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Abstract

We review the literature on videotape methodology for observational research in mathematics education. We
organize the review by presenting issues related to data collection, ethical concerns, data analysis, tapes as data
versus transcripts as data, and research presentation. To address a gap we perceive in the literature, we propose a model
for analyzing data in the context of investigations into the mathematical work and growth of thinking of students
engaged in mathematical inquiry. The model we propose is based on nearly two decades of research experiences in
the Robert B. Davis Institute for Learning, Graduate School of Education, Rutgers University, New Brunswick, NJ.
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This paper describes the theoretical basis of a model for analyzing videotape data, outlines each
phase of the model, and provides examples of the model in action. The model is based on longitu-
dinal, cross-sectional study, now in its sixteenth year and sponsored mainly by the National Science
Foundation,1 on the development of mathematical ideas of a focus group of students (Davis & Maher,
1990, 1997; Maher, 2002; Maher & Martino, 1996a; Maher & Speiser, 1997). Through teaching experi-
ments designed to create classroom environments in which sense making is a cultural norm, researchers
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engaged students in coherent strands of mathematics, including algebra, combinatorics, probability, and
mathematical modeling. In the course of these experiments, a particularly striking outcome of the cul-
ture of sense-making has been the emergence of argumentation, justification, and proof-making in the
students’ discourse.

Mathematicians and educators who have viewed video-recordings of classroom interactions from this
project have commented that they had previously not believed that children so young could reason
mathematically with such sophistication. Throughout the 16-year span of research, the Robert B. Davis
Institute for Learning has built up a rich archive of photographic, audio, and video recordings. We have
progressively refined our methodological and interpretive approaches and have developed an evolving
model for analysis of video data. These refinements, moreover, have occasioned revisits of archived data
to make deeper analyses. Consequently, we have detailed accounts of the development of mathematical
ideas in individual students over many years, which are enhanced as we gather new data.

Our longitudinal research project has several goals: (1) to study in detail the development of mathe-
matical ideas in students over several years; (2) to provide in-depth case studies of the development of
justification and proof making in students; (3) to investigate the relationship of students’ earlier ideas and
insights to later justifications and proof building; (4) to trace the origin, development, and use of rep-
resentations of student ideas, explorations, and insights relating to explanation, justification, and proof
building. Also, within the context of the learning community formed through our project, we have addi-
tional goals: (5) to investigate the nature of researcher intervention in the growth of student mathematical
ideas; and (6) to study individual cognition in the context of the movement of ideas within the community
of learners. Furthermore, we investigate questions that emerge from working with data at various phases
of analysis.

To accomplish these sets of goals and address emergent questions, we have produced videotapes of
students in classrooms and in after-school sessions as well as in a summer institute and individual or
small-group clinical interviews. Before examining and commenting on our analytical model for investi-
gating the mathematical work and thinking of learners engaged in mathematical inquiry, we review briefly
some of the literature on videotape methodology for research in mathematics education.

1. Brief review of literature on videotape methodology

For decades, researchers in mathematics education have been using technology to capture and study au-
dio and then audio coupled with visual images of teachers and students engaged in mathematical activity.
According toErickson (1992)inside and outside of educational research, the use of imaging technologies
for studying interactions has intellectual antecedents in several analytic approaches. The approach of
context analysis, which emerged at the beginning of the 1950s, involved the study of detailed transcripts
of “cinema film of naturally occurring interactions” (p. 201). Roughly a decade later, the approach of
ethnography of communicationused audio and video recordings to examine the “moment-by-moment
organization of the conduct of interaction” (p. 203). In the late 1950s, the sociologist Goffman, as Er-
ickson reports, studied the presentation of self and, in part, used “still photography to glean insights
on significant moments of interaction” (p. 203). In recent times, the capability of videotaping to record
the moment-by-moment unfolding of sounds and sights of a phenomenon has made it a powerful and
widespread tool in the mathematics education research community. Employing video as data, researchers
have contributed fascinating descriptions of teachers and students in both clinical and classroom settings
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involved in an array of mathematical tasks. Some descriptions have emerged from large-scale, video-based
international surveys of classroom instruction, such as ones from the Videotape Classroom Study, a com-
ponent of the Third International Mathematics and Science Study (TIMSS) (Stigler, Gonzales, Kawanaka,
Knoll, & Serrano, 1999).

In the literature on the use of videotape data to inquire into students’ mathematical activity, some
authors discuss video-related methodological issues implicitly when reporting results of their research,
while others do so explicitly, raising important methodological and theoretical issues concerning the use
of videorecording in data collection, analysis and interpretation, as well as presentation and ethical issues.
However, even though there is an increased and extensive use of audio and videotape data, it has been
only recently that mathematics education researchers have begun to articulate explicit methodological and
theoretical issues and questions pertaining to videotape in research (see, for instance,Cobb & Whitenack,
1996; Davis, 1989; Davis, Maher, & Martino, 1992; Hall, 2000; Lesh & Lehrer, 2000; Pirie, 1996, 2001;
Roschelle, 2000). Despite the prevalence of video data,Hall (2000)claims that little is known and written
about the use of videotape for “collecting, watching, and interpreting video as a stable source of data for
research and presentation purposes” (p. 647).

In education, medical and social sciences, and other disciplines, videotape has become a popular
medium for capturing and archiving data for both quantitative and qualitative researchers (Bottorff, 1994;
Roschelle, 2000). Methodologically, video technology lends itself to a strict application or a mixture of
qualitative and quantitative approaches in both data collection and analyses. A salient reason for this is, as
Pirie (1996)observes in discussing video recording in mathematics education, that videotaping a class-
room phenomenon is likely to be “the least intrusive, yet most inclusive, way of studying the phenomenon”
(p. 554). In the next section, we present briefly ways in which researchers of mathematics teaching and
learning have begun to theorize about ways of collecting, watching, and interpreting videotape data.

1.1. Data collection

Video is an important, flexible instrument for collecting aural and visual information. It can capture
rich behavior and complex interactions and it allows investigators to reexamine data again and again
(Clement, 2000, p. 577). It extends and enhances the possibilities of observational research by capturing
moment-by-moment unfolding, subtle nuances in speech and non-verbal behavior (Martin, 1999, p. 79).
It overcomes a human limitation of observation by being able to capture not just “part of the whole
picture” (Martin, 1999, p. 76) and is better than observer notes since it does not involve automatic
editing (Martin, 1999, p. 81). QuotingGrimshaw (1982), Bottorff (1994) notes two main potentials
of videorecordings as a resource for research: density and permanence (p. 245). Density reflects the
advantage of videorecording over an observer who, even with access to all that a camera sees, has
difficulty monitoring different, simultaneous details of ongoing behavior (p. 246). Furthermore, from the
perspective of density, videorecordings capture two data streams — audio and visual — in real time.
Bottorff’s notion of permanence will be discussed later in the data analysis section.

It is worthwhile highlighting a unique use and collection of video data in the TIMSS Videotape Class-
room Study. Its goal was to understand how teachers construct and implement eighth-grade mathematics
lessons in Germany, Japan, and the United States. As has been claimed, the study was the first time
anyone had used video to collect national probability samples of anything and in this case of teaching
(Stigler & Hiebert, 1999, p. 17;Stigler et al., 1999, pp. v and 2). Besides videotapes, other data types
included teacher responses to questionnaires as well as textbook pages and worksheets corresponding to
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lessons videotaped (Stigler & Hiebert, 1999, p. 18). In the end, the study produced a video survey of 231
eighth-grade mathematics lessons in Germany, Japan, and the United States of America.

Though video is a valuable methodological instrument for gathering data, it is not unproblematic.
Davis (1989)discusses practical methodological issues when videotaping interviews that probe children’s
understanding and thought processes including scripting, pilot trials, group size and dynamics, and video
technicalities.Bottorff (1994)lists three reasons why, like human observations, video data are incomplete:
capable of selectivity because of mechanical limitations; incapable of discerning the subjective content
of behavior being recorded; and usually unable to convey historical context of captured behavior (p. 246).
Along similar lines,Hall (2000)cautions “against taking this new media as relatively complete, direct, or
veridical” (p. 663) and argues that video data is technology and theory laden. That is, during data collection,
selections are made from ongoing phenomena on the basis of technology used and theoretical interests. In
turn, these realities both constrain and shape later analyses and presentation of results. Furthermore, video
cannot capture everything. In aiming a video camera, researchers implicitly or explicitly edit and make
sampling choices by focusing or not on particular events (Martin, 1999, p. 81).Pirie (1996)underscores
this issue in the following way: “Who we are, where we place the cameras, even the type of microphone
that we use governs which data we get and which we will lose” (p. 553).

The question arises whether researchers can ameliorate human and technological biases of video-
recordings.Roschelle (2000)warns researchers that there are no simple ways to overcome biases of the
medium and that “videos are a constructed record” (p. 726). Nevertheless, to acquire data amenable to
rigorous research methods,Roschelle (2000)points out the importance of selecting appropriate video
equipment; developing competent videography techniques, and planning and documenting systematic
recording strategies consistent with clearly-defined research purposes. Further,Roschelle (2000)dis-
cusses technical and practical details in recording research-quality videos, including the use of pilot
studies for improving videographic techniques and examining the effect of the camera on participants’
behavior (pp. 726–727).

Recognizing that videorecording is both technology and theory laden, it is important to recognize that
videorecording does not necessarily guarantee quality data collection and analysis. Researchers have
suggested ways of ameliorating the necessarily narrow window into phenomena that videos offer by
augmenting data sources.Pirie (1996)recommends coupling videorecording with students’ written work
in order to have a more inclusive examination of students’ mathematical activity (p. 554).Lesh and Lehrer
(2000)suggest that video data be combined with other data sources such as ethnographic observations,
clinical interviews, and teaching experiments (p. 670).

Some researchers (for instance,Hall, 2000; Suchman and Trigg, 1991) recognize video as a construc-
tion rather than a representation of relationships.Hall (2000)problematizes data collection, encouraging
caution in thinking of videorecordings as objective and theory-neutral data (p. 649). Both the possibil-
ities and limitations of the video and audio technology as well as a researcher’s theoretical perspective
constrain and shape data records. He states that devices for capturing visual and aural images can be
“deployed to record human activity in ways that make selections from ongoing interaction. . . creating
data records that show just those parts of interaction we already find interesting and little more” (p. 659).

1.2. Ethical issues

Capturing information pertaining to individuals or groups of individuals with videos in both quantitative
and qualitative research introduces a variety of ethical issues, including and beyond informed consent.
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Essentially, the principle of informed consent implies that researchers insure that participants in an activity
to be videotaped are fully informed and understand what it means to participate, that they realize the
intended implications of having their voice and body images captured on video, and that they consent to
the intended uses of the taped images.Roschelle (2000)suggests obtaining “progressive levels of consent”
as they are needed. These include consent for “small research group use only,” “scientific conferences and
meetings,” and “general broadcast via TV, CD-ROM, or computer networks” (p. 726). Whatever level of
informed consent is required, it should be in a formal and written form, specifying who has access to the
data and the use of the data.

However, informed consent does not necessarily protect consenters against a number of problematic
situations. Consent is typically given before videorecording commences. Nevertheless, consenters and
researchers may find themselves in a predicament. For instance, videographers may inadvertently record a
participant performing an unbecoming behavior or, asRoschelle (2000)states it, “damaging material can
be acquired accidentally” (p. 726). In his turn,Hall (2000)points out a further problem that researchers
confront concerning appropriate uses of video as data obtained with support of public funds: the data as a
public resource may be used in unanticipated ways by the public (p. 648). As he indicates, once accessible
on the World Wide Web, stretches of videorecordings can be “repurposed in ways that undermine the
entire research undertaking, regardless of the kind of surrounding details we attach to the records” (p. 662).

Ethical questions related to repurposing intersect with issues of validity. Some researchers attempt to
provide readers of their reports access to the data upon which their reports are based. Specifically, within
many research traditions, researchers are concerned with adequately describing both behaviors and their
contexts so that readers can form their own judgment concerning a researcher’s analysis of what people
are doing (McDermott, Gospodinoff, & Aron, 1978). To address this concern, researchers usually provide
readers with a complete rendition of the transcript upon which an analysis is based. Moreover, since the
advent of digitized videos and Web-based video transfer protocols, readers can also obtain digitized
video segment corresponding to the transcript (see, for example,Koschmann, Glenn, & Conlee, 2000,
p. 57, footnote 5). In this situation, even when videotaped participants have consented to public access
to their recorded voice and body images, they often cannot be fully aware of and, therefore, consent in
fully informed ways to how readers might repurpose a video segment that contains participants’ images.
In general, repurposing raises serious issues for the extent to which informed consenters can be fully
informed before consenting, especially given global access to streamlined video on the World Wide Web.

Who has access to captured information on video as well as in transcripts is an issue of confidentiality.
The storage and disposition of the videotapes are also key issues of confidentiality. ForBottorff (1994),
confidentiality and strategies to maintain it are as important as the usual concern for informed consent.
Moreover, she insists that researchers must inform participants when videotaping is occurring and give
them the option to interrupt or discontinue a taping session (p. 252). She even suggests that researchers
should consider modifying identifying features to protect the identity of participants if otherwise research
could not take place (p. 253).

1.3. Data analysis

Videorecordings offer many advantages for data analysis. As we mentioned earlier,Bottorff (1994)
argues that a main potential of video data is its permanence.Stigler et al. (1999)note that live observations
introduce significant problems to ensure that different observers record behavior in comparable ways
(p. 3). Unlike the ephemeral nature of live observations, with videotapes, researchers can view recorded
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events as frequently as necessary and in flexible ways such as “real time, slow motion, frame by frame,
forward, backward,” and attend to their different features (Bottorff, 1994, p. 246). Similarly,Roschelle
(2000)observes that video supports interpretations from multiple perspectives and offers the possibility
for participants to assist in providing interpretations (p. 727). When examining the use of video to study
the growth of mathematical understanding,Martin (1999)notes that videorecordings provide researchers
with the possibility to make considered judgments and revisitings of the learning scene (p. 79) and
borrowing fromErickson (1992), “reduce the dependence of the observer on premature interpretation”
(p. 80). Roschelle (2000)indicates other potentials of video data for analysis such as interpretations
from different, multidisciplinary frames of analyses and opportunities for participants to share their
viewpoint concerning their behavior (p. 727). On this last point, viewing the other side of the coin,
Martin (1999)observes that videotaping enables the researcher to interact with learners as they work and
consequently test nascent theories (pp. 85–86).Roschelle (2000)refers to data reduction and sampling
challenges with video data and mentions that computer software can be helpful in addressing these
challenges. Significantly, for instance, videorecordings allow for in-depth examination of the developing
mathematical work and thinking of the same students over several years as well as for the study and
analysis of the cognitive growth of individual students in the setting of a social group (Davis et al., 1992;
Maher & Alston, 1991).

Detailed analyses of longitudinal as well as short-term video data are made efficacious by multiple
viewings. Video not only allows for multiple viewings but also for viewing from multiple points of view.
According toLesh and Lehrer (2000), a productive analysis of videotapes involves viewing through
multiple windows or aspects, including theoretical aspects such as mathematical, psychological and
teaching; physical aspects such as observers’ notes, transcripts, and videotapes from different cameras;
and temporal aspects that include analyses of isolated sessions, analyses of group sessions, and analyses
of similar sessions across several groups (p. 677). Further, they suggest going through “a series of
triangulation and consensus-building cycles” to test and refine interpretations (pp. 677–678).

Repeated viewing has the potential to enhance triangulation in data analysis. Despite this ability,Alston
and Maher (1990)note a limitation of data obtained from such episodes in that some children may be
more verbal than others. They write, “follow-up interviews could provide insight into the nature of the
uncertainty category as well as an opportunity to probe for meanings that are unclear or inconsistent in
written statements” (p. 9). Other researchers have also constructed methodological procedures to boost
triangulation in data analysis. In this regard,Maher and Martino (1996a, 1999)advance the notion of a
“video portfolio” as a collection of different kinds of data centered at an episode or a series of episodes of
interest. For them, a video portfolio contains (a) videotape “cuts” of the episodes, (b) documented episodes
from videotapes that emerged from the analysis, (c) associated written work of students, and (d) researcher
notes documenting the mathematical activity that researchers deem as a trace of the development of a
mathematical ideas (Maher & Martino, 1996a, p. 202). Importantly, a video portfolio can provide a visual,
aural, and written account of learners thinking about mathematical situations and the development of their
ideas over time. A documentary example of the use of longitudinal videotape data to trace a student’s
cognitive evolution from pattern recognizing to theory posing is contained inMaher and Martino (2000).

Some researchers transcribe video data, and their resulting transcripts constitute their analytic medium.
This movement from video data to transcription is not without associated difficulties. Transcribing video
data involves representing interactions. Researchers attempt to produce as veridical a representation of
interactions by including representations of not just verbal but also of gestic interactions. However, a
transcript is not a simple, universal category. Even though, it is impossible to render an exact, genuine
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transcript of verbal and gestic interactions captured on videotape, it is possible to produce transcripts that,
on the one hand, are “necessarily selective” (Atkinson & Heritage, 1984, p. 12) and “theoretically guided”
(Erickson, 1992, p. 219) and, on the other hand, are nonetheless close approximations to being exact and
genuine for particular research purposes. That is, transcripts can be more or less valid representations of
interactions and their conventions depend on researchers’ analytic purposes (Erickson, 1992). Further-
more, representation systems for transcribing interactions are not uniform. For instance, the transcription
system evolved byJefferson (1984)has as its purpose to transfer to the page the sound and sequential
positioning of talk. Whereas, the transcription convention used in the Video Classroom Study of TIMSS is
designed to record speech only and not other behaviors that surround speech (Stigler et al., 1999, p. 161).

1.4. Tapes as data versus transcripts as data

A critical methodological issue with the use of videorecordings concerns whether either the tapes or the
transcripts of recordings are the data upon which to base analysis.Pirie (1998)describes this interestingly
as there are those for whom “the data are the tapes” and those for whom “the data are the transcripts”
(p. 160). Each position has its merits and demerits. Digital video cameras certainly are the currently best
available tool for capturing and preserving the moment-by-moment unfolding of phenomena, revealing
asDavis et al. (1992)state a “great complexity within what was once thought of as the ‘simple’ world
of ‘doing mathematics’ ” (p. 187). Superior to ethnographers’ field notes, tapes can make visible subtle
nuances in speech as well as non-verbal behaviors. Although both require electronic equipment to review
them, compact discs or DVDs of digitized video are less bulky than tapes. In contrast, transcripts are
more portable than tapes and, unlike tapes, CDs, and DVDs, require no special equipment to access them.
Indeed, with transcripts,Maher and Alston (1991)advance the idea that “careful analysis of videotape
transcripts of children doing mathematics enables a detailed study of how children deal with mathematical
ideas that arise from the problem situation” (pp. 71–72).

Nevertheless, many things are potentially missed in the movement from tape or CD to transcript. Citing
Hammersley and Atkinson (1983), Martin (1999)notes that videotaping ironically can produce too much
data and that transcribing makes it difficult to maintain contact with one’s theoretical perspective while
sampling. On this point of data saturation, in a discussion of clinical interview methodologies,Clement
(2000)observes that “difficulty with rich source data like videotape is that there is too much data to
analyze in a meaningful way!” (p. 572). He remarks that an investigator must decide “what aspect of such
a continuous stream of behavior are most relevant to the purpose and context of the study” and “what
is relevant depending on the level of the research question in which he or she is interested” (p. 572).
For meaningful analyses of extensive or non-extensive video data,Martin (1999)notes thatPirie (1996)
advocates transcribing no tapes and instead working exclusively on the tapes (p. 82), a position held by
other investigators, as well.

1.5. Presentation

Apart from analytical issues, both tapes and transcripts are useful for presentation purposes. From the
position thatPirie (1996)advances where analyses ought to be based exclusively on tapes, transcripts
of episodes of videorecordings are useful for presenting evidence for interpretations. A limitation of a
written format for presenting analyses of video data is that video segments are usually unavailable to the
reader. Researchers attempt to make relevant features of visual material accessible through transcription
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and description but, often, these provide results that are not wholly satisfying. Research reports made
available on the Web can circumvent this limitation. With advances in video-streaming technologies on
the World Wide Web and hyperlinks, researchers can integrate clips of videorecordings into research
reports, and readers with appropriate software resident in their computer can view these clips.

Videorecordings are appealing and helpful not only for written but also for oral communications. As
Roschelle (2000)notes videorecordings allow “a researcher to make more direct connections between ob-
servable behaviors and interpretations” (p. 728). Yet the use of videorecordings in research presentations
can be problematic given the temptation for researchers to showcase their “best case” instead of the “more
typical performance” (p. 728). Video images can be powerful and persuasive.Stigler and Hiebert (1999)
point out that “images produced by video can be too powerful, because they can focus attention on one
striking example, even when the example is not typical” (p. 22). To ameliorate the tendency of video images
to falsely portray typicality, they combine impressionistic images with coded, quantified video data (Stigler
et al., 1999). Roschelle (2000)warns researchers against presenting video clips without first explaining to
their audience contextual information and the criteria for selecting the clips. Without doing so, audiences
may develop conflicting interpretations outside of the research context. To avoid such problems, he argues
that the research community needs “to establish guidelines for presenting video clips” (p. 728).

2. An evolving analytical model in practice: various examples

We have just presented a review of issues related to the use of video data identified by researchers
in education, in general, and in mathematics education, in particular. In our reading of the literature,
despite the almost ubiquitous use of video technology in mathematics education research, we noticed
essential voids in methodological discussions. Except forErickson (1992), we found no discussion of
criteria indicating research situations for which video data collection is useful. Furthermore, we have
encountered little explicit elaboration of analytical methods for using video data for observational studies
of the development of mathematical thinking. Though not explicitly working in mathematics education,
some researchers have proposed models for audiovisual data collection and analysis coupled with partic-
ipant observation (Erickson, 1992, and the Santa Barbara Classroom Discourse Group at the University
of California at Santa Barbara).

In mathematics education, specific discussions of methods for analyzing video data are sparse. For
inquiring into the teaching and learning of mathematics and science in classrooms, Clarke and his collab-
orators (Clarke, 2001b) have developed a qualitative analytic approach, called Complementary Accounts
Methodology. A distinguishing feature of this approach is that a common body of videotape and inter-
view data, which include the retrospective construal of events by participants, is analyzed from multiple
theoretical frameworks (Clarke, 2001a), with no common methodological approach to the analysis of the
video data.Pirie (2001)discusses how she and her collaborators in the “�-group” at the University of
British Columbia undertake a common method for video analysis from multi-perspectives. In their work,
they examine a set of data from several different theoretical perspectives that consider the growth of
mathematical understanding.Cobb and Whitenack (1996)present their four-phase method for analyzing
videorecordings and transcripts for case studies that they claim is consistent with the constant comparative
method thatGlaser and Strauss (1967)advocate.

In contrast to the paucity of models for video data analysis for studying mathematical cognitive devel-
opment, reports (journal articles, conference presentations, doctoral dissertations, and course activities)
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that have emerged from the Robert B. Davis Institute for Learning (RBDIL) at Rutgers University contain
explicit and implicit pointers to a general analytical approach that can accommodate different theoretical
frameworks. Our approach has developed over nearly two decades in an attempt to understand the de-
velopment of mathematical ideas (Davis et al., 1992). It rests upon a longitudinal study, currently in its
sixteenth year, on the development of mathematical ideas of a focus group of students (Davis & Maher,
1990, 1997; Maher & Martino, 1996a; Maher & Speiser, 1997). To understand how students think and
reason about a collection of mathematical ideas, the research and data analysis typically lead analy-
ses of individual learners either in the context of clinical interviews or working in groups, constructing
mathematical knowledge (Davis et al., 1992; Maher & Speiser, 1997; Speiser & Walter, 2000).

Through the longitudinal study, our research group at the RBDIL attempts to understand the growth of
mathematical understanding by examining temporally the discourse and inscriptions of students as they
engage in mathematical inquiry. The theoretical underpinnings of this study come from three sources:
research on the development of mathematical ideas (Davis, 1984; Davis & Maher, 1990, 1997; Speiser
& Walter, 2000), models of the growth of understanding (Pirie, 1988; Pirie & Kieren, 1989, 1994), and
theories concerning the generation of meaning (Dörfler, 2000).

A critical prerequisite for using video to capture data is to have clear criteria for employing this data col-
lection and analytical device. In agreement withErickson’s (1992)general criteria for investing resources
of time and energy into analyses of interaction within an educational study, we consider ethnographic
analysis of video particularly useful for research in mathematics education

when . . . events are rare or fleeting in duration or when the distinctive shape and character of. . .

events unfolds moment by moment, during which it is important to have accurate information on the
speech and nonverbal behavior of particular participants in the scene. . . when one wishes to identify
subtle nuances of meaning that occur in speech and nonverbal action — subtleties that may be shifting
over the course of activity that takes place. (pp. 204–205)

Using these criteria and particular ways of examining and analyzing video data can yield insights into
explicit and implicit meanings of participants in an educational setting. Our analytical model for studying
the development of mathematical thinking employs a sequence of seven interacting, non-linear phases:

1. Viewing attentively the video data
2. Describing the video data
3. Identifying critical events
4. Transcribing
5. Coding
6. Constructing storyline
7. Composing narrative.

This taxonomy of analytic phases that we propose is not meant to describe the way any particular
researcher might or should proceed with analysis of video data but rather to put forth our hypotheses
about appropriate phases of analysis.

Similar attempts to propose a research method using video data have tried to characterize the phe-
nomenon under study (Erickson, 1992). In our analytical model, we view the development of mathemat-
ical ideas and reasoning as complex and non-linear processes. We inquire into particular manifestations
of these processes such as learners’ presentations of their mathematical ideas and reasoning in talk, in-
scriptions, and gestures. Nevertheless, our experience persuades us that it is ultimately a research issue
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to determine the nature and contours of what constitutes mathematical ideas and reasoning. Our position
invites researchers to decide in the context of their research theimportantaspects of ideas and reasoning
to focus upon as well as the implementation sequence of the proposed phases.

Before discussing the phases of our model, we present a general sense-making, research tool: analytical
memoranda. Our use of memoing extends beyond that described by some analysts (Charmaz, 1983; Miles
& Huberman, 1994). In our model, as researchers watch, describe, code, and otherwise attend to their
video data they continually write in a notebook or an electronic PDA or computer-based file — called an
analytic notebook — about their emerging and evolving theoretic, analytic, and interpretive ideas; about
annotative commentary of transcripts; about hypotheses concerning mathematical ideas and reasoning
revealed in participants’ discourse; about participants’ use of inscriptions to communicate ideas among
themselves and with others; about connections between and among codes; about themes exiting across
codes; about larger divisions of categories; about an emergent central phenomena; about assemblages of
narrative components; and so forth. In sum, asCreswell (1998)notes, these memoranda form preliminary
hypotheses, jottings about emerging categories and connections between them (p. 241). These memo-
randa also produce an intermediate bridge between coding of the data and constructing a storyline as well
as composing drafts of a narrative report. Moreover, during the describing phase, analytical memoranda
can serve as a repository of interpretive, inferential commentaries that sometimes creep into descriptive
accounts of video data.

We will illustrate each of our analytic phases with examples based largely on one video portfolio
from our longitudinal research project. The video portfolio includes approximately one hour and a half of
video recording of four students engaged in resolving a deliberately open-ended task, typical of our project
tasks, and two researchers interviewing them about their work as well as the students’ written work. The
task comes from a strand of tasks in combinatorics that forms part of a larger, multi-strand collection of
mathematical tasks that we have developed in the course of our longitudinal research project. How we
engage students with the tasks reflects our perspective on learning and teaching. Key to this perspective is
that knowledge and competence develop most effectively in situations where students work together on
challenging problems, discuss various strategies, argue about conflicting ideas, and regularly present jus-
tifications for their solutions to each other and to the entire class. The role of the teacher–researcher, in our
research perspective, includes selecting and posing problems, then questioning, listening, and facilitating
discourse, usually without direct procedural instruction (Maher, 1998; Martino and Maher, 1999).

The task of our video portfolio — the Taxicab Problem — is presented inFig. 1in the exact form given
to the four students.2 The task employs the non-Euclidian context of taxicab geometry (Krause, 1986;
Menger, 1952, 1979) to provide a landscape and mathematical structure to the combinatorial situation.

To work on the Taxicab Problem, we invited four students — Brian, Jeff, Michael, and Romina —
seniors at the David Brearley High School in the working-class town of Kenilworth, NJ. These students
have participated in the longitudinal study since its inception and, in the course of it, have worked on
problems that lead them to build mathematical ideas that are similar to the underlying mathematical
structure of the Taxicab Problem (seePowell, 2003). Consequently, in context of our research project,
this problem was proposed as a culminating task with the following central guiding research questions:

1. How do learners come to understand the problem?
2. What mathematical ideas do learners generate?

2 In the context of this problem, for detailed analyses of the students’ mathematical ideas and forms of reasoning through their
discourse and inscriptions, seePowell and Maher (2002, 2003)andPowell (2003).
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Fig. 1. The problem task. In the original, from left to right, the four identified intersections are colored black, blue, red and green.

3. How do learners generalize the problem and their solution?
4. How do learners construct isomorphisms between this problem and other problems on which they

have worked?

In what follows, we use as an analytic lens for examining these questions the theoretical ideas of
Dörfler (2000)concerning prototypes and protocols as tools for constructing meaning. In the subsection
on coding, we present operational definitions of his three categories of prototypes and of his notion of
protocol.

2.1. Viewing attentively the video data

To become familiar with the content of the video data, researchers watch and listen to the videotapes
several times. In this phase, researchers watch and listen without intentionally imposing a specific analyt-
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ical lens on their viewing. The goal is to become familiar with the research session in full. Depending on a
researcher’s general data collection and analytic framework, this phase may suggest, as in the case of, say,
grounded theory, further data that ought to be collected (Charmaz & Mitchell, 2001; Corbin & Strauss,
1990). Similarly, in the case of stimulated recall, specific episodes may be selected for participants to
observe and to reflect verbally (Davis, 1989) or, as in the circumstance of clinical interview, screening the
video data may inform subsequent tasks in which to engage participants (Ginsburg, 1997; Haydar, 2002).

2.2. Describing the video data

Owing to the density of the medium, the use of video data often results in an enormous amount of
information. For analytic purposes, this poses the challenge of not only familiarizing oneself with the
content of the videotape data but also knowing it in fine detail. The previous phase is one, preliminary
way of addressing this challenge. In that or a separate phase, as our model proposes, researchers note
in an ethnographic-like fashion particular time-coded transitions of situations, activities, or meanings.
For instance, with Pirie’s “time activity trace” (Pirie, 2001, p. 348), researchers write brief, time-coded
descriptions of a video’s content. These could be descriptions of 2- to 3- or even 5-min intervals. It is
important, however, that, at this phase of work, the descriptions are indeed descriptive and not interpretative
or inferential. Researchers state what corporal actions and other movements can be seen as well as what
utterances and other noises that can be heard.Pirie (2001)notes that instead of “inferential remarks such
as: ‘He is trying to. . . ’ or ‘She seems to have. . . ’ or even ‘A confusing diagram on the board. . . ’ ”
that simple, factual descriptions are best: “ ‘He writes. . . ’, ‘She says. . . ’, ‘The teacher draws. . . ’ ”
(p. 349). In general, the idea is to map out the video data so that someone reading the descriptions would
have an objective idea of the content of the videotapes. Indispensably, descriptions help the researcher
become ever more familiar with the data set than one does by attentively watching and listening to the
video record. The time-coded descriptions also allow the researcher to locate quickly particular vignettes
and episodes. Indicating time codes, with the aide of mechanical timers or software devices, is especially
useful for later locating particular video content. Software programs such as vPrism make it possible for
researchers to bring together electronically video content, text, and time code.

In Fig. 2, the first 4 min and 44 s of videotape are described. The three time intervals are chosen to
be small and thematic. In these intervals, the four students are seated around a trapezoidal table. After a
researcher distributes the task, the students ask questions about the task and among themselves wonder
why all efficient routes to a particular destination point have the same length.

2.3. Identifying critical events

By viewing and describing video data, researchers acquire a fairly in-depth knowledge of the content of
their videos. Afterward, researchers move to the next phase of data analysis, which consists of carefully re-
viewing their tapes and identifying significant moments or, as we term them,critical events(Maher, 2002;
Maher & Martino, 1996a, 1996b, 2000). Within our theoretical framework, to study the history, develop-
ment, and use of learners’ thinking over time, in agreement withMaher and Speiser (2001), we identify
eventsas connected sequences of utterances and actions that, within the context of oura priori or a poste-
riori research questions, require explanation by us, by the learners, or by both. An event is calledcritical
when it demonstrates a significant or contrasting change from previous understanding, a conceptual leap
from earlier understanding (Kiczek, 2000; Maher, 2002; Maher & Martino, 1996a; Maher, Pantozzi, Mar-
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Time
Interval Description 
00:00:00-
00:02:06 

Researcher 1 pulls up a chair, sits down between two 
students on the right side of the table, thanks the group of four
students (from left to right: Michael, Romina, Jeff, and Brian)
for coming, distributes the Taxicab Problem, and asks them to 
read and see whether they understand it.  Afterward,
Researcher 1 stands up and, as she backs away from the table,
she removes her chair. With his head bent downward, facing
the problem statement, Jeff asks aloud whether one has to stay
on the grid lines and whether they represent streets. 
Researcher 1 responds, “Exactly.”  Romina, Brian, and Jeff 
discuss that 5 is the number of blocks it takes to reach the blue
destination point and that different routes to blue are the same
length as long as one doesn’t go beyond it.  Brian says that
they should prove it. 

00:02:06-
00:02:42 

Researcher 1 walks back over to the table and asks the 
students for their understanding of the problem. Jeff says that
the task is to find the shortest route while “staying on the 
streets.”  Researcher 1 adds that it is about finding whether 
there is more than one shortest route.  Both Brian and Romina
agree.  Researcher 1 goes on to say that if there is more than
one, they have to determine how many shortest routes. Jeff 
inquires with Researcher 1 whether she is asking how many
different shortest routes?  She says that not only do they have
to find the number of shortest routes but also that they will 
“have to convince us” that they have found all of them. 
Researcher 1 then walks away from the table.

00:02:42-
00:04:44 

Jeff asks for colored markers.  Jeff, Romina, and Brian 
choose to each work on different destination points. Romina
says that it is five blocks to the blue point. Brian suggests 
counting them and being sure. Jeff asks why the length of
each route to blue is the same. Michael explains that to get the 
blue point one has to go “four down and right one” since one 
cannot go backward or diagonally. Romina asks how to 
devise an area for that.  Jeff and Michael tells her that it’s not 
area, it’s perimeter with each segment of the grid considered 
as one unit. 

Fig. 2. Content description without interpretation of the nearly the first 5 min of video data.

tino, Steencken, & Deming, 1996; Steencken, 2001), or, asBruner (1960/1977)calls an intuitive mistake,
“an interestingly wrong leap” (p. 68). Significant contrasting moments may be events that either confirm or
disaffirm research hypotheses; they may be instances of cognitive victories, conflicting schemes, or naı̈ve
generalizations; they may represent correct leaps in logic or erroneous application of logic; they may be any
event that is somehow significant to a study’s research agenda. By connecting sequences of critical events
and further analyzing them, for example, using constant comparisons (Glaser & Strauss, 1967), researchers
build narratives that initially are amalgams of hypotheses and interpretations and that in turn influence sub-
sequent identification and analyses of critical events. In this sense, critical events and narratives co-emerge.
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Critical events are contextual. An event is critical in its relation to particular research questions pursued.
Thus, an instance in which learners present a mathematical explanation or argument may be significant
for a research question concerned with students’ building of mathematical justification or proof and, as
such, be identified as a critical event. In contrast, a researcher concerned with the impact of teacher inter-
ventions on students’ reflective abstraction or mathematical understanding might deem as critical those
events that connect teacher interventions and associated student articulations of their thinking. However,
the relation between critical events and research questions pursued also implies that researchers might
identify events as critical that include negative instances of a hypothesis, instances of wrong leaps, and
somehow significant to the study’s research question. It is also interesting to note that critical events are
similar to whatGattegno (1970, 1974, 1987, 1988), observing learners doing mathematics, calls moments
of awareness and that these events or moments often compel researchers to reflect on their antecedent
and consequent events.

Critical events are not only identified in the video record. Researchers may find critical events in
non-video, artifactual material such as in students’ inscriptions or in the written statements of a student
journal. Afterward, researchers may review the video record to locate antecedent events that can be used to
explain the identified critical event (for examples of this point, seePowell, 2003; Speiser & Walter, 2003).

Videorecordings greatly enhance the search and identification of critical events. Repeated watching,
for instance, allows researchers to view the data as many times as necessary before deciding to flag
a particular video episode as a critical event or to discard a previously chosen critical event. Shared
viewing and collaboration with other researchers greatly enhance the quality and validity of identified
critical events. The density of video can provide researchers with extensive data from which to select
critical events. When studying, for instance, the development of mathematical ideas or the growth of
mathematical understanding, a critical event is associated with a time line, and researchers may then
search for related events in the past and in the future. If the related events are critical and lead to growth
in understanding, then the set of critical events form whatKiczek (2000)defines as apivotal strand
or a pivotal mathematical strand(Steencken, 2001). Within a narrative such strands may emerge and
point to, for example, the mathematical ideas and forms of reasoning learners develop that are key in
building learners’ mathematical understanding. Analytically, it is important to name the pivotal event,
thereby indicating the narrative theme to which it belongs (Powell, 2003). Moreover, when analyzing
the discursive interaction of learners, a critical event that qualitatively changes their inquiry trajectory,
we call awatershed critical event(Powell, 2003). Such an event is often preceded by a series of related
critical events that can be collected together as pivotal strand to indicate a discursive thread that begets the
watershed critical event. In turn, the watershed event initiates a cascade of events some of which may be
critical. The antecedent and consequent data may already exist and further data may need to be collected
through subsequent investigations such as clinical or stimulated recall interviews. Digitized video on CDs
or DVDs viewed with appropriate software such as vPrism help researchers to navigate through the data
while looking for and pointing to related critical events. Some software allow researchers to juxtapose
related critical events so as to highlight their relationships. Moreover, critical events are indispensable for
a research narrative that discusses particular research questions in light of data. Critical events identified
at this phase may provide evidence for findings described in the narrative itself.

Fig. 3 contains commentary about and the transcript of an identified critical event that relates to the
second guiding research question (What mathematical ideas do learners generate?) and fourth question
(How do learners construct isomorphisms between this problem and other problems on which they have
worked?).
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Time Commentary on and Transcript of a Critical Event 

00:55:31 

Before this episode, Jeff had suggested to Romina that 
they count the number of shortest routes by starting with 
ones easier than the red and green destination points.  
Between them, they spent time establishing a method for 
counting. Starting with a point that is 2 blocks east and 2 
blocks south of the taxi stand (forming a 2 by 2 sub-grid), 
they count the number of shortest routes of several 
nearby points and record their results in the taxicab grid.  
After working with their 2 by 2 sub-grid for which they 
found 6 shortest routes, they worked on a 3 by 3, finding 
15 shortest routes.  They also worked on 2 by 4, 2 by 3, 
and 4 by 3 sub-grids.  In this way, they were controlling 
for variables, a heuristic that they had developed and 
employed in several other tasks in our longitudinal study.

At the start of this episode, Michael is double-
checking that the number of shortest routes for the 3 by
3 sub-grid is 20. Meanwhile, Brian announces to Romina 
that he and Jeff have verified that 15 not 12 is the number 
of shortest routes in a 4 by 2 sub-grid. When Romina 
notes that 15 must also be the number of shortest routes 
for a 2 by 4 sub-grid, she voices her implicit awareness of 
a symmetrical property of the numerical pattern of 
shortest routes that she and Jeff have developed.  
Moreover, she observes that the pattern corresponds to 
Pascal’s triangle. 

Nevertheless, Romina is concerned about their datum 
for the 3 by 3 sub-grid.  Brian offers to recount the routes 
for that one, using his method of “down and over.”  
However, Michael had been counting the shortest routes 
for the 3 by 3 sub-grid and now states that he found 20.  
Suspecting that this confirms that they have Pascal’s 
triangle, Jeff states, “why does Pascal’s triangle work for 
this is the question.” 

This event is critical since it points to key 
mathematical ideas that the students generate as well as 
heuristic and content connections they make to other 
problems.  This event illustrates that the students seek to 
understand and explain reasons why Pascal’s triangle 
underlies the mathematical structure of the Taxicab 
Problem.  In addition, at the end of this episode, Romina 
suggests that they relate (find an isomorphism between) 
this problem to the Towers Problem, a problem they have 
already met and resolved. 

BRIAN: Did you figure out the five by five? 

MICHAEL: Five by five?  I’m doing three by three right 
now. 

Fig. 3. This episode is identified as a critical event in relation to several guiding research questions.
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01:00:16 

ROMINA: Did it again.  You got twelve for this one?  
Fifteen I mean?  [Romina changes the 9 in the 
second row to a 6.]  You got twelve for this one?  
Fifteen I mean? [She rewrites the numbers on 
the grid and adds a 15 to the right of the 10 and 
under the 10.] 

BRIAN: Which one are you expecting to be twenty?  
Three by three?  [Romina nods, yes.] 

MICHAEL: What are you guys all doing? 

BRIAN: Checking. 

ROMINA: I don’t think- here- he has- He was just doing 
three by three wasn’t he?  [Romina looks 
through her papers.] 

BRIAN: Yeah.  It’s no big deal. 

ROMINA: I’m already stuck.  [Brian draws a 3 by 3 
rectangle on his paper.  Romina draws in 
shortest routes for the “imaginary” 3 by 3 on her 
grid.  Romina’s pen stops when drawing a 
route.] 

JEFF: You shouldn’t be. Where you going? 

ROMINA: Three by three. [She shows the paper to Jeff.] 

JEFF: You said F making the- the [Inaudible]. 

MICHAEL: Yeah I got twenty for that one. 

JEFF: For three by three? 

MICHAEL: Yeah. 

JEFF: Alright well then- I mean can’t we explain why 
we think- well- alright.  [Jeff waves his hand.] 

MICHAEL: //They’re going to ask us- 

JEFF: //Alright then the next question is why-  
//why- 

ROMINA: //Now- 

MICHAEL: //How do you know- 

ROMINA: //Just relate this back to the //blocks.  [Jeff 
points to the grid on the transparency with his 
marker.] 

Fig. 3. (Continued)
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00:56:56 

BRIAN: Let’s just agree.  If we already know what it is 
then we have to figure out-  

MICHAEL: I just want to make sure that’s twenty.  So-  
[Michael counts routes with his pen on his grid.]

MICHAEL: I’m missing two.  T hat’s probably right though.  

BRIAN: Did you get the, uh, staircase one? 

MICHAEL: Which one?  For the three by three? 

BRIAN: Yeah.  [Inaudible].  [Romina returns.] 

ROMINA: Oh, you guys went and wrote on this didn’t 
you? 

MICHAEL: I didn’t do it. 

BRIAN: Did Jeff tell you? 

ROMINA: What? 

BRIAN: That this one- 

ROMINA: For which one? 

MICHAEL: //For- 

BRIAN: //Four by two. 

ROMINA: So you did get fifteen?  So now it’s working?  
[Meaning that the pattern of shortest routes 
corresponds to Pascal’s triangle.]  And then the 
two by four has to be fifteen too.  Now if we do 
three by three and that’s twenty, then we’re 
done. 

BRIAN: Which are you doing? 

ROMINA: What? 

BRIAN: He said he was off by two.  [Inaudible].  
[Romina begins to erase the numbers on the grid  
transparency then takes a new transparency 
with a grid on it.] 

ROMINA: I’ll just turn this around. 

BRIAN: It’s only a couple of numbers. [Romina is 
writing numbers in the grid; first row is 2 3 4 5; 
second is 3 9; third row is 4; and fourth row has 
a 5.] 

Fig. 3. (Continued)
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JEFF: //Wait- Why is this- why does the Pascal’s 
Triangle work for this is the question. 

ROMINA: //Exactly.  Relate it to the blocks.  [The word 
“blocks” here refers to the Towers Problem.] 

Fig. 3. (Continued).

2.4. Transcribing

One of the decisions researchers have to make when analyzing research data that includes recordings of
participants’ utterances and actions is whether to transcribe or not. The reasons to transcribe vary. Some
researchers transcribe to provide evidence of students’ assertions in a research report. Others transcribe in
order to use a particular analytic approach that relies heavily on transcript data. There are also researchers
who maintain that transcripts reveal important things not always visible otherwise. AsAtkinson and
Heritage (1984)note, transcripts are “necessarily selective” (p. 12) and, according toErickson (1992),
are “theoretically guided” (p. 219). It is therefore important to realize that it is impossible to render an
exact, genuine transcript of verbal and gestic interactions captured on videotape. Nonetheless, it is possible
to produce transcripts that are close approximations to being exact and genuine for particular research
purposes. Transcripts can be more or less valid representations of interactions and their conventions
depending on researchers’ analytic purposes (Erickson, 1992, p. 219). A useful transcription system is
one based on the one evolved byJefferson (1984)that has as its purpose to transfer to the page the
sound and sequential positioning of talk. Such a transcript of discourse is from a hearer’s perspective and
presents tied sequences of utterances that constitute speakers’ turns at talk and at holding the floor.

There are essential reasons to transcribe videotapes. First, following procedures within data collection
and analytic traditions, researchers may implement an open-coding process on data to discover themes
that are above, beyond, and beside those suggested by specific,a priori guiding research questions and
deductive codes. The production of the transcript and the physical, static rendering of a research session af-
fords researchers opportunities for extended, considered deliberations of talk and noted gestures. Second,
researchers analyzing participants’ discursive practices, especially their dialogue, find it useful to view
the printed, sequential rendering of speech to see what it reveals about the mathematical meanings and un-
derstandings participants construct. Since discursive practices include actions that are not only utterances,
researchers indicate in their transcripts relevant body movements as well as inscriptions (writings, draw-
ings, sketches, and so on) that participants create. Third, transcripts are, for practical purposes, a permanent
record and can reveal important categories that are not always capable of being discerned by viewing video-
tapes since, notwithstanding the technology of replay, the visual and aural video images that the viewer’s
mind eye and ear captures are essentially ephemeral. Instead with transcript data, one can consider more
than momentarily the meaning of specific utterances. Fourth, researchers transcribe so that later, if and
where appropriate in narrative reports, they can provide evidence of findings in the participants own words.

Transcripts allow researchers to perform synchronous coding with videotapes and other artifacts. As re-
searchers code transcripts, they continually review corresponding episodes in the video record to perceive
subtle nuances in speech and non-verbal behaviors as well as visible influences on patterns of behavior.
The importance of transcripts notwithstanding, examining the video record is indispensable to analyze
certain artifacts such as inscriptions since they are built in a layered fashion over time.
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In our analytic model, researchers transcribe critical events to closely analyze elements such as language
and flow of ideas as well as for presentation purposes (seeFig. 3). We also transcribe portions of video
data, vignettes or episodes, that provide evidence for important theoretic or analytic matters relative to
our guiding research questions (seeFig. 4). For whatever purpose a transcript has been produced, several
viewers check it for accuracy. However, our analyses are not based solely on inspection of transcripts
independent of direct reference to original video recordings. Some researchers find voice recognition
equipment helpful and software such as vPrism, that allows researchers to attend simultaneously to the
content of speech, the speakers’ gestures, and the time frame of episodes.

2.5. Coding

With or without transcripts, coding is crucial to analysis of video data. This activity is aimed at iden-
tifying themes that help a researcher interpret data. In our model, this activity is similar to identifying
critical events in that both require watching videos intensively and closely for long periods of time. At
this phase of analysis, the difference is that researchers focus attention on the content of the critical
events. Therefore, videorecording is helpful in this activity in much the same way as it is in enhancing
the identification of critical events. Importantly, employing observational coding schemes decided upon
prior to observations or videotape viewing may blind researchers and make it difficult to notice unan-
ticipated behaviors. Nevertheless, asAlasuutari (1996)argues, coding is not theoretically “innocent”
(p. 373). Like identifying critical events, coding is directed by researchers’ theoretical perspective and
research questions. Repeated and shared viewing, made possible by video technology, and the density of
video data enhance researchers’ ability to search and identify codes, whether these are predetermined or
emergent.

Just as with critical events, codes are defined in relation to the research question pursued or emer-
gent themes. Over the years of our investigation into the development of mathematical ideas, we have
developed coding schemes informed by our assumptions about mathematical thinking and our research
practices into the development of mathematical ideas and forms of reasoning. We have found it par-
ticularly useful and important to code for learners’ mathematical ideas, mathematical explanations or
arguments, mathematical presentations (symbolic, pictorial, and gestic), and features and functions of
discourse. We have also refined codes related to several constructs such as critical events, trace, and the
flow of ideas among learners in a group.

Inquiring into the development of probabilistic thinking, through coding data sets for critical events,
Kiczek (2000)notices how these events are connected. In turn, she traces how particular probability ideas
are built among her participants. The connected sequence of critical events leads to growth in understand-
ing of particular probability ideas, andKiczek (2000)develops the construct of pivotal strand to describe
this phenomenon. In tracing the growth of understanding of fractions among a class of fourth-graders,
Steencken (2001)codes for learners’ representation of fractions with Cuisenaire rods. When in compar-
ing fractions, Meredith builds two different models to support her reasoning, Steencken documents the
emergence of the idea of equivalent fractions, traces retrospectively the origins of Meredith’s ideas, and
then follows the flow of Meredith’s ideas among her peers (Steencken, 2001;Steencken & Maher, 2003).
Analyzing the contribution of participants, discursive practice on the mathematical ideas they build as
they resolve the Taxicab Problem,Powell (2003)distinguishes connected sequences of critical events in
which participants, whose actions form a pivotal strand, implement a new agenda for action that qualita-
tively changes their problem-solving activity, and thus he develops the construct of a watershed critical
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Fig. 4. Coding and constructing a storyline. Coding for Dörfler’s prototypes and protocol. The commentary provides elements
of a storyline.
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Fig. 4. (Continued)
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Fig. 4. (Continued)
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Fig. 4. (Continued)



428 A.B. Powell et al. / Journal of Mathematical Behavior 22 (2003) 405–435

Fig. 4. (Continued)
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Fig. 4. (Continued).

event. Computer-related hardware and software devices can make flagging for codes easier and also help
in documenting, storing, and managing codes and their content.

We have indicated that researchers are guided in the codes that they develop by their theoretical frame-
work, their research questions, and the nexus of what they observe. Below is an example of specific codes,
developed byWalter and Maher (2001, 2002). These inductive or emergent codes focus on identifying
themes and patterns of student-to-student discursive interactions.

(QA) Question that checks attunement between participants’ understandings and seeks demonstrated
mutual agreement;

(QI) Interrogative question for information that is not procedural;
(QP) Procedural question;
(QC) Confirmation request by participant regarding participant’s own conceptual understanding, differs

from attunement by not demonstrating concern for “the other’s” understanding;
(QS) Speculative question that posits potential; and
(QR) Rhetorical question.

In particular, these codes focus on the nature of student-to-student questions.
Our analytic model is also compatible with the implementation of deductive ora priori codes. The

theoretical perspective ofDörfler (2000)for understanding the constructing of mathematical meaning
offers an analytic lens for examining our video data. We illustrate this with the work of four participants’
work on the Taxicab Problem (seeFig. 1). The use of Dörfler’s constructs — prototypes and protocols
— provides a useful tool for inquiring into our central research question (What mathematical ideas do
learners generate?). As an illustration, we present below operational definitions of these constructs for
our coding and analytic purposes.

1. Prototypes:
(a) Figurative prototype (FP): Learners are engaged with a figurative prototype when they focus their

attention and exhibit interest exclusively in the physical or geometric aspect of an object as an
instantiation of a particular idea. The object is the carrier of a figurative prototype for the particular
idea.

(b) Relational prototype (RP): Learners are engaged with a relational prototype when they focus their
attention on, exhibit interest in, or constitute (conceive) relationships among elements of an object
as instantiations of particular mathematical relations. Relations are readinto the elements of an
object. The object is the carrier of a relational prototype for the particular idea.

(c) Operative prototype (OP): Learners are engaged with an operative prototype when they focus their
attention on, exhibit interest in, or execute actions that use, transform, or produce an object. The
object is the carrier of an operative prototype for the particular idea. The actions are connected to
relational prototypes.
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2. Protocol (P): Learners build a protocol when observing, reflecting on, or describing the essential
stages, phases, results, and products of activities, constructions, actions or flow of actions, including
speech acts. Learners engaged with a protocol create inscriptions when they describe verbally or in
writing (symbols, systems of symbols, including diagrams) their actions. The symbolization or carrier
of a protocol makes visible aspects of the results of learners’ cognitive process that may otherwise
not be perceptible. Researchers have evidence of protocols in the carriers that learners produce. A
particular protocol arises from a specific situation but might be used to describe other, more general
situations.

Learners can establish protocols by observing others carrying out actions and, according to their
interpretations, noting those actions. The resulting protocol evidenced by its carrier expresses their
focus of interest and attention.3

In Fig. 4, we present analyses of an episode from the video data of the research session with participants
working on the Taxicab Problem. Next to excerpts of the transcript, researchers code for the instances of
the participants engaged with prototypes and protocol. Above the excerpt, researchers write commentary
that discusses and justifies the identified material. At this phase, such commentary often manifests analytic
threads of a narrative or a storyline.

2.6. Constructing storyline

A phase that often follows coding in our data analysis is that of identifying or constructing a storyline.
The storyline is the result of making sense of the data with particular attention to identified codes (see
Fig. 4). In our model, researchers examine closely and intensively identified codes and their respective
critical events, trying to discern an emerging and evolving narrative about the data. This process may
be as time consuming as identifying critical events or codes. At this analytical phase, data interpretation
and inferences play important roles. Constructing a storyline requires the researcher to come up with
insightful and coherent organizations of the critical events, often involving complex flowcharting. This
process often involves discerningtraces, which are a collection of events, first coded and then interpreted,
to provide insight into a student’s cognitive development (Maher & Davis, 1996; Maher & Speiser, 1997).
The trace contributes to the narrative of a student’s personal intellectual history as well as to the collective
history of a group of students who collaborate.

The process of making sense of the critical events and codes is complex and, more often than not,
nonlinear. Researchers may have to go back and forth examining critical events, codes and other non-video
data such as participants’ inscriptions and researchers’ field notes. Some critical events or codes may be
dropped and new ones searched for, as more evidence may be needed. Some researchers may wish to
include participants or other researchers in data interpretations. Once again, much of the way in which
video recording enhances the identification of critical events and coding applies here. Repeated viewing
allows researchers the opportunity to continually refine their interpretations of a particular episode of
video data. Shared viewing involving participants or other researchers, as well as the great detail that
often accompanies video data can enhance the quality of the interpretations. Navigational tools of video
technology allow researchers to search and juxtapose critical events in ways that highlight important

3 These coding categories are based on the work ofDörfler (2000): Means for meaning. In: P. Cobb, E. Yackel, & K. McClain
(Eds.),Symbolizing and communicating in mathematics classrooms: perspectives on discourse, tools, and instructional design
(pp. 99–131). Mahwah, NJ: Lawrence Erlbaum Associates, and on personal communications with Willi Dörfler.
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insights on students’ mathematical thinking and understanding. This is particularly useful for longitudinal
studies, where important evidence may be lost over time.

2.7. Composing narrative

Although in our model a narrative phase appears last, narrative and other interpretive actions actually
begin from the inception of research. Researchers’ questions as well as data-gathering procedures and
media all imply explicit or implicit choices informed by open or hidden, conscious or unexamined
theoretical perspectives. It is in this sense that the construction of a narrative begins at the initiation of
research and accounts for why somewhere within a research report, researchers outline their theoretical
biases. Notwithstanding sampling decisions that occur before and while gathering data, writing occurs
in all phases of our research model even though our model announces that interpretive discussions and
results occur after data coding. Obviously, the writing of analytic memoranda is an obvious example of
researchers engaging in interpretation before this phase. Nevertheless, at this phase, researchers view the
whole of whatever portion of recorded material form the data set to which research questions are being
addressed. They decompose this whole into smaller segments, interpreting the smaller segments in light
of the whole and then recompose the whole in light of a storyline and explore a particular interpretation
of the whole using data as evidence, thereby producing a written narrative (Erickson, 1992). Even in
the process of writing, the researcher is engaged in some form of data analysis, constantly revisiting the
data and refining earlier interpretations. Furthermore, it is important to note that, as mentioned earlier,
advances in video-streaming technologies on the World Wide Web and hyperlinks enable researchers to
integrate clips of video recordings into reports accessible through the Web.4

2.8. Conclusion

We have reviewed some literature on the use of videotape in research on mathematics learning and
teaching and we have outlined an evolving analytical model for use with video data when investigating the
development of mathematical thinking. While reflecting on the model, the reader may recognize familiar
stages of data analysis, only here referred to differently. While this may be true, our intent is to emphasize
how research on the development of mathematical thinking is enhanced by video data and how our model
takes advantage of this enhancement.

Another issue in the presentation of our model concerns its sequential form. We do not intend to suggest
a fixed, immutable order in which analysis of video data must proceed. We do recognize that video-data
analysis can follow a different sequence and that certain analytic phases may not be emphasized or
included in the analysis at all. Some researchers may decide not to write descriptions of the content
of videotapes as they watch them to familiarize themselves with the data. Instead, they might skip the
describing phase and proceed directly to watching a tape and identifying critical events. Even when all
phases occur in analysis, researchers may cycle back and forth revisiting other phases of the model in
their attempt to generate insightful and coherent narratives of students’ mathematical thinking.

It is important to note that our model rests on particular theoretical assumptions concerning math-
ematical thinking and the practice of research. Over the years, theories on the development of mental
representations (Davis et al., 1992) on the growth of mathematical understanding (Pirie, 1996; Pirie &

4 This can be accomplished, for example, with the application, VideoPaper Builder 2,http://vpb.concord.org/.

http://vpb.concord.org/
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Kieren, 1994) and even more recent ideas on mathematical meaning (Dörfler, 2000) have contributed
to the development of this model, especially on issues related to deciding how to go about studying
mathematical thinking. For instance, coding for mathematical representations rests on the assumption
that “central to doing mathematics is the construction of external and internal (re)presentations” (Dörfler
& Maher, under review). This implies examining carefully students’ exteriorizations of thinking, be it
through gestures, speech, or written work.

Our analytic model also builds on assumptions about the practice of research. For instance, in contradis-
tinction to research that focuses on investigating students’ misconceptions or what they otherwise do not
do correctly, a distinguishing feature of questions entertained in our research program concerns under-
standing, as students are socially engaged in mathematical tasks,whatmathematical ideas do individual
students build andhowdo they employ their ideas so as to attain growth in their mathematical thinking.
In our research program, as (Maher & Speiser, 2001) specify, the “what” is descriptive and the “how”
narrative. Moreover, the “what” and the “how” perspective of our research program, and consequently of
our analytical model, informs the codes we develop to flag critical events as well as even which events
we consider critical. Furthermore, we recognize that research on such a complex phenomenon like the
development of mathematical thinking is not a linear, unidirectional process. Rather, it is a complex,
cyclic, and recursive process that requires multiple visits with data as well as collaborative exchanges
among researchers with different analytical and theoretical foci so as to provide rich descriptions and
narratives of the phenomenon studied (Maher & Davis, 1996; Pirie & Kieren, 1994). As already indicated,
these research practices are greatly enhanced by the evolving analytic model we have presented.

In this article, we have focused on the use of video data in small-scale studies. Obviously, large-scale
studies are also important and allow researchers to generalize results to larger populations. Nevertheless,
we contend that they too must be based on careful, detailed analyses that are attentive to the complexity
of the variables that affect learning and teaching of mathematics. For this reason we maintain that careful
observational as well as other ethnographic studies must precede and inform large-scale studies. The
model we propose is a step forward in developing an analytic approach using video data for observational
investigations into the development of learners’ mathematical ideas and forms of reasoning.
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