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This paper considers task design related to the geometrical understanding of a class of nine- 
and ten- year old children. The research was interested in identifying the principles 
underpinning these tasks. A first iteration involved a nationally-recognised sorting task 
(National Numeracy Strategy, DfEE, 2000) and a second principled task was designed to 
delve further into the children’s understanding of the inclusive nature of the definitions of 
quadrilaterals. We consider to what extent van Hiele’s levels of geometrical understanding 
can be used at the classroom level and raise the issue of appropriate tasks for children to 
engage with in order to challenge and stimulate their understanding of geometric definitions. 

Understanding of geometric definitions is a complex area to study. Let us offer three 
putative reasons why this may be the case. Our environment has a great impact on the way 
children perceive shapes and it is in this environment that children are continually exposed 
to shapes that have a horizontal base. An alternative argument could be the traditional use 
of paper-based technology. Both create prototypical shapes that lead to visual cues being 
predominantly used by children. Even when we remove the horizontal base and rotate a 
shape, to say a kite flying, we still view a prototypical shape (Hershkowitz, 1990). 

Another aspect of geometric definitions that compounds the complex nature of the 
topic is that of the inclusivity and exclusivity of definitions. Children find it difficult to 
consider that a square is a rectangle (demonstrating the inclusive nature of the definition of 
rectangles) (Jones, 2000), particularly when they are faced with images in and out of school 
where what they call a rectangle is, again, a prototypical oblong (illustrating the exclusive 
nature of the definition of oblong: a rectangle that is not a square). 

Finally, the large number of attributes that can be used to define shapes adds to the 
confusion. For example, we can consider the length of the individual, parallel or adjacent 
sides, the size of the interior angles, the order of rotation and the lines of symmetry. 

This paper considers how task design can begin to meet the needs of children who are 
struggling with these concepts. 

Theoretical Framework 

van Hiele’s (1986) levels of geometrical understanding provide an overview of 
children’s geometrical understanding, which is often used in studies in this domain. For 
example, Sutherland, Godwin, Olivero and Peel (2002) are using Dynamic Geometry 
software (Cabri) in their study concerned with the process of developing a design initiative 
for primary children to learn about the properties of polygons, drawing explicitly on the 
role of the teacher exploiting the dynamic nature of Cabri. They are particularly interested 
in the children becoming aware of the invariant properties of particular quadrilaterals. 
Sutherland et al. found that the majority of children in their studies recognised shapes by 
drawing on the strong visual clues as described in van Hiele’s level 1. They wish to 
develop the children’s mathematical understanding across van Hiele’s levels 1 and 2. 
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However, we think of van Hiele’s levels as belonging to a family of macrolevel 
theories, which describe the nature of mankind’s knowledge as it evolves over long time 
scales, a trait arguably begun by Piaget in his work on genetic epistemology. Our focus is 
however much more humble. We offer the reader a metaphorical microscope with which to 
zoom in and in until we see, not the knowledge of mankind evolving over a life span or 
beyond, but the meanings that an individual child is struggling to construct at a moment in 
time and how those meanings change over hours or even minutes. What you might see 
through this microscope is not beautifully organised and smooth levels of achievement but 
instead noise and inconsistency. We see a child whose knowledge is in a state of flux and 
under constant pressure from outside influences. Of those many structuring resources in the 
classroom setting on which we are now focussed, we ask what the contribution of the task 
is to this complex and excitingly unsmooth dynamic. 

van Hiele gives a relatively minor role to intuition in his levels (Fujita & Jones, 2002), 
and yet we see intuitions as particularly relevant to the immediate meaning-making that 
takes place at the micro-level. Fischbein (1994) makes explicit the place of intuition in 
geometry. He explains that “the interactions and conflicts between the formal, the 
algorithmic and the intuitive components of a mathematical activity are very complex and 
usually not easily identified or understood.” 

Fischbein (1993) blurs the edges of van Hiele’s levels and reiterates the complex nature 
of geometry by observing that a geometrical figure “possesses a property which usual 
concepts do not possess, namely it includes the mental representation of space property”. 
Fischbein argues that all geometrical figures are characterised by the interaction between 
their figural and conceptual aspects, leading to the notion of ‘figural concepts’. He explains 
that with “age and the effect of instruction… the fusion between the figural and the 
conceptual facets improve”. 

There are few guidelines as to what this instruction could be and more specifically, 
how geometrical tasks could aid children in developing their intuition. Freudenthal (1981) 
offers a suggestion for how a familiar environment may lead to children’s understanding of 
geometry. From a very young age, before a child is able to articulate their thinking, they are 
able to grasp space and relations in space by ‘seeing, listening and moving in space’. The 
child undertakes the process of becoming conscious about their intuitive grasp of space and 
during this time verbalisation also occurs, leading to definitions, theorems and proofs. 
What Freudenthal is unspecific about, however, is how a teacher can encourage a child to 
develop definitions of shapes in this process. Indeed, although geometry is now officially 
included in the Dutch mathematics curriculum, it is not an area that has been completely 
implemented into present classroom practice (van den Heuvel-Panhuizen, 1998).  

Methodology 

This paper presents part of a wider research project, which sits within the design 
experiment paradigm (Cobb et al., 2003). Through following a series of features inherent in 
all design research, Cobb et al. (2003) propose that design experiments develop “relatively 
humble” theories that target domain-specific learning processes about “both the process of 
learning and the means that are designed to support that learning”. These theories are built 
in a rather pragmatic way, taking an existing theoretical framework and, through a highly 
interventionist experimentation period involving iterative design, new theories are 
developed through the design and redesign of a conjecture, a product. It was through the 
classroom-based use of a product (which in this case was a design for a task) within the 
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iterative process that children’s definition of quadrilaterals was explored with the aim that 
we would first be able to abstract principles related to the design of a task about geometric 
definitions and subsequently propose more generic principles for task design. 

Within this paper one iteration is discussed and principles for another iteration are 
considered. Within each iteration there were five sections: 

(i) A design based on the conclusions from the previous iteration analysis; 
(ii)  A specific method; 
(iii)  The data collection process; 
(iv) Analysis of the data and discussion; and 
(v) A conclusion drawing out recommendations to be fed into the next design. 
Iteration 0 was different only in so far as step (i) was a bootstrapping analysis based on 

an already existing nationally-recognised sorting task from the National Numeracy Strategy 
(DfEE, 2000a) in order to identify the principles which would underpin Iteration 1. 
Iteration 1 involved a second task that was designed to provide some insight into the 
children’s understanding of the inclusive nature of the definitions of quadrilaterals, thus 
further developing the principles. 

In preparation for a design experiment, many assumptions must be made about the 
starting points, elements of trajectory and prospective endpoints of the learning (Cobb et 
al., 2003). To avoid solely playing a ‘mind-game’, we used a software task [Carroll 
Diagram, DfEE, 2000b] recommended by the National Numeracy Strategy, which in 
England sets out the teaching framework from age 4 to 14; nearly all teachers in the state 
system follow this framework. In light of the activity on this task, we identified the need to 
provide a purposeful task that offered the opportunity for children to access a wide range of 
examples that could be manipulated, and which allowed for exploration of the properties of 
quadrilaterals and the relationships between them. 

We built these ideas in to the Iteration 1 task (Figure 1), a hands-on classification task 
encouraging children to identify the attribute of the sets in an unlabelled Venn Diagram. 
The children had access to strips of cardboard, scissors, Blutak, a protractor and a ruler. 
They were asked by their teacher to create quadrilaterals using any of the resources and to 
place them in the blank Venn Diagram. Once placed, the teacher revealed to the children 
whether a quadrilateral had been correctly placed. If not, the children chose whether to 
adapt the shape or move it to a different set, and again received feedback from the teacher 
on the accuracy of placement. The children were encouraged to create as many 
quadrilaterals as they felt were necessary in order to classify each set.  The game concluded 
when the children had labelled all sets. Four pairs of children were selected from the 
previous iteration to represent a cross-section of attainment. Each pair was video-taped and 
analysis was undertaken according to how the children constructed the quadrilaterals, how 
they were orientated and how the children perceived classification. 

Construction was expected to be undertaken using any of the following methods: 
• Arbitrary cutting of a strip/strips to make sides; 
• Cutting a strip using some visual clue (no physical comparison with another side); 
• Comparison made, either cutting more than one piece alongside another; folding a 

strip into half or quarters; holding an existing side against a new strip and cutting 
the new strip; 

• Using a measurement tool (ruler or protractor) to assess the size of side or angle 
needed. 
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The methods of construction were used as a means of focussing progressively (Robson, 
1993) on the children’s understanding, thus informing our stance towards the design of the 
next iteration task. In this paper, we focus on further insights gained from Iteration 1, 
which we are embedding into the task for Iteration 2. 

 
 

 
Figure 1: The iteration 1 task, Get Sorted. 

Findings 

It became clear from analysis of the data in Iteration 1 that there were several sources 
of confusion about the nature of geometric definitions. We set these out below. 

Instance vs. Class 

Several of the children did not identify how different instances of the same class could 
occur. Here, Katie and Callum discuss how two oblongs could sit within one set: 

 
Katie: But then it will be like that one [motions to existing rectangle] though, but 

smaller. That would be good. What would you call it though? Small rectangle. 
Continues to make ‘small rectangle’ by comparing and cutting strips. 

Callum: Yeah, but we could have it standing up. 

Katie: Yeah, that way or that way? 

Callum: No, keep that like that. 

  
The need to label each instance, rather than the class to which several instances belong, 

appeared to be part of a more wide-ranging difficulty for the children in distinguishing 
between instance and class. 

Attributes 

The children were concerned with only the basic attributes of the shapes of right angles 
and the length of sides. For example, Luke and Tom used their knowledge of fractions to 
create the sides of a square: 

 
 L folds one strip in half. 

Luke: We need one more [strip]. 
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 T folds one strip in half. 

Tom: So we get a square? 

Luke: A square … and we can do them into quarters. 

 L and T create a square together. 

Luke: Get the quarters and put them all together. 

 
The children used only comparison or visual construction techniques when considering 

attributes. None used the measuring resources (ruler or protractor) provided. Whilst the 
length of sides and right angles are important attributes, we believe that other attributes 
such as the size of the interior angles (other than 90o), the order of rotation and the lines of 
symmetry are also necessary aspects of geometrical understanding. More generally, we saw 
much evidence to confirm Fischbein’s view that there is a tendency for children to focus on 
perceptual rather than figural aspects of geometric shapes.  These findings endorse 
Sutherland et al’s (2002) research.  

Inclusivity 

None of the children appreciated the inclusive nature of definitions; they perceived the 
sets of the Venn Diagram as discrete and incorrectly labelled the sets similarly: 

 
 

Figure 2: Typical incorrect labelling of Venn Diagram, Iteration 1. 

James and Vinny’s discussion is typical: 
 

 J takes label and writes OBLONGS, places it in rectangles. 

Vinny: Squares in there. J takes label and gives pen and label to V who writes 
SQUARES 

James: That’s quadrilaterals with no right angles. 

Vinny: I’m not sure. Both laugh. Don’t do it as big. 

James:   What could they be? [pause] What would you call them shapes? 

Vinny: No right angles. 

James: They’re all quadrilaterals. 

Vinny: Yeah. 

James: Quadrilaterals that have no right angles. J writes it on a label. 
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In general, we saw considerable evidence in support of the literature that has shown the 

difficulty that children have with the nature of inclusive definitions (Jones, 2000). 

Defining 

The task did not stimulate the children to define shapes. Rather than making use of the 
scope for manipulation built in to the design of the task, the children created predominantly 
prototypical instances, moving them between sets to gain a correct placement rather than 
persevering with the class in each set. This resulted in Luke and Tom incorrectly 
completing the task very quickly, placing only one shape in each set before naming the sets 
and completing the task. Harry and Rebecca also placed one shape in each set before 
tentatively naming them, but decided to confirm their (also incorrect) thinking by 
producing more prototypical shapes: 
 
Harry: Pointing to each subset. They’re all irregular shapes, they’re all rectangles and 

they’re all squares. 

Rebecca: We should put some more in, just to check. 

  
We were aware that the task for Iteration 1 failed to put children in the position of 

being definers as exhorted by de Villiers (1998). 

Conclusion 

The modus operandi of design research dictates that insights gained from the previous 
iteration are transformed into design conjectures, embodied in the design of the next 
iteration. We have not yet reached the full embodiment of the task for Iteration 2. However, 
we are able to indicate how the above findings are being operationalised: 

• In response to the difficulty children encountered in distinguishing between class 
and instance, we intend to offer access to a range of instances of a definition that 
cover the whole scope of the definition. We considered the approach used in 
Dynamic Geometry where the child is able to drag a figure through many instances 
with the potential that the child may abstract the invariant aspects of the 
construction. However, we feared that, when not in dragging mode, the child would 
once more be drawn by the specific instance in front of them. We therefore propose 
to adopt the use of animations that loop continuously through the whole panoply of 
relevant instances. 

• Recognising that children usually fail to attend to the attributes of a shape, we 
propose to draw on the Constructionist (Harel & Papert, 1991) tenet that technology 
facilitates the construction of knowledge through use of that knowledge (see the 
Power Principle in Papert, 1996). Hence, we aim to present the essential attributes 
as tools with which the children can build definitions. 

• The inclusive nature of some mathematical definitions also created problems for the 
children. One problem is that definitions are to some extent arbitrary. Not all 
mathematical definitions are inclusive and it is very easy to generate arguments 
even amongst experts (perhaps especially amongst experts!) about whether certain 
shapes are special cases of others or not. We see, however, a helpful affordance of 
microworlds with respect to this issue. We believe that, by building the normalised 
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definitions into the model underpinning the microworld, the task can be so designed 
as to involve the children in discovering what the computer knows. 

• We are searching for a task design that generates purpose leading towards the 
construction of utility for defining (see Ainley, Pratt and Hansen, in press, for a full 
discussion of the two constructs, purpose and utility). We believe that by offering 
the attributes as tools for building, we have a foundation for designing a purposeful 
task, but at the same time recognise the non-triviality of such an aim. 

We have taken one further step in the process of operationalising the conjectures 
emerging from Iteration 1. We are referring to the animation of instances to scope the 
definition of a class as might-bes, in the sense that an instance of the definition might be 
represented by any of the frames presented. Might-bes are a series of morphing instances 
that cover the whole scope of a definition. In Figure 3, we give an example of a series of 
might-bes for parallelogram: 

 
Figure 3: Example of a series of might-bes for parallelogram. Each element of this figure represents one 

frame in an animation that proceeds in time from left to right. 

We intend that might-bes should be built from attribute-based tools, which we have 
labelled must-haves, in the sense they are attributes that are requirements within the 
definition. For example, one such building block would be “must have at least one right 
angle”. The phrasing of the must-haves intentionally foregrounds the inclusive nature of the 
definitions. By offering these attributes as building blocks, we expect the children to 
engage playfully with them, and construct new understandings through their use (see 
Figure 4). 

 

 

 
 
 
 
 
 

Figure 4: Example of must-haves. The student is able to change the minimum setting for the corresponding 
attribute before using these settings to create the might-bes animation. 

With these specific embodiments now in place, we are close to finalising the task for 
iteration 2. We will be collecting data for iteration 2 during June 2005. As a result, we aim 
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to offer specific guidelines about the principles for task design with respect to geometric 
definitions as well as at a generic level. 
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