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and that the associated eigenvectors e, e, * - -, e, have components with
exactly 0, 1, 2, - - +, »—1 variations in sign.
Is it necessary for a matrix to be totally positive to have this property?
Let us construct a matrix 4 with

A= 3, €1 = (1, 1, 1) 1 1 1
=2 e=(@,—1,—1); themE=|1—1—1
Az =1, es = (1, —1,1) 1 -1 1

and
1111300110152—1
A=EJE—1=—§-1—1—1 0 2 0|1 0-—1 =71 4 1
1 -1 1{l0 0 1jl0 -1 1 1 2 3
which is not totally positive. This sufficient condition for the stated property
is therefore not necessary.

This paper was presented in part at the annual meeting of the Texas section of the MAA
at Fort Worth, April 9, 1965.
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THE MAXIMAL THEOREMS OF HARDY AND LITTLEWOOD
KEITH PHILLIPS, University of Washington and California Institute of Technology

1. Introduction. In this paper we give a unified treatment of the famous
maximal theorems of Hardy and Littlewood. Roughly speaking, these theorems
give estimates of the maximal value of the difference quotient of an indefinite
integral. They were originally proved by Hardy and Littlewood in 1930 [5].
They have had numerous applications, and in fact were proved in order to solve
certain problems in complex function theory. Other applications appear in [9]
(e.g., to conjugate functions, or Hilbert transforms), [1] and [8] (to ergodic
theory), [7] (to harmonic functions), and [2] (to singular integrals). We are not
concerned in this paper with applications, but with presenting the main facts
and methods associated with maximal functions. Subsection (3.6) is of secondary
interest, and can be skipped. Section 4 is not required for Section 3.

We begin by establishing notation. First, f will denote a nonnegative, ex-
tended real-valued, Lebesgue measurable function on R (the real numbers) such
that [#fd\< « for all compact sets F; \ is Lebesgue measure for R. (Later, in
sect. 5, f will be defined on R™). Define three “maximal functions” of f as follows:
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1
M.f(x) = sup {;\—2—5— Ifd)\: I=[x,ul,z<u< 00}

1
(1.1)  Mf(x) = sup {mf[fd)\: I=uz], —o <u< x}

1
Mf(x) = sup {;\—&5— f fd\: Iis a closed interval containing x} .
I

Thus M,f(x), Mif(x), and Mf(x) are three different maximal averages of the
function f. All of the maximal theorems are inequalities giving bounds for the
integral of one of the maximal functions composed with a monotonic function.
As a result, the mappings M,, M, and M carry certain function spaces to others.
Notice that the suprema defining our maximal functions are over finite intervals
of all possible lengths. By the continuity of the indefinite integrals involved,
each of the maximal functions is lower semicontinuous (and hence Borel measur-
able). The inequalities f< M f< Mf(j=r, I) are immediate, but much more is
true.

(1.2) TaroreM. The equality Mf=Max(M,f, M.f) holds.
Proof. Fix x. For u <x <t, let

12 z
A = (¢ — x)"lf f@\ and B(w) = (x — u)—lf fan; A(x) = B(x) = 0.
Let p1(u, t)=(@t—x)(t—u)"", po(u, £)=(@x—u)@t—u)"!, and C=p1A+p;B, for
u=<x=tand us¢; then
Mf(x) = sup{C(u, ):u S x S t, ¢ = u}.

Let (#a, ta)a>: be such that limu.oC(#a, t.) =Mf(x). The sequence (p1(n, tn),
P2(tn, £2)),=1 is contained in the compact subset [0, 1]X [0, 1] of the plane, and
so has a convergent subsequence. Hence there is a sequence (u#z, )=, such that

lim C(u, ) = Mf(x) and lim (p1(wry 1), pa(mr, 1)) = (a, b),

I
where a+b=1. For each %, the inequality
P1(uny ) A(G) + pa(tiny t)B(ur) < pr(un, t) M f(x) + palur, t) Mif (x)
holds; hence the inequality
Mf(x) < aMf(x) + bM ()

holds. Since a+b=1, the inequality Mf(x) <Max(M,f(x), Mif(x)) follows. The
reverse inequality is immediate from the definitions (1.1).

2. Two fundamental lemmas. The heart of our proofs of the maximal theo-
rems is in the following two lemmas. The lemmas themselves give precise infor-



650 MAXIMAL THEOREMS OF HARDY AND LITTLEWOOD [June-July

mation about the size of the maximal functions. For a positive real number ¢ and
an extended real-valued nonnegative function g on R, we let

EJfg] = {x € R: g(x) > 1}.
(2.1) LEMMA. The equalities

1
@ ME[Mf]) = — fax  (G=r11)
L m,
and the inequality
2
(ii) ME[MS]) = — Jdx
E,1Mf]

hold for every t>0.

Proof. We prove (i) with j=r, the case j=1I being almost the same. It is easy
to see that E¢[M,f] is open. Let {]8:, v:[}:2: be the unique pairwise disjoint
intervals with union E,[},f]. Consider an interval ], v:[ (which may of course
be infinite). For each x & |64, vi[, the set

N, = {s: j:fdh > s — %), s € lx, ] N R}

is nonvoid. This is trivial if y,= . If 9, < and N,=, there would be a
w> v such that [¥fd\>t(w—x). We would have

fwfdk = j;wfdx - f:"fdx > tw — vi),

a contradiction since ;G E¢[M,f]. Let y=sup N. If vy <vs, then the equality
J2fd\=t(y—x) must hold; an obvious argument proves this. Therefore (since N,
is nonvoid) there is a Y€y, v:]NR such that [’fd\>i(y—=). It follows that
Jifax>t(y—x), a contradiction since y>v. We thus have v =sup N,, and hence
the inequality [7kfd\ 2 ¢(y: —x) holds for all x& By, vi[; letting x—B:, we get

k4
o) faN Z v — By
Bk
If ]Bi, v+ [ is infinite, the equality (i) follows. If ], v [ is finite, then the reverse
inequality in (1) is immediate (8. E:[M,f]). Hence in all cases equality holds in
(1), and so (i) is proved for j=v.
To prove (i), note that Theorem (1.2) implies that E.[Mf]=E,[M.f]
UE,[M, f]. Hence, using (i), we have

AELaf) S @) e s — [ ol

E,LM]]
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(2.2) LEMMA. For every k€0, 1[ and every t>0, the following inequalities
hold:

@ ME[Mf]) = fax  G=r0;

(A —=rtd g i

.. 2
(ii) ME[MA]) < Ty f Emmfdh

Proof. Let
oa) = {f(x) if f(x) > kt

0 otherwise.

Then we have M,f< M,g+kt, and E,[M.flCEa_s:[M.g]. Applying (2.1.i), we
obtain

1
tMr = .
o et sg—p [

(A~k)t ¢

Since g=0 on Ex[f]’, the integral in (1) is less than [z,,in fdN.
Itis clear how to obtain (i) for j=/, and also how to use (2.1.ii) to prove (ii). I
Our proof of (2.1.i) is a variant of one of F. Riesz [6]. Lemma (2.2) appears in
[4]; the method of proof is due to Wiener [8].

3. 2, maximal theorems. For a Lebesgue measurable function g(defined on
R) and a positive real number p, we let ||g||,= [/z| g|?d\]¥». The function space
L, is all g’s such that ||g||,,< . The following lemma, an easy application of
Fubini’s theorem, will be useful. We use the symbol £ for characteristic func-
tions.

(3.1) LEMMA. Let x be a function on [0, o« [ that is absolutely continuous on
every finite interval, and satisfies x(0) =0. For every nonnegative Lebesgue measur-
able function g on R and every Lebesgue measurable set E, the equality

J xoon = [ “xonen Bl

holds.
Proof. Write

fExogdh= fR £x(x) fo a(x)x’(t)dtdx

~ [ [ eansatox i = [ oaEN Bl
0 R 0
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the use of Fubini’s theorem is justified since the set { (x, £):x € E and g(x) >t} is
product measurable. l

(3.2) THEOREM. For p>1 and fER,, the inequalities

@ |, = ————Hfllp G=10
and

.. 21rp

(i) 1l = ol

hold.

Proof. The following calculation (using (3.1), (2.2.i), and Fubini’s theorem)
shows that M, fE.,:

fR(M,f)PdA =p f wx(E,[M,f De—1dr < < — f {o2 fandt

E,,If]

T1- kf J(®) f Er i (@)17dids

The constant & satisfies 0 <% <1. The application of Fubini’s theorem is justified
because the set {(x, 1): f(x)>kt} is product measurable. To obtain (i), we use
(2.1.i), Fubini’s theorem, and Holder’s inequality to calculate as follows:

fR(M:ﬁPdA = ?‘f;wtl’—z fE [Mf]f(x)dxdt = prfongt [sz](x)f(x)tp—zdtdx

_ (M f ()
= prf(x) —p 1 dx

<o LS oorval]”

Since p'(p—1)=p and 1—1/p'=1/p, the inequality (i) follows. The use of
Fubini’s theorem is justified because the set {(x, #):M;f(x) >¢} is product
measurable.

To prove (ii), let 4 = {x: Myf(x) = M,f(x) }. Then we have, by (1.2),

f (Mf)2dn = f (M fyedn + f (M,)7dn <2< ) f Fodns

the inequality (ii) follows. Jj
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(3.3) REMARKS. (a) The calculation giving (3.2.i) in the above proof is a
modification of one given by Flett [4].

(b) The inequalities of Theorem (3.2) are false if p=1. In fact, if FE/{(R)
and 0 <b <, then the inequality M ;f(x) 2 2~ /sfd\ holds. Thus, except for trivial
f's, Mif is not in & (R). The fact that we allow arbitrary intervals in our defini-
tion of the maximal functions is not, however, the only difficulty in the & case.
If £ (x) =£g0,1/m1 () / [x(log %)?], then FER(R); but (Mf)ép,1m EX(R). In fact, we
have M;f(x) = (x|log x|)~* if x€]0,4[. (This example appears in [9], p. 33, but
with the equality M,;f(x)= (x[ log xl )~L Strict inequality holds, however, for
xE|1/e, 1/2[.) In the case p =1, there are two replacement results for Theorem
(3.2). We state and prove them below.

(3.4) THEOREM. Let E be a Lebesgue measurable set, and suppose k&0, 1].
The tnequalities

@ fE(Mif)dK = -;—ME) + I——i—-;fRf(x) logtf(x)dx  (j=r1)

and

(ii) fE(Mf)dA = %—A(E) + I—i—}e—fRf(x) log* f(x)dx
hold. For 0<p <1, the inequalities

) ( ) o

(i) J oo s (fa) G=np
and

. o PAE) »

(@iv) fz(Mf) d\ S ~—2 P (fRfd)\>

hold.

Our proof of (i) and (ii) (below) is essentially as in [4]. Our proof of (iii) and
(iv), based also on (2.2), uses a technique appearing in [3] and [2] (but not in
[4]). The definition of log* is log*t=Max {log ¢, 0 }. If g is Lebesgue measurable
and N(E) =0, then [zgd\ =0, even if A\({x: g(x) = £ }y>o.

Proof. For j=r, ], we have

fE(MzﬁtD\ =fwA(E,[M]f]ﬂE)d;=fl/k+f°°

<= A(E) + F(%)dacd
1—kJan N B,,U1
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B, f 16 { 1;&“ @) %dt} dx

k 1—-%
_ *_%l | 1(6) log f(a)ds;

and so (i) is established. Clearly (ii) can be proved similarly, using (2.2.ii).
To prove (iii), suppose that A(E)>0 and [zrfd\ < . Let a be any positive
real number. We write

f fyin = 1 fo "B Mf] N B)dt = p( fo "L f Z)

< :—:)\(E) + 1—3 f 1) { f th‘st“m (x)dt} iz,

The inner integral above is [f(x)?~1—ar=1]/k>=1(p—1) if f(x) >a and is O other-
wise; it therefore does not exceed ar—!/k?~1(1 —p). Thus we get the estimate

¢))

) ME) , par~!
@ fE(Mjf) e ey =T fRfdA.

Taking o= (k/(1 —k)) \(E))~[zfd\ (this value minimizes the right side of (2)),

we obtain
fE(M,f)de < a j o )\fE—)l—pp[ fRfdk]p.

Letting k—0, we obtain (iii). Obvious modifications in the proof yield (iv). I

(3.5) REMARK. All of the inequalities in (3.4) are, of course, interesting only
if A(E) < . Consider the function £=§_13. We have ME(x)=2/(1+|x!) if
|#| 21 (see 3.6). Thus £ and £ log*¢ are in ©1(R), but ME is not in 21(R)UL,(R),
p<1. This example shows that M does not carry & log+ € into & or & into &,
p<1; and so we cannot expect replacement results for (3.4) when M(E) = «.

(3.6) BesT CoNsTANTs. In various places in the preceding sections, the
constants obtained can be shown to be the best possible. First, let £&5=£(_s,a1,
0<8<1. An elementary calculation shows that

Ms()—{l if |x|=<8
Z a6+ |2]) i || >

We have N(E.[ME;]) =2 and #1f2,5dN=0+1, if £=28(5-+1)7?; therefore, 2 in
(2.1.ii) is best possible.

Let p>1 and 0<a<1, and put fu(x) =x"?£1(x). The equality lima.
”M ol p”fa”; 1=p/(p—1) shows that the constant in (3.2.i) is the best possible.
The example is due to Flett, [4]. Let 0<p <1, 0<a<1, and fo(x) =201 ().
The inequality
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I:fol(sza)”d)\][fRfad)\]—p > (1 —ap)

shows that the constant in (3.4.iii) is the best possible.
Finally, the constant (1 —%)~1in (3.4.i) is the best possible in the following
sense. If B; and B, are constants independent of f and E such that

[ opar s Baw) + 5, [ 16108 56905

then we have B;=1. The following example is due to Flett [4]. Let E=[0, b]
and let f(x) =x"'[log 1/x]-*9%z(x). Suppose that b is small enough so that f is
decreasing on |0, 5] and so that 0 <x <) implies that log(log 1/x)=0. An ele-
mentary calculation shows that

1 1 1 71—+
Mif(x) =———|:log--:| , 0<x=0.
14 € % x

Hence for any constant B; we have

I:fEszd)\ - Bg)\(E):I[ fRflog"’f:I_l
=1+ e)“‘[fj(% log %)_(He)dx - sz]

b 1 1 —(1+e€) —1
X [ f — <log ——> dx:I .
0o X X

Letting 5—0, we obtain (1-4¢)~! on the right.

4. The Hardy-Littlewood maximal theorem. Versions of the inequalities
(3.2.i), (3.2.ii), and (3.4.i) appear in Hardy and Littlewood’s original paper [5].
Sections 2 and 3 combine some of the refinements made in subsequent years, and
some related results. As is apparent from the previous references, important
contributions have been made by several authors: F. Riesz, Wiener, Flett, and
Edwards and Hewitt, to mention those who bear the most influence on our
treatment. Hardy and Littlewood based their proofs on a more general maximal
theorem. This theorem, which we now prove by the methods of Section 3, is
usually called the Hardy-Littlewood maximal theorem.

Notation is as in Sections 1 and 2. We also let f* denote a decreasing function
on |0, [ that is equimeasurable with f; that is, N(E.[f*]) =N(E.[f]) for all £>0.
(Such functions exist; e.g., f* can be taken as the inverse of the decreasing func-
tion y—\(E,[f]), with suitable modifications when this function is not strictly
decreasing.) The equality

(4.1) fRfdA = fo wf*d)x = j; wA(E,I'f])dt
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is a result of (3.1).
(4.2) LEMMA. The inequality

A (B)
f fan f*dn
B 0

holds for every Lebesgue measurable set B.

Proof. Clearly we have M(E,[ftz]) SN(B). Thus (f£z)*=0 on ]A(B), « [, and

we have

A(B) AN(B)
[m=["vas " ra.
B 0 0

We will prove the inequality (féz)* <f*(a.e.) used here. In fact, if g<f and
g*(to) >f*(to) for some point ¢, of continuity of g*, then g*>f* on some interval
[to, 1]. Thus we have

MEpan[f*]) = t, < t1 = MEpan [g*]),

a contradiction since the extremes are equal to N(Ef*uy[f]) and N(Eruy[g])-
Since g* is continuous a.e., we have g* <f* a.e.

The above lemma is well known; it appears, e.g., in [9], p. 31.

We extend f* by letting f*(t) =0 if £ <0.

(4.3) HARDY-LITTLEWOOD MAXIMAL THEOREM. Let x be an increasing non-
negative function on [0, » [, and suppose fE(R). The following inequalities hold:

0 [xoatpas [ xottma  G=nb;

(i) fo o (Mf)dn = Zfo o (M f*)d.

Proof. It is easy to see that M;f*(x) = (1/x)[sf*d\, since f* is decreasing. It
follows from this equality that M f* is decreasing. By (2.1.i) and (4.2), we have

1 MEIM)
€Y ME[M;f]) = -*t—f f¥an &> 0);
0
and this inequality implies that M f*\(E.[M,f]))=¢, if 0<NE[Mf]) < .
Since M f* is decreasing, we infer that

() ME[Mf]) = ME[M ),

if N(E.[M;f])< . The equality N(E,Mf])= o would imply, by (1), that
f*, fEX(R); hence, (2) holds for all £>0. Let F,[g]= {x: g(x) =t} (>0, g=0).
An application of Fatou's lemma, using (2), shows that

©) NF[Mf]) S NEF[Mf*]).



1967] MAXIMAL THEOREMS OF HARDY AND LITTLEWOOD 657

Next, let S= {x: 0 =1 < <aa=>x (301) <x(x) <x(2) } Then x is strictly increas-
ing on S. On S, we define « as the inverse of x:x(a(t)) =¢ if tEx(S). If t&x ([0,
o [), let B=sup[{x: x(x) <t} U{0}] and v =inf[{x: x(x)>t}\U{ o }]. Then
we have |8, y[Cx ([0, «[), t€[8, v], and B or yEx ([0, = [). If yEx([0, = [),
let a(t) =inf{x: x(x) =7} ; if BEx([0, »[) and y&x ([0, = [), let a(t) =sup{x:
x(x) =B}. Then x(a(t)) is either B or v, and is unequal to ¢, The function « is thus
defined a.e. on [0, « [ (it is not defined on x(S’)). Let 4 = {t: x(a(®)) <t} and
B={t: x(a(t))>¢}. Then the equalities

Exogl = Eawlgl, te 4
Efxogl =Fawlgl, t€B

hold for any nonnegative function g. Using (2), (3), (4), and our previous results,
we calculate as follows:

@

foo (Mf)d\ = fo w)\(E,[xoM,f])dt
- fA N(Eato [M D)t + fB A(Feo M)t

= [ MElxo i = [ xo o
0 R
To prove (ii), we write

fR x o (Mf)d\ = fRMax{xo(Mw,xo(Mw}dx

IIA

fR{x o (Mf) + x o (Myf)}d\ = 2foo (y*an. |

The constant 2 in (4.3.ii) is the best possible; for, an equimeasurable function
for £ (see Section 3.6) is £ =£9.¢;, and we have

o ] f ] -

»>1

5. Generalizations for R”. The maximal function Mf defined in Section 1 can
be written as

Mf(x) = sup {)\(l)‘l f fa\:Iis a finite interval containing 0} .
241

We see that the mapping M depends on the measure A and the collection of
finite intervals containing 0; averages are taken over intervals containing x.
Given a measure space (X, @, u), what is needed to define formally an operator
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M on the positive measurable functions is a family ® of subsets of X over which
to take averages. Maximal functions have been successfully defined and heavily
used by several mathematicians by obtaining suitable families & on certain
measure spaces. Examples are: Calderon [1], to ergodic theorems on locally
compact groups; Calderon and Zygmund [2], to singular integrals in R™;
Edwards and Hewitt [3], to pointwise convergence of convolutions on locally
compact groups; Smith [7], to harmonic functions in R™. For the presentation of
the maximal theorems in sections 2, 3, and 4, the crucial result is really Lemma
(2.1). The other results are obtained from it with no significant use of specific
properties of the underlying space R. In this seclion we prove an analogue of
(2.1) for Euclidean m-space R™, using open spheres in place of intervals. The
precise arguments of the proof of (2.1) are not possible if 7 =2, for the open sets
in R™ are not unique disjoint countable unions of spheres. Instead, we need the
following covering theorem. All writers dealing with generalized maximal theo-
rems use covering arguments of roughly the same type. The one given below is
patterned after Theorem (2.2) of [3]. For r >0, let S,= {x&ER": ||x|| <7} ; and
for n&Z (the integers), let B,=S;—s. Notice that B,+B,=B,.. Let
®= {x+B,,: xER™, nEZ}.

(5.1) A CoveRrING THEOREM. Let ®' C ® and suppose EC R™ satisfies

1) NE+B,) < forallnEZ;

(ii) for each xEE, there is some n such that x+ B, E ®t;

(i) {n:x+B.E® for some xSE} is bounded below. Then there are (possibly
finite) sequences (xi)rm1 18 (Nr)rey Such that xo EE, (xp+ Bn,)ie1 1S @ patrwise dis-
joint sequence in B, and N(E) £2> 5. N (Ba,).

Proof. Let m=Min {n: x+B,E &' for some *EE}, and choose x:EE such
that 1+ B,, E®'. Sequences (x;) and (n;) satisfying

1) {xk +B,,}2_, is a pairwise disjoint sequence in ®' for all p;

(2) m=Min{n: x+B.€®' and (x+B,)C[Ul(x:i+B,,)], some xCE};

(3) %1€ U1 (e +Baya) |’ forall p
will be defined by induction. Thus suppose that (x;)?.; and (m)}., satisfy (1),
(2), (3). If ECUE_, [xx+Bn,—1], we obtain a finite sequence satisfying (1) and (2)
and ECUZ_,(xx+Bn,—1). Otherwise, let xEEN[UZ_,(xx+Bn,1)]’ and let j be
the smallest integer such that x+B;E®'. We will show that x+B;
ClUi-1(+By)]. If (x+B)N\(0+B.) =, we have xCxi+(Ba,+Bj)
C%1+Bn,—1; a contradiction. If there are k’s such that (x+B;)N\(x;+Ba,) = J,
let ¢ be the least among them (1<¢g=p). Then the inclusion x+B;
C[UiZi(xi+B,,)] holds. Therefore, the inequality j=g holds, and xEwx,
+B,,—1; a contradiction. We can thus define #,4,=Min { j:x+B;E®' and
(x+fB,-)C[U§’=1(x,~+B,,,.)]’ , some xEE}, and select xp41 such that x,11+B,,
ER'

We claim that ECUj.q(%x+Bn,—1) (this is already established if the se-
quences are finite). We have limy..,#; = © ; proof:
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2 MBw) = 2 M+ Bu) <ME + By) < .
k=1 k=1
Hence, for given x € E and p EZ, we must have (x+B,) N\ (x+B,,) # & for some
k; if not, x and p would have been selected for x; and #; as soon as #; exceeded p.
If ¢ is the least integer such that (x+4B,)N\(x,+Ba,)# <, then we argue as
before to obtain x ©x¢+ By,-1.

Finally, we have

NE) S 2 ABud) S 2 MG,

Let X denote m-dimensional Lebesgue measure.

(5.2) THEOREM. Let p =1, and suppose fEL,(R™). Define

Mf(x) = sup AM(Sp)™! fan.
r>0 z+8,

There is a constant a such that N(E,[Mf]) < (2/1) [ g, 1215 JEN for all >0,

Proof. With notation as above, let

M'f(x) = sup M(Bn)™! fan.
neZ z+By

Small changes in x yield small changes in [,+s, fd\ for fixed 7; it follows easily
from this fact that Mf and M'f are Borel measurable, in fact lower semi-continu-
ous. Define ®'={x+Ba: N(Ba)" furs, fAN>1}. Then E,[M'f] satisfies (5.1.ii)
for this ®'. Condition (5.1.iii) is also satisfied, for there cannot be sequences
()2, and (n:);2, such that lim;..n:= — ® and [o15,, f>IN(B,,). This last asser-
tion is obvious if p=1 and is an easy application of Holder’s inequality if p>1.
Condition (5.1.i) is satisfied for each set E;=B;N\E,[M'f], jEZ; and clearly (:i)
and (iii) are also satisfied for the E;'s. For fixed j, then, let (xx+Bn,)s-; be the
sequence guaranteed by (5.1). The inequality

NE) S 21 f fan (U U (e + B,,k)>
U k=1
thus holds. If x& U and x Exi+ By, then we have
MBud [ ga=rm@ [ sz
z+Bnp—1 z+Bngp—1
therefore, UC Es™.[M'f]. We conclude, letting j— — e, that
2
ME[M'f] £ ~ fan (8 = 2.

Eg,[M'f]
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For a given >0, let # be the unique integer such that B,CS,C B,_1. Then
NS Y ors, FANS2"N(Bu-1)"Y2rn,_, fAN for any xER™ Hence we have Mf
<2»M'f and E,[Mf]CEu[M'f]. The inequality

ME[Mf]) = 2 Ja\, o= 27
Eot1M7]
follows. l

The proofs of the R™ analogues of (2.2), (3.2), (3.4), and (4.3) are almost
identical to those given in Sections 2, 3, 4 for m=1; (5.2) is used in place of (2.1).
Of course, the constants change. Lemmas (3.1) and (4.1) offer no difficulty in R™.

The family {x+.S,: xER™, >0} over which the averages are taken in (5.2)
can be replaced by other families. For example, m-dimensional cubes symmetric
about the origin would do. In fact, m-dimensional rectangles symmetric about O
and satisfying the condition that the ratio of the maximal side length to the
minimal side length does not exceed a fixed constant could replace the S,’s.
Sufficient conditions (on the sets over which averages are taken) to yield maxi-
mal theorems are given in each of [2], [3], and [7].

Hardy and Littlewood devoted the main part of their proofs to the discrete
analogues of the theorems in Sections 3 and 4. It is instructive to formulate these
analogues (for Z, e.g.). The facts in these cases are corollaries of the results in
Sections 2, 3, and 4. Similarly, there are results for sums of multiple sequences
(maximal functions for Z™). These follow from the R™ theorems.

The author would like to thank Professor Edwin Hewitt for the original suggestion that a
paper of this type be written, and for helpful suggestions during its preparation.
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