl_Position) / gl_Position.w; 

} 

 

Shader Source Code - Cook-Torrance 
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//##### Cook-Torrance Model #####// 

//##### Fragment program ########// 

varying vec3 N, P; const float pi = 3.1415936;  

const float e = 2.718282; const int numLights = 2; 

uniform float Ka, Kd, Ks,  // ambient, diffuse, specular coefs. 

      m;  // RMS micro-facet slope 

uniform vec3 n; // n(630nm) n(530nm) n(465nm) at normal incidence 

uniform vec3 color;   // The material color 

// The Beckmann distribution function 

float Beckmann ( in float a ) { 

      float tana = tan(a)/m; float cosa = cos(a); cosa *= cosa; 

      return pow ( e, -tana*tana ) / (m*m*cosa*cosa); } 

// The Fresnel term 

float Fresnel( in float n, in float c ) { 

      float g, gc, F; g = clamp ( n*n+c*c-1, 0.000001, 1.0); g = sqrt(g); 

      gc = g+c; F = (g-c)*(g-c)/(2*gc*gc); 

      return F * ( 1 + (c*gc-1)*(c*gc-1)/( (c*gc+1)*(c*gc+1) ) ); 

} 

 

Shader Source Code - Cook-Torrance (2) 
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// The Cook-Torrance model for the specular reflectance 

void CookTorrance (  in vec3 L,  // light direction 

    in vec3 V,  // view direction 

    in vec3 H,  // half-way vector 

    in float a,  // angle ( N, H ) 

    in vec3 Il,  // incident illumination 

    in vec3 C0,  // material color 

    out vec3 Is_I  // resulting specular color 

          ) 

{ 

float NL, NV, VH, NH;  // dot products 

float D, G;    // D and G scalar terms 

vec3 F0, F;    // The tri-chromatic Fresnel terms 

     // for normal & arbitrary incidence 

Shader Source Code - Cook-Torrance (3) 
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NL = dot(N,L); NV = dot(N,V); VH = dot(V,H); NH = dot(N,H); 

D = Beckmann(a); G = min ( 1, min( 2*NH*NV/VH, 2*NH*NL/VH ) ); 

F0.r = Fresnel(n.r,1); F0.g = Fresnel(n.g,1); F0.b = Fresnel(n.b,1); 

F.r = Fresnel(n.r,VH); F.g = Fresnel(n.g,VH); F.b = Fresnel(n.b,VH); 

Is_i = (C0+(Il-C0)*(max(F-F0,0)/(1.0-F0)))*((F.r+F.g+F.b)/3) *D*G/ 

  pi*NL*NV); 

} 

 

void main() { 

     vec3 Pl;           // Light position 

     vec3 L, H, V;    // directions (unit vectors) 

     vec3 Ia, Id, Is, Is_i, Il;  // Intensity values 

     int i; 

     float NL, a; 

     V = vec3 (0.0, 0.0, 1.0);  // View direction 

Shader Source Code - Cook-Torrance (4) 
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   Ia = vec3 (0.0, 0.0, 0.0);  // Init. amb/dif/spec values 

   Id = vec3 (0.0, 0.0, 0.0);  Is = vec3 (0.0, 0.0, 0.0); 

   // Add the contribution of all light sources 

   for ( i = 0; i< numLights; i++ ) { 

      Pl = vec3 (gl_LightSource[i].position); L = normalize( Pl - P ); 

      H = normalize( L + V ); NL = dot (N,L); 

      // Diffuse 

   Id += gl_LightSource[i].diffuse * NL; a = acos( dot(N,H) ); 

      Il = vec3 (gl_LightSource[i].diffuse);  

      CookTorrance ( L, V, H, a, Il, color, Is_i ); 

      // Specular 

      Is += Is_i; } 

   // Ambient 

   Ia = Ka * gl_FrontLightModelProduct.sceneColor; 

   gl_FragColor = vec4(Ia,1)+Kd *vec4(Id,1)*vec4(color,1)+Ks*vec4(Is,1); 

} 

Shader Source Code - Cook-Torrance (5) 
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//##### Strauss Model #####// 

//##### Vertex program ####// 

varying vec3 N; varying vec3 P; 

void main() { 

   gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex; 

   N = normalize ( gl_NormalMatrix * gl_Normal ); 

   P = vec3 (gl_Position) / gl_Position.w; 

} 

Shader Source Code - Strauss 
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//##### Strauss Model #####// 

//##### Fragment program ##// 

varying vec3 N; varying vec3 P; const float pi = 3.1415936;  

const int numLights = 2; uniform float m;  // metalness uniform 

float s; // shininess uniform float t; //transparency  

uniform vec3 C; // surface color 

//----- Fresnel term ----- 

float F ( in float x ) { 

   const float kf = 1.12f; const float kf2 = kf*kf; 

   const float denom = ( 1.0/((1.0-kf)*(1.0-kf)) - 1.0/kf2 ); 

   return ( ( 1.0/((x-kf)*(x-kf)) - 1.0/kf2 ) / denom); 

} 

//----- Geometric Attenuation----- 

float G ( in float x ) { 

   const float kg = 1.01f; const float kg2 = kg*kg; 

   const float denom = ( 1.0/((1.0-kg)*(1.0-kg)) - 1.0/kg2 ); 

   return ( 1.0/((1.0-kg)*(1.0-kg)) - 1.0/((x-kg)*(x-kg)) )/ denom; 

} 

Shader Source Code - Strauss (2) 



Graphics & Visualization: Principles & Algorithms                             Chapter 12 
125 

void main() { 

   vec3 Pl, L, V, H; vec3 Qa, Qd, Qs, Ir, Cs; int I; float NL, NV, f; 

   float theta_i, theta_r; float rn, rj, rd, rs, d; const float kj = 0.1; 

   // Note that conventions in the original paper differ from standard 

   // normalized vector definitions: L & V face towards the local point P 

   // View direction 

   V = -normalize(P); NV = dot(N,V); Ir = vec3 (0.0, 0.0, 0.0); 

   for ( i = 0; i< numLights; i++ ) { 

      Pl = vec3 (gl_LightSource[i].position); L = normalize( P - Pl ); 

      NL = dot(N,L); H =normalize( L-2*NL*N ); theta_i = 2*acos(abs(NL))/pi; 

      theta_r = 2*acos(abs(NV))/pi; rd = (1-s*s*s)*(1-t); d = 1-m*s; 

      rn = 1-t-rd; f = F((theta_i+theta_r)/2);  

      rj = min (1, rn+(rn+kj)*f*G(theta_i)*G(theta_r)); 

      rs = pow(-dot(H,V),3/(1.0001-s))*rj; Cs = 1 + m*(1-f)*(C-1); 

      Qd = clamp (-NL*d*rd*C,0,1); Qs = clamp (rs*Cs,0,1); 

      Ir += gl_LightSource[i].diffuse * (Qd+Qs) +gl_LightSource[i].ambient * Qa;} 

   gl_FragColor = vec4(Ir,1-t); 

} 

Shader Source Code - Strauss (3) 


