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Journal for Research in Mathematics Education 
2002, Vol. 33, No. 4, 259-289 

Data Analysis as the Search for 
Signals in Noisy Processes 

Clifford Konold and Alexander Pollatsek, University of Massachusetts, Amherst 

The idea of data as a mixture of signal and noise is perhaps the most fundamental 
concept in statistics. Research suggests, however, that current instruction is not 
helping students to develop this idea, and that though many students know, for 
example, how to compute means or medians, they do not know how to apply or inter- 
pret them. Part of the problem may be that the interpretations we often use to intro- 
duce data summaries, including viewing averages as typical scores or fair shares, 
provide a poor conceptual basis for using them to represent the entire group for 
purposes such as comparing one group to another. To explore the challenges of 
learning to think about data as signal and noise, we examine the "signal/noise" 
metaphor in the context of three different statistical processes: repeated measures, 
measuring individuals, and dichotomous events. On the basis of this analysis, we make 
several recommendations about research and instruction. 

Key Words: Conceptual knowledge; Curriculum; Historical analysis; Reform in 
mathematics education; Statistics 

Until recently, the study of statistics in the United States was confined to the 
university years. Following recommendations made by the National Council of 
Teachers of Mathematics (NCTM, 1989; 2000), and building on the ground- 
breaking Quantitative Literacy series (see Scheaffer, 1991), statistics and data 
analysis are now featured prominently in most mathematics curricula and are also 
appearing in the K-12 science standards and curricula (Feldman, Konold, & 
Coulter, 2000; National Research Council, 1996). Concurrently, university-level 
introductory statistics courses are changing (e.g., Cobb, 1993; Gordon & Gordon, 
1992; Smith, 1998) in ways that pry them loose from the formulaic approach copied 
with little variation in most statistics textbooks published since the 1950s.' At all 
levels, there is a new commitment to involve students in the analysis of real data 
to answer practical questions. Formal inference, at the introductory levels, is 
taking a less prominent place as greater emphasis is given to exploratory approaches 
(ai la Tukey, 1977) to reveal structure in data. This approach often capitalizes on 

1 As George Cobb (1993) remarked, "If one could superimpose maps of the routes taken by all elemen- 
tary books, the resulting picture would look much like a time-lapse night photograph of car taillights 
all moving along the same busy highway" ([ 53). 

The writing of this article was supported by National Science Foundation (NSF) 
grants REC-9725228 and ESI-9818946. Opinions expressed are those of the 
authors and not necessarily those of NSF. 
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260 Signals in Noisy Processes 

the power of visual displays and new graphic-intensive computer software (Biehler, 
1989; Cleveland, 1993; Konold, 2002). 

Despite all the criticisms that we could offer of the traditional introductory 
statistics course, it at least has a clear objective: to teach ideas central to statistical 
inference, including the Law of Large Numbers and the Central Limit Theorem. 
For the students now learning more exploratory forms of data analysis, the objec- 
tive is less clear. There are various proposals about which core ideas we should 
target in early instruction in data analysis. Wild and Pfannkuch (1999), for example, 
view variation as the core idea of statistical reasoning and propose various subcon- 
structs that are critical to learning to reason about data. Recently designed and tested 
materials for 12- to 14-year-olds aim at developing the idea of a distribution 
(Cobb, 1999; Cobb, McClain, & Gravemeijer, in press). According to the supporting 
research, this idea entails viewing data as "entities that are distributed within a space 
of possible values," in which various statistical representations-be they types of 
graphical displays or numerical summaries-are viewed as different ways of struc- 
turing or describing distributions (see Cobb, 1999, pp. 10-11). Others have argued 
the centrality of the idea of data as an aggregate-an emergent entity (i.e., distri- 
bution) that has characteristics not visible in any of the individual elements in the 
aggregate (Konold & Higgins, in press; Mokros & Russell, 1995). 

In this article, we build on these ideas of variation, distribution, and aggregate 
to offer our own proposal for the core idea that we believe should guide statistics 
and data analysis instruction, beginning perhaps as early as age 8. In short, that idea 
involves coming to see statistics as the study of noisy processes-processes that 
have a signature, or signal, which we can detect if we look at sufficient output. 

It might seem obvious that a major purpose of computing statistics such as the 
mean or median is to represent such a "signal" in the "noise" of individual data points. 
However, this idea is virtually absent from our curricula and standards documents. 
Neither NCTM's Principles and Standards for School Mathematics (2000) nor 
AAAS's Science for All Americans (1989) explicitly describes an average as 

anything like a signal. Our search through several middle school and high school 
mathematics curricula has not uncovered a single reference to this idea. Nor does 
it appear in earlier research investigating students' ideas about averages and their 

properties (Mokros & Russell, 1995; Pollatsek, Lima, & Well, 1981; Strauss & 
Bichler, 1988). The idea is evident, however, in a few recent studies. In their inves- 
tigation of statistical reasoning among practicing nurses, Noss, Pozzi, and Hoyles 
(1999) refer briefly to this interpretation and quote one nurse whom they interviewed 
as characterizing a person's average blood pressure as "what the normal range was 
sort of settling down to be." The idea of signal and noise is also evident in the work 
of Biehler (1994), Wild and Pfannkuch (1999), and Wilensky (1997). 

OVERVIEW 

We begin by describing how statisticians tend to use and think about averages 
as central tendencies. We then contrast this interpretation with various other inter- 
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Clifford Konold and Alexander Pollatsek 261 

pretations of averages that we frequently encounter in curriculum materials. Too 
frequently, curricula portray averages as little more than summaries of groups of 
values.2 Although this approach offers students some rationale for summarizing 
group data (for example, to see what is "typical"), we will argue that it provides 
little conceptual basis for using such statistical indices to characterize a set of data, 
that is, to represent the whole set. To support this claim, we review research that 
has demonstrated that although most students know how to compute various aver- 
ages such as medians and means, few use averages to represent groups when 
those averages would be particularly helpful-to make a comparison between two 
groups. We recommend beginning early in instruction to help students develop the 
idea of central tendency (or data as a combination of signal and noise). To explore 
the conceptual underpinnings of the notion of central tendency, we briefly review 
its historical development and then examine three types of statistical processes. For 
each process, we evaluate the conceptual difficulty of regarding data from that 
process as a combination of signal and noise. Finally, we outline some possible 
directions for research on student thinking and learning. 

In this article, we focus our discussion on averages, with an emphasis on means 
(using the term "average" to refer to measures of center collectively, including the 
mean, median, and mode). By focusing on averages, we risk being misunderstood 
by those who have recently argued that instruction and public discourse have been 
overemphasizing measures of center at the expense of variability (e.g., 
Shaughnessy, Watson, Moritz, & Reading, 1999; also, see Gould, 1996). A some- 
what related but more general critique comes from proponents of Tukey' s (1977) 
Exploratory Data Analysis (EDA), who advocate that, rather than structure our 
curricula around a traditional view of inferential statistics, we should instruct 
young students in more fluid and less theory-laden views of analysis (e.g., Biehler, 
1989; 1994). 

Those concerned that measures of center have been overemphasized as well as 
proponents of EDA may misread us as suggesting that instruction should aim at 
teaching students to draw conclusions by inspecting a limited number of simple 
summaries such as means. In fact, we agree wholeheartedly with Shaughnessy et 
al. (1999) and with EDA proponents that we should be teaching students to attend 
to general distributional features such as shape and spread, and to look at distrib- 
utions in numerous ways for insights about the data. We do not view the decision 
to focus our analysis here on measures of center as being at odds with their 
concerns. Our decision is partly pragmatism and partly principle. 

2 David Krantz (personal communication, December 13, 2001) shared with us his response to the ques- 
tion "Do we really need the mean in descriptive stats?" which had appeared on a data analysis listserv. 
"I'm not very clear on what is meant by 'descriptive statistics.' To be honest, I don't think there is any 
such thing, except as a textbook heading to refer to the things that are introduced prior to considera- 
tion of sampling distributions. Any description must have a purpose if it is to be useful-it is supposed 
to convey something real. The line between 'mere description' and suggesting some sort of inference 
is very fuzzy." 
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262 Signals in Noisy Processes 

On the pragmatic side, we wanted to simplify our exposition. Almost all statis- 
tical measures capture group properties, and they share an important property with 

good measures of centers: they stabilize as we collect more data. Those measures 
include those of spread, such as the standard deviation, interquartile range, 
percentiles, and measures of skewness. But switching among these different 
measures would needlessly complicate our exposition. 

The deeper reason for focusing our discussion on measures of center is that we 
believe such measures do have a special status, particularly for comparing two sets 
of data, and here some proponents of teaching EDA may well disagree with us. 
Biehler (1994), for example, maintained that the distribution should remain the 

primary focus of analysis and that we should regard an average, such as the mean, 
as just one of many of its properties. We will argue that the central idea should be 
that of searching for a signal, and that the idea of distribution comes into better focus 
when it is viewed as the "distribution around" a signal. Furthermore, we claim that 
the most basic questions in analyzing data involve looking at group differences to 
determine whether some factor has produced a difference in the two groups. 
Typically, the most straightforward and compelling way to answer these questions 
is to compare averages. We believe that much of statistical reasoning will elude 
students until they understand when a comparison of two averages makes sense 
and, as a corollary, when such a comparison is misleading. If they do not under- 
stand this, students' explorations of data (i.e., "data snooping") will almost certainly 
lack direction and meaning. 

SIGNALS IN NOISY PROCESSES 

A statistician sees group features such as the mean and median as indicators of 
stable properties of a variable system-properties that become evident only in the 

aggregate. This stability can be thought of as the certainty in situations involving 
uncertainty, the signal in noisy processes, or, the descriptor we prefer, central 

tendency. Claiming that modern-day statisticians seldom use the term "central 

tendency," Moore (1990, p. 107 ) suggests that we abandon the phrase and speak 
instead of measures of "center" or "location." But we use the phrase here to empha- 
size conceptual aspects of averages that we fear are often lost, especially to students, 
when we talk about averages as if they were simply locations in distributions. 

By central tendency we refer to a stable value that (a) represents the signal in a 
variable process and (b) is better approximated as the number of observations 

grows.3 The obvious examples of statistics used as indicators of central tendency 
are averages such as the mean and median. Processes with central tendencies have 
two components: (a) a stable component, which is summarized by the mean, for 

example, and (b) a variable component, such as the deviations of individual scores 
around an average, which is often summarized by the standard deviation. 

3 Many use the term central tendency as a synonym for average or center. When we refer to central 

tendency in this article, we have in mind the particular definition specified here. 
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Clifford Konold and Alexander Pollatsek 263 

It is important to emphasize that measures of center are not the only way to char- 
acterize stable components of noisy processes. The shape of a frequency distribu- 
tion as well as global measures of variability, for example, also stabilize as we collect 
more data; they, too, give us information about the process. We might refer to this 
more general class of characteristics as signatures of a process. We should point out, 
however, that all the characteristics that we might look at, including the shape and 
variability of a distribution, are close kin to averages. That is, when we look at the 
shape of a particular distribution, we do not ordinarily want to know precisely how 
the frequency of values changes over the range of the variable. Rather, we tame the 
distribution's "bumpiness." We might do this informally by visualizing a smoother 
underlying curve or formally by computing a best-fit curve. In either case, we attempt 
to see what remains when we smooth out the variability. In a similar manner, when 
we employ measures such as the standard deviation or interquartile range, we strive 
to characterize the average spread of the data in the sample. 

Implicit in our description of central tendency is the idea that even as one speaks 
of some stable component, one acknowledges the fundamental variability inherent 
in that process and thus its probabilistic nature. Because of this, we claim that the 
notion of an average understood as a central tendency is inseparable from the notion 
of spread. That average and variability are inseparable concepts is clear from the 
fact that most people would consider talking about the average of a set of identical 
values to be odd. In addition, it is hard to think about why a particular measure of 
center makes sense without thinking about its relation to the values in the distrib- 
ution (e.g., the mean as the balance point around which the sum of the deviation 
scores is zero, or the median as the point where the number of values above equals 
the number of values below). 

Not all averages are central tendencies as we have defined them above. We could 
compute the mean weight of an adult lion, a Mazda car, and a peanut, but no clear 
process would be measured here that we could regard as having a central tendency. 
One might think that the mean weight of all the lions in a particular zoo would be 
a central tendency. But without knowing more about how the lions got there or their 
ages, it is questionable whether this mean would necessarily tell us anything about 
a process with a central tendency. Quetelet described this distinction in terms of 
true means of distributions that follow the law of errors versus arithmetic means 
that can be calculated for any assortment of values, such as our hodgepodge above 
(see Porter, 1986, p. 107). 

Populations Versus Processes 

In the preceding description, we spoke of processes rather than populations. We 
contrast these two ways of thinking about samples or batches of data, as shown in 
Figure 1. When we think of a sample as a subset of a population (see the left 
graphic), we see the sample as a piece allowing us to guess at the whole: the average 
and shape of the sample allow us perhaps to estimate the average and shape of the 
population. If we wanted to estimate the percentage of the U.S. population favoring 
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M M 

A sample from a population Output from a noisy process 

Figure 1. Data viewed as a sample of a population (left) versus data viewed as output of a 
noisy process (right). 

gun control, we would imagine there being a population percentage of some 
unknown value, and our goal would be to estimate that percentage from a well- 
chosen sample. Thinking in these terms, we tend to view the population as static 
and to push to the background questions about why the population might be the 
way it is or how it might be changing. 

From the process perspective (as depicted in the right graphic of Figure 1), we 
think of a population or a sample as resulting from an ongoing, dynamic process, 
a process in which the value of each observation is determined by a large number 
of causes, some of which we may know and others of which we may not. This view 
moves to the foreground questions about why a process operates as it does and what 
factors may affect it. In our gun control example, we might imagine people's opin- 
ions on the issue as being in a state of flux, subject to numerous and complex influ- 
ences. We sample from that process to gauge the net effect of those influences at 
a point in time, or perhaps to determine whether that process may have changed 
over some time period. 

For many of the reasons discussed by Frick (1998), we have come to prefer 
thinking of samples (and populations, when they exist) as outputs of processes.4 

4 Adopting this perspective, we will generally refer to processes rather than to populations, to signals 
or central tendencies ofprocesses rather than to population parameters, and to estimates of signals rather 
than to sample statistics. We use the term process to refer both to processes that remain relatively stable 
over time as well as to stochastic processes, which can change quickly over time. 
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One reason for this preference is that a process view better covers the range of statis- 
tical situations in which we are interested, many of which have no real population 
(e.g., weighing an object repeatedly). Another reason for preferring the process view 
is that when we begin thinking, for example, about how to draw samples, or why 
two samples might differ, we typically focus on factors that play a role in producing 
the data. That is, we think about the causal processes underlying the phenomena 
we are studying. Biehler (1994) offered a similar analysis of the advantages of 
viewing data as being produced by a probabilistic mechanism-a mechanism that 
could be altered to produce predictable changes in the resultant distribution. 
Finally, viewing data as output from a process highlights the reason that we are 
willing to view a collection of individual values as in some sense "the same" and 
thus to reason about them as a unity: We consider them as having been generated 
by the same process. 

This notion of process is, of course, inherent in the statistician's conception of a 
population, and we expect that most experts move between the process and popu- 
lation perspectives with little difficulty or awareness.' However, for students new 
to the study of statistics, the choice of perspective could be critical. To illustrate more 
fully what we mean by reasoning about processes and their central tendencies, we 
discuss recent results of the National Assessment of Educational Progress (NAEP). 

NAEP Results as Signals of Noisy Processes 

NAEP is an assessment of student capabilities in Grades 4, 8, and 12, conducted 
every four years in the United States. On the 1998 assessment, eighth graders aver- 
aged 264 on the reading component.6 What most people want to know, of course, 
is how this compares to the results from previous assessments. In this case, the mean 
had increased 4 points since the 1994 assessment. The twelfth graders had also 
gained 4 points on average since 1994, and the fourth graders, 3 points. Donahue, 
Voelkl, Campbell, and Mazzeo (1999) interpreted these differences as evidence that 
children's reading scores were improving. 

Reports such as this are now so commonplace that we seldom question the logic 
of this reasoning. But what is the rationale in this case for comparing group means 
and for taking the apparently small difference between those means seriously? We 
will argue that to answer these questions from a statistical perspective requires a 
well-formed idea of a central tendency. 

Interpreted as a central tendency, the mean of 264 is a measure of a complex 
process that determines how well U.S. children read at a given point in time. An 
obvious component of this process is the reading instruction that children receive 

5 However, Frick (1998) argues that the difference between processes and populations is more than 
terminology, claiming that the tension between theoretical descriptions of random sampling and what 
we actually do in practice could be resolved if we thought explicitly of sampling from processes rather 
than from populations. 

6 The maximum score on the reading component was 500, and the standard deviation was 50. 
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266 Signals in Noisy Processes 

in school. Another component of the process is the behavior of adults in the home, 
such as their personal reading habits, the time that they spend reading to their chil- 
dren, and the kind and quantity of reading material that they have in the home. A 
third component consists of factors operating outside the home and school, 
including determinants of public health and development, such as nutrition levels 
and the availability and use of prenatal care, genetic factors, and the value placed 
on literacy and education by local communities and the society at large. 

Using a statistical perspective, we often find it useful to regard all these influences 
together (along with many others that we may be unaware of) as a global process 
that turns out readers of different capabilities. In the sense that we cannot know how 
these various factors work together in practice to produce results, the global process 
is a probabilistic one, unpredictable at the micro level. However, even though 
readers produced by this process vary unpredictably in their performance, we can 
regard the entire process at any given point in time as having a certain stable capa- 
bility to produce competent readers. The average performance of a large sample of 
readers produced by this process is one way to gauge the power of that process (or 
its propensity) to produce a literate citizenry. As Mme de Stael explained in 1820, 
"events which depend on a multitude of diverse combinations have a periodic 
recurrence, a fixed proportion, when the observations result from a large number 
of chances" (as quoted in Hacking, 1990, p. 41). And because of the convergence 
property of central tendencies, the larger the data set, the better the estimate we expect 
our sample average to be of the stable component of the process. 

Given the huge sample size in the reading example (about 11,000 eighth graders) 
and assuming proper care in composing the sample, we expect that the sample mean 
of 264 is very close to this propensity. Assuming that the 1994 mean is of equal 
quality, we can be fairly certain that the difference between these two means 
reflects a real change in the underlying process that affects reading scores. Note 
that the important inference here does not concern a sampling issue in the narrow 
sense of randomly sampling from a fixed known population. That is, assuming no 

changes in the system, we would expect next year' s mean to come out virtually the 
same even though the population of eighth graders would consist of different indi- 
viduals. Focusing on the process rather than the population helps make the real 
intent of our question clear. 

The mean is not necessarily the best single number to serve as an index of such 
a change. The median is also a good index, and changes in the 25th percentile, the 
percent above some minimal value, the standard deviation, or the interquartile range 
could also be valid indicators of changes in the underlying educational process. As 
long as a process remains stable, we expect the mean, or any of these other statis- 
tical indices obtained from that process, to remain relatively unchanged from 
sample to sample. Conversely, when a statistic from a large sample changes appre- 
ciably, we assume that the process has changed in some way. Furthermore, these 
expectations are crucial in our attempts to evaluate efforts to alter processes. In the 
case of reading, we might introduce new curricula, run an advertising campaign 
encouraging parents to read to their children, expand the school free lunch program 
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in disadvantaged areas, and upgrade local libraries. If we do one or more of these 
things and the mean reading scores of an appropriate sample of children increases, 
we have grounds for concluding that we have improved the process for producing 
readers. Again, we emphasize that though we have specified the mean in this 
example, we might be as happy using the median or some other measure of center. 

The above example, however, indicates a way in which a measure of center is 
often special. That is, the practical issue in which we are usually interested is 
whether, overall, things are getting better or worse, a question most naturally 
phrased in terms of a change of center. It is much harder to think of examples where 
we merely want to increase or decrease the variability or change the shape of the 
distribution. We could imagine an intervention that tried only to narrow the gap 
between good and poor readers, in which case we would compare measures of 
spread, such as the standard deviation. Although there are questions that are natu- 
rally phrased in terms of changes in variability or distribution shape, such ques- 
tions are typically second-order concerns. That is, we usually look at whether vari- 
ability or shape have changed to determine whether we need to qualify our 
conclusion about comparing measures of center. Even in situations where we 
might be interested in reducing variability, such as in income, we are certainly also 
interested in whether this comes at the expense of lowering the average. 

DIFFERENT INTERPRETATIONS OF AVERAGES 

We have argued that statisticians view averages as central tendencies, or signals 
in variable data. But this is not the only way to think about them. In Table 1, we 
list this interpretation along with several others, including viewing averages as data 
reducers, fair shares, and typical values. We consider an interpretation to be the 
goal that a person has in mind when he or she computes or uses an average. It is 
the answer that a person might give to the question "Why did you compute the 
average of those values?" Some of these interpretations are described in Strauss 
and Bichler (1988) as "properties" of the mean. Mokros and Russell (1995) 
described other interpretations as "approaches" that they observed elementary 
and middle school students using.7 In Table 1, we also provide an illustrative 
problem context for each interpretation. Of course, any problem could be interpreted 
from a variety of perspectives. But we chose these particular examples because their 
wording seemed to suggest a particular interpretation. 

Data Reduction 

According to this view, averaging is a way to boil down a set of numbers into 
one value. The data need to be reduced because of their complexity-in particular, 
because of the difficulty of holding the individual values in memory. Freund and 

7 See Bakker (2001) for a review of the historical origins of various types of averages and a discus- 
sion of parallels between these ideas and the development of student thinking. 
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Table 1 
Examples of Contexts for Various Interpretations ofAverage 

Interpretation/ 
meaning Example context 

Data reduction Ruth brought 5 pieces of candy, Yael brought 10 pieces, Nadav 
brought 20, and Ami brought 25. Can you tell me in one number how 
many pieces of candy each child brought? (From Strauss & Bichler, 
1988) 

Fair share Ruth brought 5 pieces of candy, Yael brought 10 pieces, Nadav 
brought 20, and Ami brought 25. The children who brought many 
gave some to those who brought few until everyone had the same 
number of candies. How many candies did each girl end up with? 
(Adapted from Strauss & Bichler, 1988) 

Typical value The numbers of comments made by 8 students during a class period 
were 0, 5, 2, 22, 3, 2, 1, and 2. What was the typical number of 
comments made that day? (Adapted from Konold & Garfield, 1992.) 

Signal in noise A small object was weighed on the same scale separately by nine 
students in a science class. The weights (in grams) recorded by each 
student were 6.2, 6.0, 6.0, 15.3, 6.1, 6.3, 6.2, 6.15, 6.2. What would 
you give as the best estimate of the actual weight of this object? 
(Adapted from Konold & Garfield, 1992.) 

Wilson (1997) draw on this interpretation to introduce averages in their text: 
"Although distributions provide useful descriptions of data, they still contain too 
much detail for some purposes" (p. 15). They characterize numerical summaries 
as ways to further simplify data, warning that "this condensation or data reduction 

may be accompanied by a loss of information, such as information on the shape 
of the distribution" (p. 16). One of the high school students interviewed by Konold, 
Pollatsek, Well, and Gagnon (1997) used this as a rationale for why she would look 
at a mean or median to describe the number of hours worked by students at her 
school. 

We could look at the mean of the hours they worked, or the median.... It would go 
through a lot to see what every, each person works. I mean, that's kind of a lot, but you 
could look at the mean.... You could just go through every one ... [but] you're not going 
to remember all that. 

Fair Share 

The computation for the mean is often first encountered in elementary school in 
the context of fair-share problems, with no reference to the result being a mean or 

average. Quantities distributed unevenly among several individuals are collected 
and then redistributed evenly among the individuals. The word average, in fact, 
derives from the Arabic awariyah, which translates as "goods damaged in ship- 
ping." According to Schwartzman (1994), the Italians and French appropriated this 
term to refer to the financial loss resulting from damaged goods. Later, it came to 
specify the portion of the loss borne by each of the many people who invested in 
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the ship. Strauss and Bichler (1988) provided eleven problems as examples of tasks 
that they used in their research, and we would regard all but three of them as 

involving the idea of fair share. We can view many commonly encountered rates, 
such as yearly educational expenditure per student, as based on the fair-share 
idea, since we tend to think most naturally about these rates as distributing some 
total quantity equally over some number of units. In such cases, we do not ordi- 
narily think of the computed value in relation to each individual value, nor do we 
worry, when computing or interpreting this fair share, about how the component 
values are distributed or whether there are outliers. 

Typical Value 

Average as a typical score is one of the more frequently encountered interpre- 
tations in current precollege curricula. What appears to make values typical for 
students are their position (located centrally in a distribution of values) and/or their 
frequency (being the most frequent or even the majority value). Younger students 
favor the mode for summarizing a distribution presumably because it can often 
satisfy both of these criteria (Konold & Higgins, in press). Mokros and Russell 
(1995) speculated that those students they interviewed who used only modes to 
summarize data may have interpreted typical as literally meaning the most 
frequently occurring value. Researchers have also observed students using as an 
average a range of values in the center of a distribution (Cobb, 1999; Konold, 
Robinson, Khalil, Pollatsek, Well, Wing, & Mayr, 2002; Mokros & Russell, 1995; 
Noss, Pozzi, & Hoyles, 1999; Watson & Moritz, 1999). These "center clumps" are 
located in the heart of the distribution and often include a majority of the obser- 
vations. In this respect, these clumps may serve as something akin to a mode for 
some students. 

Signal in Noise 

According to this perspective, each observation is an estimate of an unknown 
but specific value. A prototypical example is repeatedly weighing an object to deter- 
mine its actual weight. Each observation is viewed as deviating from the actual 
weight by a measurement error, which is viewed as "random." The average of these 
scores is interpreted as a close approximation to the actual weight. 

Formal Properties ofAverages 

Many school tasks involving averages seem unrelated to any of the particular 
interpretations we describe above. For example, finding the average of a set of 
numbers out of context seems intended only to develop or test students' compu- 
tational abilities. Other school tasks explore formal properties of averages, which 
we also would not view as directly related to particular interpretations. Such tasks 
include those meant to demonstrate or assess the idea that (a) the mean of a set of 
numbers is simply related to the sum of those numbers, (b) the mean is a balance 
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point and the median a partition that divides the cases into two equal-sized groups,8 
(c) the mean and median lie somewhere within the range of the set of scores and 
(d) the mean or median need not correspond to the value of an actual observation. 
In their longitudinal study of the development of young students' understandings 
of average, Watson and Moritz (2000) focused in particular on these relations, 
asking students, for example, how the mean number of children per family could 
possibly be 2.3 rather than a whole number. We consider most of the properties 
enumerated by Strauss and Bichler (1988, p. 66) to be formal relations of this sort. 
We are not arguing that these are unimportant or trivial ideas but rather that they 
are usually not tied to particular interpretations of averages. 

Applying Interpretations to the Problem of Group Comparison 

In the NAEP example, we explored the notion of central tendency and showed 
how it provides a basis for using averages-means, in that case-to compare 
groups. Owing to the fact that the mean is a very stable estimator in large samples, 
we can use it to track changes in a process even though the output from that 
process is variable and unpredictable in the short run. 

What bases do the other interpretations of average provide for evaluating the two 
NAEP results by comparing means? Consider the data reduction interpretation: Data 
are distilled to a single value, presumably because of our inability to consider all 
the values together. We argue that nothing in this interpretation suggests that any 
new information emerges from this process; indeed, a considerable loss of infor- 
mation seems to be the price paid for reducing complexity. By this logic, it would 
seem that as a data set grows larger, any single-value summary becomes less 
representative of the group as increasingly more information is lost in the reduc- 
tion process. 

The typical-value interpretation is nearer to the central tendency interpretation 
in that it may involve the idea that the value, in some sense, represents much of 
the data in the group. However, as with the data reduction interpretation, it is not 
clear why one ideally would like to have typical values from large samples rather 
than from small ones. Indeed, it would seem as reasonable to regard a typical score 
as becoming less (rather than more) representative of a group as that group became 
larger and acquired more deviant values. 

The fair-share interpretation may provide some basis for using means to compare 
groups. One could think of the mean in the 1998 NAEP data as the reading score 
that all students sampled that year would have if reading ability were divided evenly 
among all the students sampled. Based on this reasoning, one might reasonably 
conclude that the 1998 group had a higher reading score than the 1994 group. 

8 There are good grounds for considering the idea of mean as balance point as an interpretation. This 
interpretation figures centrally in mechanics, where the mean is a measure of center of mass. But in 
the statistics texts that we examined, the idea of mean as balance point seemed to be used solely as a 
way to visualize the location of the mean in a distribution of values and not as an interpretation as we 
have defined it. 
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Cortina, Saldanha, and Thompson (1999) explored the use of this notion by 
seventh- and eighth-grade students and concluded that these students could use the 
idea of fair share to derive and compare means of unequal groups. However, we 
would guess that many students would regard such reasoning skeptically unless it 
were physically possible to reallocate quantities in the real-world situation. If, for 

example, we were thinking about the number of boxes of cookies sold by different 
scout troops (as in the study by Cortina et al.), redistributing the cookie boxes evenly 
makes some sense. In contrast, if we were reasoning about mean weight, height, 
or IQ of a number of individuals, we would have to think of these pounds, inches, 
or IQ points being shared metaphorically.9 

Furthermore, we are skeptical about whether the fair-share interpretation is a 
statistical notion at all. It seems to ignore, in a sense, the original distribution of 
values and to attend only to the total accumulation of some amount in a group. 
Consider, for example, the value we would compute to decide how the different 
numbers of candies brought by various children to a party could be equally redis- 
tributed among the children (see Table 1). In this context, the particulars about 
how the candies were originally distributed seems irrelevant. That is, the number 
that constitutes a fair share is not viewed as a representation or summary of the 
original distribution but rather as the answer to the question of how to divide the 
candies equitably. 

In conclusion, whereas some of the interpretations may be useful to summarize 
a group of data, it is quite another thing to take a statistic seriously enough as to 
use it to represent the entire group as one must do when using averages to compare 
groups. We claim that viewing an average as a central tendency provides a strong 
conceptual basis for, among other things, using averages to compare two groups, 
whereas various other interpretations of average, such as data reducers and typical 
values, do not. 

We acknowledge that our analysis of these alternative interpretations has been 
cursory and that it therefore should be regarded skeptically. However, our primary 
purpose is to highlight some of the questions that we should ask in exploring 
different approaches to introducing students to averages. Furthermore, there is good 
evidence that whatever interpretations students do have of averages, those inter- 
pretations usually do not support using averages to compare one group to another. 
Many studies have demonstrated that even those who know how to compute and 
use averages in some situations do not tend to use them to compare groups. 

Students' Tendency Not to Use Averages to Compare Groups 

Gal, Rothschild, and Wagner (1990) interviewed students of age 8, 11, and 14 
about their understanding of how means were computed and what they were useful 
for. They also gave the students nine pairs of distributions in graphic form and asked 

9 We have to be careful using this logic. For example, mean income would be a different, and prob- 
ably better, indicator of the power of the economic system to take care of its citizens if the wealth were, 
in fact, distributed equally. 
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them to decide whether the groups were different or not. Only half of the 11- and 
14-year-olds who knew how to compute the mean of a single group (and, also, to 
some extent, how to interpret it) went on to use means to compare two groups. 
Hancock, Kaput, and Goldsmith (1992) and, more recently, Watson and Moritz 
(1999) have reported similar findings. 

This difficulty is not limited to the use of means. Bright and Friel (1998) ques- 
tioned 13-year-old students about a stem-and-leaf plot that showed the heights of 
28 students who did not play basketball. They then showed them a stem-and-leaf 
plot that included this data along with the heights of 23 basketball players. This 
latter plot is shown in Figure 2. Heights of basketball players were indicated in bold 

type, as they are here. Students had learned how to read this type of display and 
had no difficulty reading values from it. Asked about the "typical height" in the 

single distribution of the non-basketball players, the students responded by spec- 
ifying middle clumps (e.g., 150-160 cm), a reasonable group summary. Yet, 
shown the plot with both distributions, they could not generalize this method or 
find another way to determine "How much taller are the basketball players than 
the students who did not play basketball?" 

We found similar difficulties when we interviewed four high school seniors (ages 
17-18) who had just completed a yearlong course in probability and statistics 

10 
11 
12 
13 8 8 8 9 
14 1 24777 
15 00111122223356678 
16 
17 1 
18 0 3 5 
19 025788 
20 002355557 
21 0 0 0 5 
22 0 
23 

Figure 2. Stem-and-leaf plot of heights of students and basketball players (boldface) from 
"Helping Students Interpret Data," by G. Bright and S. N. Friel, in Reflections on Statistics: 
Learning, Teaching, and Assessment in Grades K-12 (p. 81), edited by S. P. Lajoie, 1998, 
Mahwah, NJ: Lawrence Erlbaum Associates. Copyright 1998 by Lawrence Erlbaum 
Associates. 
Note. The row headed by 13 (the stem) contains four cases (leaves)-three students of 138 cm and a 
fourth student of 139 cm. 
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(Biehler, 1997; Konold et al., 1997). During the course, they had frequently used 
medians (primarily in the context of box plot displays) as well as means to make 

group comparisons. However, during a postcourse interview in which they were 
free to use whatever methods of comparison seemed appropriate, they seldom used 
medians or means for this purpose. Instead, they tended to compare the number of 
cases in each group that had the same value on the dependent variable. For example, 
to decide if males were taller than females, they might inspect the sample for all 
individuals who were 6 feet tall and argue that males were taller because there were 
more males than females of that height. In making these comparisons, they typi- 
cally did not attend to the overall number of individuals in the two groups (in this 
case, to the overall number of males vs. females). Other researchers, including Cobb 
(1999) and Watson and Moritz (1999), have reported students using this same 
"slicing" technique over a range of different problems to compare two groups. 

In short, despite the fact that instruction in statistics usually focuses on averages, 
many students do not use those measures when they would be particularly helpful- 
to make comparisons between groups composed of variable elements. We suggest 
that this pattern is symptomatic of students' failure to interpret an average of a data 
set as saying something about the entire distribution of values. To address this 
problem instructionally, we believe that we should be encouraging students early 
in statistics instruction to think of averages as central tendencies or signals in noisy 
processes. We acknowledge that this is a complex idea and one that is particularly 
difficult to apply to the type of processes that we often have students investigating. 
We explore these conceptual difficulties below. 

THREE TYPES OF PROCESSES 
AND THEIR CONCEPTUAL CHALLENGES 

Hints about the cognitive complexity of central tendency are found in the histor- 
ical account of its development. It was Tycho Brache in the late 1500s who intro- 
duced the use of means as central tendencies to astronomy (Plackett, 1970). He used 
them to address a problem that had long troubled astronomers: what to take as the 
position of a star, given that the observed coordinates at a particular time tended 
to vary from observation to observation. When early astronomers began computing 
means of observations, they were very cautious, if not suspicious, about whether 
and when it made sense to average observations. In fact, before the middle of the 
eighteenth century, they would never combine their own observations with those 
obtained from another astronomer. They were fearful that if they combined data 
that had anything but very small errors, the process of averaging would multiply 
rather than reduce the effect of those errors (Stigler, 1986, p. 4). Taking the mean 
of multiple observations became the standard solution only after it had been deter- 
mined that the mean tended to stabilize on a particular value as the number of obser- 
vations increased. 

It was another hundred years before Quetelet began applying measures of central 
tendency to social and human phenomena (Quetelet, 1842). The idea of applying 
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means to such situations was inspired partly by the surprising observation that 
national rates of birth, marriage, and suicides--events that at one level were 

subject to human choice-remained relatively stable from year to year. Some, 
including Arbuthnot and De Moivre, had taken these stable rates as evidence of 

supernatural design. Quetelet explained them by seeing collections of individual 
behaviors or events as analogous to repeated observations. Thus, he regarded 
observing the weights of 1000 different men-weights that varied from man to 
man-as analogous to weighing the same man 1000 times, with the observed weight 
varying from trial to trial. The legitimacy of such an analogy, of course, has been 
a heated controversy in statistics. Even at the time, Quetelet's ideas brought stiff 
rebukes from thinkers such as Auguste Comte, who thought it ludicrous to believe 
that we could rise above our ignorance of values of individual cases simply by aver- 

aging many of them (Stigler, 1986, p. 194). To Comte, statistics applied to social 

phenomena was computational mysticism. 
We think that the way these early thinkers reacted to different applications of 

the mean is not merely a historical accident but instead says something about the 

"deep structure" of these different applications. To explore the challenges of 

learning to think about data as signal and noise, we examine the metaphor in the 
context of three types of statistical processes: repeated measures, measuring indi- 
viduals, and dichotomous events. 

Repeated Measures 

Consider weighing a gold nugget 100 times on a pan balance, a prototypical 
example of repeated measurement. It almost goes without saying that the purpose 
of weighing the nugget is to determine its weight. But how does one deal with the 
fact that the observed weight varies from trial to trial? We assume that statisticians 
and nonstatisticians alike would regard these fluctuations as resulting from errors 
in the measurement process. But given this variation, how should we use the 100 
measurements to arrive at the object's weight? Should all the measurements be used? 

Perhaps not, if they are all not equally accurate. A novice might attempt to deal with 
this by trying to separate the 100 measurements into two classes: those that are truly 
accurate versus those that are not. The problem then becomes how to tell which 
observations are truly accurate, because you do not know what the actual weight is. 

One aspect of this situation that makes using a mean of the observations partic- 
ularly compelling is that, conceptually, we can separate the signal from the noise. 
Because we regard an object as having some unknown but precise weight, it is not 
a conceptual leap to associate the mean of several weighings with this actual 

weight, while attributing the trial-by-trial variations to a distinctly different thing: 
chance error produced by inaccuracies of the measurement instrument and by the 

process of reading values from it. Indeed, we can also regard each individual 

weighing as having two components-a fixed component determined by the actual 

weight of the nugget and a variable component attributable to the imperfect 
measurement process. 
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The relative clarity of this example hinges on our perception that the weight of 
the nugget is a real property of the nugget. A few philosophers might regard it 

(possibly along with the nugget itself) as a convenient fiction. But to most of us, 
the weight is something real that the mean weight is approximating closely and that 
individual weighings are approximating somewhat less closely. Another reason that 
the idea of central tendency is compelling in repeated measurement situations is 
that we can easily relate the mean to the individual observations as well. To help 
clarify why this is so, we will make a number of assumptions explicit. 

We have been assuming that the person doing the weighing is careful and that the 
scale is unbiased and reasonably accurate. Given these assumptions, we expect that 
the variability of the weighings would be small and that the frequency histogram 
of observations would be single-peaked and approximately symmetric. If instead 
we knew that the person had placed the nugget on different parts of the balance pan, 
read the dial from different angles, or made errors in transcribing the observations, 
we would be reluctant to treat the mean of these numbers as a central tendency of 
the process. We would also be hesitant to accept the mean as a central tendency if 
the standard deviation was extremely large or if the histogram of weights was 
bimodal. In the ideal case, most observations would be close to the mean or median 
and the distribution would peak at the average, a fact that would be more apparent 
with a larger data set as the histogram would be smoother. In this case, we could 
easily interpret the sample average as a good approximation to a signal or a central 
tendency and view the variability around it as the result of random error. 

These assumptions about the procedure and the resulting data may be critical to 
accepting the mean of the weighings as a central tendency, but they are not the only 
things that make that interpretation compelling. As indicated above, we maintain 
that the key reason why the mean observation in this example is relatively easy to 
accept as a central tendency is that we can view it as representing a property of the 
object while viewing the variability as a property of a distinctly independent 
measurement process. That interpretation is much harder to hold when, rather than 
repeatedly measuring an attribute of a single object, we measure an attribute of many 
different objects, taking one measurement for each object and averaging them. 

Measuring Individuals 

Consider taking the height of 100 randomly chosen adult men in the United States. 
Is the mean or median of these observations a central tendency? If so, what does 
it represent? Many statisticians view the mean in this case as something like the 
actual or true height of males in the United States (or in some subgroup). But what 
could a statement like that mean? 

There are a few reasons that an average in this situation is harder to view as a 
central tendency than the average in the repeated measurement example. First, the 
gold nugget and its mass are both perceivable. We can see and heft the nugget. In 
contrast, the population of men and their average height are not things we can 
perceive as directly. Second, it is clear why we might want to know the weight of 
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the nugget. But why would we want to know the average height of a population of 
men? Third, the average height may not remain fixed over time, because of factors 
such as demographic changes or changes in diet. Finally, and perhaps most impor- 
tantly, we cannot easily compartmentalize the height measurements into signal and 
noise. It seems like a conceptual leap to regard each individual height as partly true 

height, somehow determined from the average of the population, and partly random 
error determined from some independent source other than measurement error. 

For all of these reasons, it is hard to think about the average height of the group 
of men as a central tendency. We speculate, however, that it is somewhat easier to 

regard differences between the averages of two groups of individual measurements 
as central tendencies. Suppose, for example, we wanted to compare the average 
height of U.S. men to the average height of (a) U.S. women or (b) men from 
Ecuador. We might interpret the difference between averages as saying something 
in the first case about the influence of genetics on height and in the second, about 
the effects of nutrition on height. When making these comparisons, we can regard 
the difference in averages as an indicator of the "actual effect" of gender or of nutri- 
tion, things that are easier to imagine wanting to know about even if they are diffi- 
cult to observe directly.'0 

Some support for this speculation comes from Stigler (1999), who claims that 

Quetelet created his infamous notion of the "average man" not as a tool to describe 

single distributions, but as a method for comparing them: "With Quetelet, the essen- 
tial idea was that of comparison-the entire point was that there were different 

average men for different groups, whether categorized by age or nationality, and 
it was for the study of the nature and magnitude of those differences that he had 
introduced the idea" (p. 61). Although we concede that the notion of a "true" or 
"actual" value is still a bit strained in these comparison cases, we believe that one 
needs some approximation to the idea of true value to make meaningful compar- 
isons between two groups whose individual elements vary. To see why, let us look 
more closely at the comparison of men versus women. 

Suppose we compute a mean or median height for a group of U.S. men and 
another for a group of U.S. women. Note that the act of constructing the hypoth- 
esis that gender partly determines height requires us to conceive of height as a 

process influenced by various factors. Furthermore, we cannot see how comparing 
the two groups is meaningful unless we have (a) an implicit model that gender may 
have a real genetic effect on height that is represented by the difference between 
the average for men and the average for women, and (b) a notion that other factors 
have influences on height that we will regard as random error when focusing on 
the influences of gender on height." Thus, we claim that the concept of an average 

10 Of course, both differences may reflect both nature and nurture. 

"11 It is possible that genetic differences may also (or instead) be reflected by differences in variability 
in the groups. Thinking about such differences, however, also requires thinking about some sort of 
measure (e.g., the standard deviation or the interquartile range) as a signal reflecting the typical vari- 

ability in a group. 
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as approximating a signal, or true value, comes more clearly into focus when we 
are considering the influence of a particular variable on something (in this case, 
gender on height). Such a comparison scheme provides a conceptual lever for 
thinking about signal (gender influences) and noise (other influences). We return 
to this point later. 

Discrete Events 

Another measure that is often used as an index of central tendency is the rate of 
occurrence of some event. As a prototypical example, consider the rate of 
contracting polio for children inoculated with the Salk vaccine. Even though indi- 
vidual children either get the disease or do not, the rate tells us something about 
the ability of inoculated children, as a group, to fight the disease. 

How can we view a rate (or probability) as a measure of central tendency? First, 
a probability can be formally viewed as a mean through what some would regard 
as a bit of trickery. If we code the event "polio" as a 1, and the event "no polio" as 
a 0, then the probability of getting polio is merely the mean of these Boolean values. 
Producing a formal average, however, does not automatically give us a measure 
of central tendency. We need to be able to interpret this average as a signal related 
to the causes of polio. Compare the distribution of values in the dichotomous case 
to the ideal case of the weighing example. In the dichotomous case, the mean is 
not a value that can actually occur in a single trial. Rather than being located at either 
of the peaks in the distribution, the mean is located in the valley between, typically 
quite far from the observed values. Thus, it is close to impossible to think about 
the rate or probability as the true-value component of any single observation and 
the occurrence or nonoccurrence of an individual case of polio as the sum of a true 
value and a random error component. We suspect that this is largely why the idea 
of a central tendency in dichotomous situations is the least tangible of all. 

It might help in reasoning about this situation to conceive of some process about 
which the rate or probability informs us. In the disease example, the conception is 
fairly similar to the earlier height example: A multitude of factors influence the 
propensity of individuals to get polio-level of public health, prior development 
of antibodies, incident rate of polio, age-all of which lead to a rate of getting the 
disease in some population. So even though individuals either get polio or do not, 
the propensity of a certain group of people to get polio is a probability between 
0 and 1. That value is a general indicator of the confluence of polio-related factors 
present in that group. 

As with our height example, although an absolute rate may have some meaning, 
we think it is much easier to conceptualize the meaning of a signal when we are 
comparing two rates. In the polio example, this might involve comparing the rate 
in an inoculated group to the rate in a placebo control group. Here, as with the height 
example, most people would consider the difference in rates (or the ratio of the rates) 
to be a valid measure of the efficacy of the vaccine or as a reasonable way to 
compare the efficacy of two different vaccines. 
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The Role of Noise in Perceiving a Collection as a Group 

We have argued that the idea of central tendency, or data as signal and noise, is 
more easily applied to some types of processes than to others. But there are other 
factors, to which we have alluded, that may affect the difficulty of applying this 
idea. Consider the case of comparing the heights of men and women. We would 
expect that the shape and the relative spread of the distributions would affect how 
easy it is to conceive of each distribution as a coherent group and, as a consequence, 
to be able to interpret each group's average as an indicator of a relatively stable 
group characteristic. 

Indeed, perhaps the most critical factor in perceiving a collection of individual 
measurements as a group is the nature of the variability within a group and how it 
relates to the differences between groups. In general, we expect that these individual 
measurements are easier to view as belonging to a group (and thus as having a central 
tendency) when the variability among them is relatively small. To explain what we 
mean by relatively small, we find the idea of natural kinds helpful. According to 
Rosch and Mervis (1975), people often mentally represent real-world concepts as 
prototypes and judge particular instances as "good" or "bad" depending on how 
closely those instances match the category prototype. For example, a prototypical 
bird for most North Americans is a medium-sized songbird, something like a robin. 
The closer an instance is to the category prototype, the less time it takes to identify 
that instance as a member of the category. North Americans can categorize a picture 
of a starling as a bird faster than they can a picture of an ostrich. 

In this theory of natural kinds, prototypes function much as averages do: Instances 
of the category are single observations that can be some distance from the average 
(or prototype). In fact, some competing theories of natural kinds (e.g., Medin & 
Schaffer, 1978) claim that there is no actual instance that functions as a prototype, 
but that the effective prototype is simply a mean (in some multidimensional feature 
space) of all the instances in memory. What makes some categories, such as birds, 
natural kinds is that there is little variability across features within the category rela- 
tive to the variability of those features between various animal categories. So, even 
though there are some nonprototypical instances of birds, such as penguins and 
ostriches, the distributions of features of birds overlap little with those of other 
natural kinds such as mammals, so that the groups cohere. This research suggests that 
it might be easier to accept, for example, the mean heights of the men and women 
as representing group properties if there were no overlap in heights of the men and 
women, or if at least the overlap were small relative to the spread of the distributions.'2 

Applying Central Tendency to Nonstandard Cases 

In the foregoing examples, we focused on relatively ideal cases. We tacitly 
assumed that our histograms of people' s heights, for example, were single-peaked, 

12 However, we should note that in the Bright and Friel (1998) study cited earlier, the two distribu- 
tions were non-overlapping, yet students did not use averages to compare them. 
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approximately symmetric, and, configured as two histograms, had approximately 
equal spread. In such cases, most experts would accept some average as a mean- 

ingful measure of central tendency. Is the idea of central tendency applicable only 
to these ideal cases, or is it more generalizable than that? In this section, we 
consider several nonstandard examples to make the case that we can and do apply 
the idea of central tendency to less ideal situations, in which there is some doubt 
about whether a single measure of center is adequate to describe the data. We argue 
that statistical reasoning in these situations still rests to a large extent either on the 

conception of an average as a central tendency or on its cousin, a single measure 
that describes the variability of a group of observations. 

Distributions with outliers. Consider cases where there are outliers that we 
decide should be removed from the data set. In the case of weighing, suppose a 

typical observation differs from the mean weight by something like 1 mg. If one 
of our observations was 5 mg away from the mean, most people might think it 
sensible to omit that value in calculating the mean. There are two ideas that seem 

implicit in this thinking: (a) that there is "true" measurement error associated with 

weighing on that scale and (b) that some different process can sometimes generate 
observations with unusually high measurement error. Only with such an implicit 
model can we consider, let alone decide, that an extremely deviant observation must 
have been due to nonrandom error (e.g., misrecording the observation or having a 

finger on the pan). Similarly, if we had one or two height observations that were 
60 cm from the mean, we might disregard them in certain analyses as resulting from 
a process different from the process producing the rest of the data (e.g., from a muta- 
tion or birth defect). Here again, this makes sense only if we have some implicit 
model of a typical (male or female) height from which individual observations differ 
by something like "random genetic and/or environmental variation." We can then 
regard extremely tall or short people as not fitting this model-as resulting from 
a somewhat different process and therefore calling for a different explanation. For 
these same reasons, Biehler (1994, p. 32) suggested that "symmetrical unimodal 
distributions are something distinctive," and deviations from them require addi- 
tional modeling. 

Distributions with unusual shape. Continuing with the example of men's heights, 
consider the case perhaps furthest from the ideal, where the histogram of men's 
heights is bimodal. We would be reluctant in this case to interpret any average as 
a central tendency of men's heights. Why? With a bimodal histogram, we would 
be doubtful that the men we were looking at comprised a simple process, or 
"natural kind." Rather, we would suspect that our batch of men consisted of two 
distinct groups and that we could not make any useful statements unless we uncov- 
ered some underlying variable that distinguished the two. A similar but somewhat 
less severe problem would result if the histogram was unimodal but the variability 
in the group seemed enormous (e.g., if men's heights from an unknown country 
varied from 60 cm to 900 cm with a mean of 450 cm). Given the huge variability 
in this case, we would question whether the data came from a coherent process and 
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whether it made sense, therefore, to use an average to represent it. Of course, 
people's intuitions about whether variability is enormous may differ and are likely 
to depend on the model they have of typical variability (or indeed whether they have 
any conceptual model for thinking about sources of variability). 

Comparing groups with skewed or differently shaped distributions. When 
comparing two histograms, say of men's and women's heights, we run into diffi- 
culties when the histograms are of different shape. Imagine, for example, that the 
men' s heights were positively skewed and the women's heights negatively skewed. 
Because there is clearly something different about the variability in each group, 
we would be reluctant to compare the two groups using their averages. That is, 
unless we could generate a model of why the histograms of the groups differed in 
shape and, as a result, conclude that the different shapes were just two versions of 
random error, we would probably be wary of viewing the difference between the 
two averages as representing something like the "gender effect on height." 

Consider the comparison of differences in income from one decade to another, 
where both histograms are highly skewed with long tails out to the right. If the 
histograms have the same variance and the same shape, we claim it is not unrea- 
sonable to accept the shift in central tendency as an estimate of the actual change 
in income for the group, even though we might have misgivings about using the 
average for either group as the best measure of actual income. That is, even though 
the variability in each group may not match our ideal view of "noise," we can at 
least convince ourselves that it is the same noise process in both groups. Of course, 
even though one histogram is a horizontal translation of the other, it does not neces- 
sarily mean that income has improved the same amount for each individual (or each 

type of individual), give or take random error. Indeed, a finer analysis could indi- 
cate that certain groups have become better off while other groups have not 

changed or have even become worse off. It is worth noting, however, that many 
such arguments about why looking at the differences between group averages is 

inappropriate or misleading rely on the perception that the groups are, in some sense, 
not "natural kinds" (e.g., that the processes that determine incomes of poor people 
are different from those that determine incomes of rich people). Nonetheless, 
these arguments are usually most compelling when we can identify natural 

subgroups in the larger group and can show that the changes in the averages in these 
subgroups differ from each other (e.g., the rich got richer and the poor got poorer, 
or different things happened to Blacks and Whites). 

Another classic difficulty involves comparing two averages when the distribu- 
tions differ in spread. For example, what if Country A not only has a higher mean 
income than Country B but also has a higher standard deviation? This would call 
for more serious modeling of the variability. A special case that would make it 
conceptually easier to compare the averages of the two groups would be the situ- 
ation in which the difference in standard deviations was commensurate with the 
difference in means (ideally, the ratio of standard deviations would be equal to the 
ratio of the means). In this case, we could view the effect as multiplicative rather 
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than additive, since Country A's typical income would be equal to Country B's 
multiplied by a factor that represents the effect(s) that distinguish A from B. And 
it would not be unreasonable to assume that the same multiplicative factor also 
applied to the noise process. 

Summary ofanalyses of nonstandard cases. As we have implied in our argument 
above, we do not necessarily see these nonstandard cases as problems for the type 
of framework that we are advocating. Indeed, we think that the idea of central 
tendency of a process allows us to (a) decide to eliminate an outlier or break data 
into suitable subsets, (b) come up with a conceptual model that explains why the 
groups are asymmetric or differ in spread or shape, or (c) decide that there is little 
we can sensibly conclude about the differences between the two sets of data. 

Let us summarize by asking what we could conclude about the difference in 
men's and women's heights from the distributions we described earlier that were 
skewed in opposite directions. We assert that we could conclude nothing without 
some conceptual model. If we were trying to make a statement about genetic 
gender differences, for example, we would have to be convinced that everything 
else was random and that, for instance, we could not explain the mean height differ- 
ence as resulting from gender differences in diet. In other words, there is virtually 
nothing about analyzing data that is model-free. Some may regard this a radical 
proposal, but we claim that a mean or median has little heuristic value (and is likely 
to have little meaning or heuristic value for the student) unless we can conceive 
of the data coming from some coherent process that an average helps to elucidate. 

IMPLICATIONS FOR STATISTICS EDUCATION 

The idea of noisy processes, and the signals that we can detect in them, is at the 
core of statistical reasoning. Yet, current curricula do not introduce students to this 
idea, instruments meant to assess student reasoning about data do not include items 
targeting it, and statistics education researchers have not given it much attention. 
If our argument is valid, then critical changes are called for in education research, 
the formulation of education objectives, curriculum materials, teacher education, 
and assessment. These are tightly interrelated components of educational reform. 
If we fail to advance our efforts on all these fronts, we run the risk of continuing 
to lose the small ground gained on any one of them. 

Accordingly, we describe below what we see as essential components of a 
signal-versus-noise perspective and offer suggestions about how we might help 
students (and future teachers) develop these ideas. We do not aim our speculations 
at curriculum designers or teachers in the hope that that they will implement them. 
Instead, we intend them for researchers and others who are considering what big 
ideas should guide our standards and curriculum objectives, for those designing 
and running teacher institutes, and for those developing assessment frameworks 
and instruments. 
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Using Repeated Measures 

According to our analysis, processes involving repeated measures are easier than 
other types of statistical processes to view as part signal and part noise. This 
suggests that to establish the signal-versus-noise interpretation of various statis- 
tical measures, we initially involve students in investigations of repeated measures. 

Current curricula make little use of repeated measures. Perhaps this is because 
many of the prototypical situations, such as our weighing example, can be some- 
what boring and seemingly pointless unless they are introduced in meaningful ways. 
There are many suitable and potentially interesting contexts."3 In the later grades, 
these include a number of high-stakes scientific and political issues. For informed 
public policy, we need good estimates of the thickness of the ozone layer, of 
dissolved oxygen in rivers, of concentrations of atmospheric CO2. Statistical 
control of manufacturing processes provides another context in which it is relatively 
clear why we need to track a process by looking at its outputs. Of course, time series 
analyses are complex, and we need more research to help determine the kinds of 
questions regarding them that introductory students can fruitfully explore. 

Lehrer, Schauble, and their colleagues have employed some interesting repeated 
measure contexts with younger students. For example, students in a second-grade 
class designed cars to race down a track (Lehrer, Schauble, Carpenter, & Penner, 
2000). During trial runs, students became unhappy about a decision to base a claim 
about a car's speed on a single trial. Frequently, something would happen to 
impede a car-for example, it would run up against the track's railing. The agreed- 
on remedy was to race each car five times. Not surprisingly, the students could not 
agree later on how to get a single measure of speed from the five trials. However, 
their proposal of multiple trials was, by itself, suggestive of some notion of signal 
(a car's actual top speed on that track) and noise (its observed times resulting from 
unpredictable events). 

This classroom episode suggests an important distinction. That is, a student might 
perceive data as comprising signal and noise and yet not necessarily view a statis- 
tical measure such as an average as an acceptable indicator of signal. We would 
expect that with processes involving repeated measures, students would tend to 
think of each measurement as a combination of signal and noise, particularly if 
sources of measurement error were easy to identify, as in measuring length with a 
ruler. But these same students might not be likely to think of an average of repeated 
measures as indicative of signal (any more than the early astronomers were). 
Thus, the instructional challenge is how to help students interpret measures such 
as averages as indicators of central tendency. Taking a clue from the historical devel- 
opment of the concept, it would seem fruitful to have students explore the relative 
stability of various indicators in different samples. 

13 For several good examples of activities written around such processes, see Erickson (2000). 
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Explorations of Stability 

The idea of stability is closely related to the idea of signal. If the weight of an 

object is not changing from trial to trial, it seems reasonable to expect that a good 
indicator of its weight should also not vary much from sample to sample. Recall 
that it was observing the stability from year to year of such things as birth and death 
rates that led Quetelet to begin regarding these rates as indicators of prevailing and 

relatively stable societal conditions, and to make the analogy to means of repeated 
measures. Similar investigations by students could set the stage for interpreting aver- 

ages as indicators of signal. 
A method frequently used to demonstrate stability is to draw multiple samples 

from a known population and evaluate particular features, such as the mean, across 
these replications. However, we expect that these demonstrations are often 
conducted prematurely-before students have understood why one is interested in 
the mean. Furthermore, in real sampling situations we never do these repeated 
samplings, which leaves many students confused about what we can possibly 
learn from this hypothetical exercise. The following three alternative methods of 

exploring stability appear promising on the basis of their use in classrooms with 
students as young as 8 years old. 

Comparing different measures. In this approach, students compare the relative 

accuracy of different measurement methods. Lehrer, Schauble, Strom, and Pligge 
(2001) used this approach with third and fifth graders, who measured weights and 
volumes as part of a study of densities of different materials. The students explored 
a number of different ways to measure each attribute. They did this by using each 
method repeatedly to measure the same object. The students came to favor those 
methods that produced less variability in these repeated measures. Having estab- 
lished what measurement technique they would use, they then considered various 

proposals of what to use as, for example, the volume of a particular object. The 

problem, of course, was that even with the same measurement method, repeated 
measuring gave the students a range of values. They ultimately decided to discard 
outliers and compute the means of the remaining observations as their "best guess" 
of the weights and volumes of these objects. 

Observing growing samples. Another way of exploring stability is to have 
students observe a distribution as the sample gets larger. We tested this approach 
recently in a seventh-grade mathematics class. Students had conducted an in-class 

survey to explore whether boys and girls were paid similar allowances. While 
comparing the two distributions, one student expressed reservations about drawing 
conclusions, arguing that she had no idea what the distributions might look like if 

they collected more data. Her classmates agreed. 
To help the class explore this issue, we constructed an artificial pond filled with 

two kinds (colors) of paper fish. According to our cover story, a farmer wanted 
to determine whether a new type of genetically engineered fish grew longer, as 
claimed, than the normal fish he had been using. Students "captured" fish from 
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the pond, reading off fish type and length (which was written on the fish.) On an 
overhead display, we constructed separate stacked dot plots for each type of fish 
as students read off their data. After about 15 fish had been sampled, we asked 
students what the data showed so far. Students observed that the data for the normal 
fish were clustering between 21-24 cm, whereas the data for the genetically 
engineered fish were clustering between 25-27 cm. Then we asked them what they 
thought would happen as we continued to sample more fish, reminding them of 
their earlier reservations with the allowance data. Some said that the stacks would 
become higher and the range would get bigger, without mentioning what would 

happen to such features as the general shape or the location of the center clump. 
However, other students did anticipate that the center clusters would "grow up" 
but would nevertheless maintain their approximate locations along the horizontal 
axis. The latter, of course, is what they observed as they continued to add more 
fish to the sample distributions. After the sampling, we showed them both popu- 
lation distributions along with their sample data, calling their attention to the fact 
that the centers of their sample distributions were quite good predictors of the 
centers of the population distributions-that these stable features of the samples 
were signals. 

Simulating processes. A third way to explore stability is to investigate why many 
noisy processes tend to produce mound-shaped distributions. Wilensky (1997) 
described a series of interviews that he conducted with graduate students who were 

exploring this question through computer simulations. We conducted a similar 

investigation with fifth-grade students in an after-school program on data analysis. 
In analyzing a data set on cats (from Rubin, Mokros, & Friel, 1996), students noticed 
that many frequency distributions, like tail length and body weight, were mound 

shaped. As part of exploring why this might be, students developed a list of factors 
that might cause a cat's tail to be longer or shorter. Their list included diet, being 
in an accident, and length of father's and mother's tails. Using this list, we 
constructed a spinner to determine the value of each factor for a particular cat's 
tail. One student might spin +2 inches for diet, +3 inches for mother's contribu- 
tion, -2 inches for an accident, etc. (Of course, each student wanted his or her cat 
to have the longest tail.) Before they began spinning, students predicted that if they 
built 30 cat tails in this way, they would get about equal numbers of cats with short, 
medium, and long tails. After several trials they noticed they were tending to get 
medium tails, which they explained by pointing out that you would have to be "real 

lucky" to get a big number every spin, or "real unlucky" to get a small number every 
spin. As this was our last session with these students, we could not explore what 

they might have generalized from this experience, but we believe that under- 

standing why such processes produce normal-shaped distributions is a critical 

part of coming to trust how process signals rise up through the noise. 
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Group Comparison 

We have speculated that it is often easier to regard the difference between two 
averages as a central tendency than it is to think of a single average that way. This 
suggests, perhaps somewhat counterintuitively, that rather than beginning instruc- 
tion by having students explore single distributions of individual values, we 
instead might fruitfully start with questions involving group comparison. Some 
support for the benefit of having even young students grapple with comparison 
problems comes from accounts from teachers of data analysis in the elementary 
grades (Konold & Higgins, in press). Similarly, all the problems in the middle- 
school materials developed by Cobb, McClain, and Gravemeijer involve group 
comparison (Cobb, 1999; Cobb, McClain, & Gravemeijer, in press). As Watson 
and Moritz (1999) pointed out, some of the benefits of comparison contexts are 
undoubtedly related to their being more interesting and allowing students to see 
more clearly why the question matters and why averages might be useful. But in 
addition, we expect that in a comparison situation, students can more easily view 
averages of the individual groups as summary measures of processes and can 
readily perceive the difference between those measures as some signal rising 
through the din of variability. 

Conducting Experiments 

Many educators have touted the benefits of students' collecting their own data 
(e.g., Cobb, 1993). Among the expected advantages are increased student interest 
and the rich source of information that students can draw on as they later analyze 
and reason about the data. There may be additional benefits to having students 
design and run simple, controlled experiments. One benefit derives from the fact 
that experimental setups involve group comparison. In addition, we speculate that 
data from experiments are easier than observational data to view as coming from 
a process. As experimenters, students take an active role in the process-for 
example, by fertilizing one group of plants and comparing their growth to that of 
an unfertilized group of plants. Even quite young students can understand the impor- 
tance in such cases of treating both groups of plants the same in all other respects 
(Lehrer, Carpenter, Schauble, & Putz, 2000; Warren, Ballenger, Ogonowski, 
Rosebery, & Hudicourt-Barnes, 2001). They then observe firsthand that not every 
plant in the fertilized group responds the same and that the effect of the fertilizer 
becomes evident, if at all, only when comparing the two groups. With observational 
data, students must reason backwards from observed differences to possible expla- 
nations for those differences, and their tendency in explaining the data is to offer 
different causal accounts for each individual value. With the experimental setup, 
students first see the process and then the data resulting from it, a difference in 
perspective that may help them focus on the class of causes that apply uniformly 
at the group, as opposed to the individual, level. 
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CONCLUSIONS 

We fear that some readers will hear in our analysis and recommendations a call 
to abandon the teaching of noninferential exploratory methods of data analysis and 
to eschew data from other than well-defined samples. In fact, we believe that we 
should begin teaching informal methods of data analysis in the spirit of EDA to 
students at a young age. Moreover, we are not recommending that the teaching of 
data analysis should be grounded in, or necessarily headed towards, the technical 
question of drawing formal inferences from carefully constructed samples. 

We agree with Tukey (1977) that we should not, as a rule, approach data with 
the knee-jerk desire to model them mathematically. Rather, our objective should 
be more general-to learn from them. For this purpose, being able to display data 
flexibly and in various ways can lead to interesting insights and hypotheses, some 
of which we may then choose to model more formally (Cleveland, 1993). It is this 
sensible approach to the general enterprise-not only to how but also to why we 
collect and explore data-that we believe is most important to convey to students 
in early introductions to statistics. 

It is important that we keep in mind, however, that most of us who regularly use 

exploratory methods of data analysis have strong backgrounds in inferential 
methods. When we approach data exploration with fewer assumptions, we often 
set aside, for the moment, much of the power of the mathematical models of 
statistics. But to play data detective, we have a host of tools and experiences to draw 
on, many of which stem from our knowledge of the mathematical models of statis- 
tics. As Cleveland (1993) observes, "Tools matter (p. 1)." The tools that he was 

referring to were methods of displaying data. We would add that underlying the 
skillful use of such graphical tools is the skillful use of conceptual ones, which 
matter even more. 

Our references to the pioneering work of Quetelet were meant to highlight the 
fact that the early users of means did not regard them simply as ways to describe 
centers of distributions, which is how some today (misleadingly) characterize 
them. Recent histories of the development of statistics (Hacking, 1990; Porter, 1986; 
Stigler, 1986) portray the early innovators of statistics as struggling from the 

beginning with issues of interpretation. In this regard, Quetelet' s idea of the"average 
man" was a way to take the interpretation of a mean as a "true value" of repeated 
measures and bootstrap it to a new domain-measurements of individuals-for 
which the mean did not initially make much intuitive sense. We believe that 

learning to reason about data requires students to grapple with the same sorts of 

interpretation issues, and that in the process they need to develop conceptual (not 
necessarily mathematical) models of data that can guide their explorations. The idea 
of data as signal and noise, physically embodied in the workings of the Galton Board 
(see Biehler, 1994), is perhaps the most fundamental conceptual model for 
reasoning statistically. Future research should help us learn how the idea develops 
and how we can foster that development in our students. 
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