A Note on the History of the Cantor Set and Cantor Function

Julian F. Fleron

Mathematics Magazine, Vol. 67, No. 2. (Apr., 1994), pp. 136-140.

Stable URL:
http://links.jstor.org/sici ?sici=0025-570X %28199404%296 7%3A 2%3C136%3AANOTHO%3E2.0.CO%3B2-|

Mathematics Magazine is currently published by Mathematical Association of America.

Y our use of the JSTOR archive indicates your acceptance of JISTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of ajournal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journals'maa.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to and preserving a digital archive of scholarly journals. For
more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Fri Dec 29 04:44:29 2006


http://links.jstor.org/sici?sici=0025-570X%28199404%2967%3A2%3C136%3AANOTHO%3E2.0.CO%3B2-I
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/maa.html

136 MATHEMATICS MAGAZINE

A Note on the History of the Cantor Set
and Cantor Function

JULIAN F. FLERON
SUNY at Albany
Albany, New York 12222

A search through the primary and secondary literature on Cantor yields little about
the history of the Cantor set and Cantor function. In this note, we would like to give
some of that history, a sketch of the ideas under consideration at the time of their
discovery, and a hypothesis regarding how Cantor came upon them. In particular,
Cantor was not the first to discover “Cantor sets.” Moreover, although the original
discovery of Cantor sets had a decidedly geometric flavor, Cantor’s discovery of the
Cantor set and Cantor function was neither motivated by geometry nor did it involve
geometry, even though this is how these objects are often introduced (see e.g. [1]). In
fact, Cantor may have come upon them through a purely arithmetic program.

The systematic study of point set topology on the real line arose during the period
1870-1885 as mathematicians investigated two problems:

1) conditions under which a function could be integrated, and
2) uniqueness of trigonometric series.

It was within the framework of these investigations that the two apparently
independent discoveries of the Cantor set were made; each discovery linked to one of
these problems.

Bernhard Riemann (1826-1866) spent considerable time on the first question, and
suggested conditions he thought might provide an answer. Although we will not
discuss the two forms his conditions took (see [2, pp. 17-18]), we note that one of
these conditions is important as it eventually led to the development of measure
theoretic integration [2, p. 28]. An important step in this direction was the work of
Hermann Hankel (1839-1873) during the early 1870s. Hankel showed, within the
framework of Riemann, that the integrability of a function depends on the nature of
certain sets of points related to the function. In particular, “a function, he [Hankel]
thought, would be Riemann-integrable if, and only if, it were pointwise discontinuous
[2, p. 30],” meaning, in modern terminology, that for every o > 0 the set of points x at
which the function oscillated by more than & in every neighborhood of x was
nowhere dense. Basic to Hankel's reasoning was his belief that sets of the form
{1/2"} were prototypes for all nowhere dense subsets of the real line. Working under
this assumption Hankel claimed that all nowhere dense subsets of the real line could
be enclosed in intervals of arbitrarily small total length (i.e. had zero outer content)
[2, p. 30]. As we shall see, this is not the case. (See also [3].)

Although Hankel’s investigation into the nature of certain point sets would become
extremely important, “as was the case with Dirichlet and Lipschitz, it was the
inadequacy of his understanding of the possibilities of infinite sets—in particular,
nowhere dense sets—that led him astray. It was mnot until it was discovered that
nowhere dense sets can have positive outer content that the importance of negligible
sets in the measure-theoretic sense was recognized [2, p. 32).” The discovery of such
sets, nowhere dense sets with positive outer content, was made by H. J. S. Smith
(1826-1883), Savilian Professor of Geometry at Oxford, in a paper [4] of 1875. After
an exposition of the integration of discontinuous functions, Smith presented a method
for constructing nowhere dense sets that were much more “substantial” than the set
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{1/2"}. Specifically, he observed the following:

Let m be any given integral number greater than 2. Divide the interval from 0 to 1 into m equal
parts; and exempt the last segment from any subsequent division. Divide each of the remaining
m — 1 segments into m equal parts; and exempt the last segments from any subsequent subdivision.
If this operation be continued ad infinitum, we shall obtain an infinite number of points of division
P upon the line from 0 to 1. These points lie in loose order... [4, p. 147].

In modern terminology Smith’s ‘loose order’ is what we refer to as nowhere dense.
Implicit in Smith’s further discussion is the assumption that the exempted intervals
are open, so the resulting set is closed. Today this set would be known as a general
Cantor set, and this seems to be the first published record of such a set.

Later in the same paper, Smith shows that by dividing the intervals remaining
before the nth step into m" equal parts and exempting the last segment from each
subdivision we obtain a nowhere dense set of positive outer content. Smith was well
aware of the importance of this discovery, as he states, “the result obtained in the last
example deserves attention, because it is opposed to a theory of discontinuous
functions, which has received the sanction of an eminent geometer, Dr. Hermann
Hankel [4, p. 149].” He continues by explaining the difficulties in the contemporary
theories of integration that his examples illuminate.

It is interesting to note that an editor’s remark at the conclusion of Smith’s paper
states “this paper, though it was not read, was offered to the society and accepted in
the usual manner.” (Emphasis added.)! In fact, this paper went largely unnoticed
among mathematicians on the European continent and unfortunately Smith’s crucial
discoveries lay unknown. It took the rediscovery, almost a decade later, of similar
ideas by Cantor to illuminate the difficulties of contemporary theories of integration
and to begin the evolution of measure-theoretic integration.

Georg Cantor (1845-1918) came to the study of point set topology after completing
a thesis on number theory in Berlin in 1867. He began working with Eduard Heine
(1821-1881) at the University of Halle on the question of the uniqueness of
trigonometric series. This question can be posed as follows:

If for all x except those in some set P we have
1 (o]
g0t (a, cos(nx) + b, sin(nx)) = 0
n=1

n=

must all the coeflicients a, and b, be zero?

Heine answered the question in the affirmative “when the convergence was uniform
in general with respect to the set P, which is thus taken to be finite [2, p. 23],”
meaning, by definition, that the convergence was uniform on any subinterval that did
not contain any points of the finite set P.

Cantor proceeded much further with this problem. In papers [5, 6] of 1870 and
1871, he removed the assumption that the convergence was “uniform in general” and
began to consider the case when P was an infinite set. In doing so he began to look at
what we now consider the fundamental point set topology of the real line. In a paper
[8] of 1872, Cantor introduced the notion of a limit point of a set that he defined as
we do today, calling the limit points of a set P the derived set, which he denoted by
P'. Then P” was the derived set of P’, and so on. Cantor showed that if the set P was

"It is possible that “not read” simply meant that the paper was not presented at a meeting of the
London Mathematical Society. However, in weighing the significance of this note, one must consider that
in vols. 3-10 of the Proceedings of the London Mathematical Society (1871-1879), and perhaps even
further, no other paper was similarly noted.
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such that P™ =@ for some integer n and the trigonometric series 3a,+
7 _(a, cos(nx) + b, sin(nx)) = 0, except possibly on P, then all of the coefficients
had to be zero. Cantor’s work on this problem was “decisive” [9, p. 49], and doubly
important as his derived sets would play an important role in much of his upcoming
work.

In the years 18791884 Cantor wrote a series of papers entitled “Uber unendliche,
lineare Punktmannichfaltigkeiten [10-15],” that contained the first systematic treat-
ment of the point set topology of the real line.? It is the introduction of three terms in
this series that concerns us most here. In the first installment of this series Cantor
defines what it meant for a set to be everywhere dense (literally “iiberall dicht”), a
term whose usage is still current. He gives a few examples, including the set of
numbers of the form 22" %! /2™ where n and m are integers, and continues by noting
the relationship between everywhere dense sets and their derived sets. Namely,
P c(a, B) is everywhere dense in («, B) if [and only if] P’ =(a, B) [10, pp. 2-3]. In
the fifth installment of this series Cantor discusses the partition of a set into two
components that he terms reducible and perfect [14, p. 575]. His definition of a
perfect set is also still current: A set P is perfect provided that P = P'.

After introducing the term perfect in the fifth installment, Cantor states that
perfect sets need not be everywhere dense [14, p. 575]. In the footnote to this
statement Cantor introduces the set that has become known as the Cantor (ternary)
set: The set of real numbers of the form

C1 Cy

x=g bt

where ¢, is 0 or 2 for each integer v. Cantor notes that this is an infinite, perfect set

with the property that it is not everywhere dense in any interval, regardless of how

small the interval is taken to be. We are given no indication of how Cantor came upon
this set.

During the time Cantor was working on the ‘Punktmannichfaltigkeiten’ papers,
others were working on extensions of the Fundamental Theorem of Calculus to
discontinuous functions. Cantor addressed this issue in a letter [18] dated November
1883, in which he defines the Cantor set, just as it was defined in the paper [14] of
1883 (which had actually been written in October of 1882). However, in the letter he
goes on to define the Cantor function, the first known appearance of this function. It
is first defined on the complement of the Cantor set to be the function whose values

are
C, _
l(ﬂ+...+ Lud l+l)

+...

2

for any number between
_ Cy C,u.—l 1 _ Cy Cp,—l 2
a—§+ +3“_1+3—# and b—3+ +3,u.—1+3."~’

where each ¢, is 0 or 2. Cantor then concludes this section of the letter by noting that
this function can be extended naturally to a continuous increasing function on [0, 1].
That serves as a counterexample to Harnack’s extension of the Fundamental Theorem
of Calculus to discontinuous functions, which was in vogue at the time (see e.g.
[2, p. 60]). We are given no indication of how Cantor came upon this function.

There are two other topics that interested Cantor that we would like to mention
because they are indicative of Cantor’s facility with arithmetic constructions and it is

%In addition, these papers contained many other topics that had far reaching implications (see [16, 17]),
including Cantor’s investigation of higher order derived sets that marked the “beginnings of Cantor’s
theory of transfinite numbers [2, p. 72].”
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possibly within this setting that Cantor came upon the Cantor set and Cantor
function. First, Cantor spent some time in the mid 1870s considering the possible
existence of a bijective correspondence between a line and a plane, a question most of
his contemporaries had dismissed as absurd. In 1877, in a letter to Richard Dedekind
(1831-1916), Cantor explained that he had found such a correspondence. This
“correspondence” can be expressed as follows:

Let (x}, 2,) be a point in the unit square, and let 0.x; ;x; 5%) 5... and 0.x; 1% 5%5 5... be decimal
expansions of x; and x, respectively. Map the point (x;,x,) to the point on the real line whose
decimal expansion is 0.x) 1%y 1%} 9% 5... (See e.g. [19, p. 187])

Dedekind pointed out that there was a problem with this approach. The decimal
expansions of rationals are not unique, so to avoid duplication we must not allow
expansions of some type, say expansions that contain infinite strings of zeros.
However, by disallowing expansions with infinite strings of zeros, the irrational
number 0.11010201010201010102 ... could never be obtained under Cantor’s corre-
spondence.

This reasoning does however give us an injection of [0, 1] X [0,1] into [0, 1]. Tt is
trivial to find an injection of [0, 1] into [0, 1] X [0, 1]. These two facts, together with the
Schroeder-Bernstein Theorem (if there are injections of the set A into the set B and
B into A respectively, then there is a bijective correspondence between A and B; see
e.g. [20]), allow us to conclude that there is a bijective correspondence between [0,1]
and [0, 1] X [0, 1]. However, set theory was in its infancy during the period in question
and it would be 20 years before E. Schroeder and Felix Bernstein independently
proved the theorem that bears their names [16, p. 172-173] and occasionally Cantor’s
name as well (e.g. [21, 22]). So this was not an option for Cantor.

Instead, Cantor needed to explicitly exhibit a bijection. To do this he modified his
previous approach to use continued fractions [23]. Denote the continued fraction

1
T by [a,, ay,a5,...] where ay,a,,a,,... > 0 are integers.

1
a3+.--

a, +

Since a continued fraction is infinite if, and only if, it represents an irrational number,
in which case the representation is unique [see e.g. 24], Cantor could set up the
correspondence

([‘11,1>‘11,2w~]’[az,1> ag:--- 1o la, 1 an,2""])
olayay1,-0,1,01,855,-,0, 5, ]

between n-tuples of irrationals in (0,1)" = (0,1) X (0,1) X - -+ X (0, 1) and irrationals
in (0,1). This avoids the difficulties of the previous approach and gives a bijective
correspondence between ([0,1] — Q)" and [0, 1] — Q. Cantor then took great lengths
to prove there was a bijective correspondence between [0, 1] and [0, 1] — Q. Repeated
application of this fact combined with the previous correspondence gives a bijective
correspondence between [0, 1]" and [0, 1].

Secondly, it is known that Cantor studied binary expansions. In fact:

Cantor recognised that the power of the linear continuum, denoted by o, could be represented as
well by [the power of] the set of all representations:

MO FUNIT (O N

>

where f(v) =0 or 1 [for each integer v][19, p. 209].
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There is, so it seems, no substantive evidence about how Cantor came upon the

Cantor set and Cantor function. However, given Cantor’s route into point set
topology, his arithmetic introduction of the Cantor set and Cantor function, and his
facility with arithmetic methods, as we have just illustrated, it is feasible that it is
within the arithmetic framework of binary and ternary expansions that Cantor came
upon the Cantor set and Cantor function.
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