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To contribute to debate about the need and nature of example generation in the 
proving process, we analysed videos of students working on different proving 
problems. Our analysis was based on integrating three frameworks: achieving 
conceptual insight and a technical handle while proving; manipulating, 
getting-a-sense, and articulating in mathematical work; and the use of syntactic and 
semantic modes of proving. A key aspect of successful use of examples in proving is to 
alight on a representation, or a coordination of representations, that provides both 
conceptual insight and a technical handle. We illustrate this finding in one problem.
INTRODUCTION
It is our personal experience that the exploratory creation of examples can help towards 
constructing proofs. This practice is supported by Pólya (1962) and many others.  
Nevertheless the notion that students could be usefully advised to do this has recently 
been challenged by Ianonne, Inglis, Mejia-Ramos, Simpson, and Weber (2011, p.13)
whose experiments concluded that there was not enough evidence for example 
generation to be ‘a viable pedagogic recommendation’. This apparent contradiction led 
us to focus not on example generation as an imposed strategy, but on how students who 
had experienced the use of examples used it in their proofs.
In our previous work, we analysed video data from 27 university students working in 
groups on different proving problems, aiming to understand the contribution made by 
example generation when used naturally (i.e., as a tool that is available to the prover) in 
the proving process. In Sandefur, Mason, Stylianides and Watson (forthcoming) we 
identified and illustrated the following four aspects of situations in which example 
generation has a positive role to play in proving. These aspects conjoin qualities of 
students and of problems:
(1) Experience of utility of examples in proving. Students have experience of 
constructing examples and are disposed to do so (e.g., they know how examples can 
expose structural relationships).
(2) Problem formulation. The problem does not point directly to a productive 
direction for its solution (e.g. it might be phrased ‘prove or disprove’ or might require 
reformulation).
(3) Personal example spaces. Students’ personal example spaces include 
appropriate familiar objects and methods, which can display underlying relationships. 
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(4) Relational necessity. The combination of the problem and the students’ 
resources are such that it is necessary to attend to underlying relations, and cannot be 
completed by only manipulating symbols. 
Our analysis also suggested that a key feature of successful use of examples in proving 
is the selection of representation, which we discuss in this paper.
EXAMPLE CONSTRUCTION AND USE
There has been significant research into how students and mathematicians generate 
examples. Dahlberg and Housman (1997) noticed that students who exemplified 
widely and visually did gain a better understanding of a new concept than those whose 
actions were more limited. Iannone et al. (2011) extended this work with a large 
number of undergraduates from different universities. In one study they compared the 
success rates for proving statements of students who had been prepared in two different 
ways: one group through generating many examples of the central concept, the other 
by reading worked examples. Neither group knew in advance what would follow these 
activities. The authors found no significant differences between the two groups, neither 
of which seemed to benefit more than the other from the specific preparation in using 
examples. However, in these studies exemplification was imposed by the researchers. 
Methods of example generation and use may be different if exemplification is a tool 
available for use in order to achieve a mathematical purpose (Watson & Chick, 2011).
Proving behaviour has been described as either syntactic or semantic. ‘Syntactic’ 
means the manipulation of symbols within the given representation system; ‘semantic’ 
is indicated by the introduction and use of other representations, which would include 
exemplification. Alcock and Weber (2010) suggested that semantic use of examples 
has four conditions for success: the prover can exemplify; examples are ‘correct’; 
examples relate to formal definitions; and examples suggest inferences. The first three 
of these are subsumed in our third aspect above; the last we see in our fourth aspect, 
that is in interaction between the problem and the solver. The representation system in 
which the problem has been presented is also likely to have an influence on the 
approach to proof.
To summarise, there are few studies of how people spontaneously incorporate example 
use into purposeful mathematical work and those that exist suggest that it is not only 
the problem, and not only the disposition of the prover, that influence whether 
examples might be used or not.
METHOD
We used a body of videos of students working in groups of two or three to produce 
proofs which arise in an ‘Introduction to Proof’ course. The second author has worked 
with others to create an online video-library for use as case studies, to be discussed in 
courses on proof (Birky, Campbell, Raman, Sandefur, & Somers 2009) (NSF grant 
#1020161). The students were either taking a basic ‘Introduction to Proof’ course or 
were advanced students who had taken this and some higher-level mathematics 
courses. They have all been introduced to a variety of proof techniques, including 
deduction and proofs by contraposition/contradiction/mathematical induction. They 
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have seen and experienced the need to engage in concepts rather than merely 
manipulate symbols in proving. The proofs produced in all the videos we analysed 
were correctly reasoned, but some were incomplete.
ANALYTIC APPROACH
We selected and analysed 11 videos of students working on three problems with
sufficiently different approaches to warrant closer attention. In this paper we use 
extracts relating to one problem to illustrate our analytic approach, but our final 
conclusion is based on the full set of videos. We viewed the videos several times 
separately and together, having extensive discussions about the ways in which students 
used examples. We compared their actions and words to three established frameworks 
using a cyclic process of analysis, refinement and re-analysis which tested the 
frameworks and data mutually against each other. The frameworks were:
MGA (Manipulating; Getting-a-sense-of; Articulating): MGA integrates ideas of 
Bruner (1996) into a spiral of activity during mathematical thinking (Mason, Burton &
Stacey, 1982). The manipulation of mathematical objects includes manipulation and 
inspection of examples to ‘get a sense of’ underlying structure and relationships. As 
that structure gradually becomes more coherent it can be articulated.
S/S (Semantic/Syntactic): We intended to distinguish between working within the 
symbolic system in which the proof statement is made (syntactic), and stepping outside 
the symbolic system (semantic) such as considering examples (e.g. Alcock & Weber,
2010). From our experience we knew this distinction can be problematic. It is possible 
to work formally and correctly with symbols and not consider underlying concepts, or 
for the symbolic form to be used and understood as a conceptual embodiment. It is also 
possible to use the same representation procedurally or meaningfully at different stages 
of proof.
CI & TH (Conceptual Insight & Technical Handle): Birky et al. (2009) (based on ideas 
of Raman (2003)) suggested that an important component in proving is recognition of 
the key idea in a problem. They observed that sometimes students gain CIs into the key 
idea but do not have access to THs with which to reason, and sometimes students have 
access to THs but have no CIs to direct their use. We extended this to fit our early 
observations of prover behaviour and identified a need for the prover to: (1) gain CI
that indicates why the statement is likely to be true, and (2) find TH to convert CIs into 
acceptable proofs.
PROBLEM: FUNCTION COMPOSITION
We now illustrate how we used these frameworks to describe the work of an advanced 
pair of students (referred to as students ‘Pip’ and ‘Sam ’) on one problem.

Given that g and h map A to B and that fog = foh, prove or disprove the following: (1) If f is 
onto from B to C, then g = h. (2) If f is one-to-one from B to C, then g = h.

Part 1 is false and requires a counterexample while part 2 is true and requires a proof. A 
useful conceptual insight would be for the prover to understand the distinction 
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between‘one-to-one’ and ‘onto’. Plausible technical handles would depend on what 
students had previously found useful in manipulating function composition.
Students’ Work on Part 1
Pip and Sam were first given part 1. They wrote the problem down. Pip said: “My first 
instinct is to construct an example.... Maybe we should write down what onto means.” 
They then drew Figure 1 and stated that this cannot happen if f is 1-to-1. 

Figure 1: Understanding definition of one-to-one.
They wrote down the definition of ‘onto’ but did not give a specific example, unless we 
regard the diagram as an example of a way this could be represented. Then they wrote 
f(x)=x2 mapping R to R. They also wrote that g and h are from R to R.
Sam : We have to show they are the same if their composition is the same. 
Pip: Our example is too complicated. …Is your instinct that it works?
Sam : Yeah. 
Pip: Yeah, my instinct too, I don’t know if it’s true, but here is what I’m thinking, let’s 
say that we have A (draws circle as in Figure 2), we’ve got B (draws and labels circle 
B) and we’ve got C (draws and labels C), okay, now, I’m thinking, (unintelligible) for 
a second, … all we know is, we know, we know, f from B to C, (pauses with pen ready 
to draw from B to C) I think it’s false (pulls pen back), let me show you why (moves 
pen back toward figure) if, let’s say this is f (writes f between B and C) and it takes this 
point to C (plots point in B and draws line to C) then all that it’s saying, as long as g... 
He then drew g going from x1 and h going from x2 in A to point F in B, as in Figure 2. 
After a little mumbling by both, Pip said “but these are different x’s.” 

Figure 2: Initial attempt at understanding composition.
Sam then drew the arrow from x2 to a different point in B and from that to the same 
point in C. After a little more discussion, Pip said: “What you drew shows that it’s not 
true. We don’t know anything about g and h, so imagine, we can say that g and h aren’t 
1-1, something like that, right, so imagine whatever crazy we can come up with, let’s 
say that g and h, they have to both act on the same x and let’s say g maps it to one point 
and h maps it to another point and f maps both points over here (points to one point in 
C) because f’s not 1-1 so that’s a counterexample, see what I’m saying.” 
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Pip then drew the correct diagram, as seen in Figure 3. Pip said that this figure does not 
exclude f being onto. At one point Sam said: “g could be x+1 and h could be x+2” (at 
this point both B and C had been defined as given), and then they said in unison: “g
takes 0 to 0 and h takes 0 to 1”. Sam pointed to h and said “that could just be a 
translation.” After some discussion and explanation for Sam, Sam then said “we could 
have f map everything onto the same point in C”. Pip said that then f would not be onto, 
but Sam countered that C could consist of only one point. They proceeded to construct 
the counterexample where A={0}, B={0,1}, and C={0}, g(0)=0, h(0)=1 and f(x)=0.

Figure 3: Correct interpretation of the problem.
Commentary on Part 1
The students initially tried to construct an example of a function to get more insight 
into the problem while almost simultaneously trying to understand the definition of 
‘onto’. They also used a diagrammatic representation from the start, so have made two 
moves which in the S/S distinction would be seen as semantic. The diagram is 
manipulable (M), whereas they were unable to manipulate the example they have 
chosen. They then tried to develop a ‘less complicated’ example, using the arrow 
representation as a technical handle (TH) to illustrate what might be possible (G), and 
they appeared to get some conceptual insight (CI) about the statement being false. 
They then developed a counter-example (A). The problem formulation of ‘prove or 
disprove’ seemed to have prompted a need for insight into whether the statements were 
true or false. They had drawn on personal example spaces (PES) of simple functions 
and of general representations to provide manipulable objects. The representation 
embedded a CI about possible routes between domains and images more obviously 
than did their algebraic examples. This suggests that it was helpful that students’ PES 
afforded movement from one representation to another until they gained insight into 
proving the statement. This could be described as finding an alignment between CI and 
TH through alighting on an appropriate representation. However, only one student 
seemed to have this facility. Pip wanted C to be the real numbers, but Sam talked him 
into using {0}. It is plausible that Pip’s past experience of functions which have the 
reals as the domain has led to R being treated as a prototypical function domain. We 
also note here the shift from a general class to finding a single counterexample, and
Sam seemed to want formulae for g and h even though A, B and C could only have 1 or 
2 values. It is possible that Sam’s PES of functions consists of formulae. The two 
students appeared to want different levels of abstraction for the final articulation and 
also used numerical examples differently, possibly because of their different PES. The 
construction of a special, economical, numerical example in this case to counter a 
statement and to demonstrate the underlying structure seems to straddle the S/S 
distinction. 
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Students’ Work on Part 2
When given part 2 of the problem, the students wrote it down with a definition of 
‘one-to-one’. Pip drew Figure 4 and said: “It’s obvious this time that if it is mapping to 
a point (from B to C) it’s only coming from one because that’s the one-to-one part.” He 
drew arrow from B to C in the figure and continued “But here’s the problem for me. 
Does the fact it is not ‘onto’ mean anything?” They convinced themselves that it does 
not matter.  They then drew the two arrows from A to B in Figure 4. Sam then started 
talking about g(x)=x+1 and h(x)=x+2, examples proffered but discarded in part 1, and 
drew Figure 5. Pip was at first convinced that this was a counterexample, but then 
realized that both g and h must start from the same point. 

Figure 4: Initial understanding of part 2 of problem.

Figure 5: A misunderstanding of problem.
Pip said: “We are trying to show for every x, f(g(x))=f(h(x)), but this shows there is 
some x1 and x2 such that f(g(x1))=f(h(x2)) and these are different.” Pip still gets 
confused and is not sure what this shows, so he says, “let’s take your example, g(0)=2
and h(1)=2.... don’t we have to show that g(0) does not equal h(0)?... and then you 
have to show f(g(0))=f(h(0)) … (he then started to draw Figure 6) and from your 
example h has to map here (draws h arrow from same point as g arrow in A to different 
point in B) but then f has to map back to the same point on C (draws arrow from B to C 
to same point as other arrow) NOT ONE-TO-ONE” and slams pen down. From here, 
they were able to write a proof of the statement using the diagram; they assumed �����
which means for some a, �����������	 Since f is one-to-one, 
��������� 
��������hence 
contradiction.) 

Figure 6: Basis for proof by contradiction.
Commentary on Part 2
We note first that if our earlier conjectures about students’ PES for functions and their 
domains are true, their PES did provide the appropriate tools for a proof. However, the 
diagrammatic approach that was successful for the students in part 1 did not appear to 
help the students in part 2 and so Pip resorted to numerical examples. This to-and-fro
between numerical examples and diagrams provided the basis for a proof by 
contradiction. The example was not used to signify generality at first, but to explore 
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structure. In part 2 (similarly to part 1) the students tried to work deductively with 
definitions of one-to-one and onto, and resorted to the diagrams and examples to ‘get a 
sense of’ the definition. This is relational necessity: for these students in this situation 
examples were necessary for them to understand the mathematical relations. They 
could not work with the symbols until they understood the effect of ‘one-to-one’. This 
does not imply that this would be true for everyone tackling this problem, nor for these 
students for all problems. The formulation of this problem is such that part 1, which 
requires a counterexample, may have established exemplification as a useful approach 
for part 2. They had chosen a representation that allowed the definitions to be drawn 
and seen as mappings, rather than remain as abstract qualities. Alignment of the CI, 
that is the nature of ‘one-to-one’ functions, and the TH, that is the possible mappings 
from the same input,  came about through their use of the particular representation 
involving arrows and ‘blobs’ for sets. 
CONCLUSION 
This discussion gives a view of our analytical approach and also typifies the kind of 
behaviour we observed. This problem situation had the four required characteristics 
for the use of examples for proving that we listed in the introduction, i.e., suitable 
experience of utility of examples; problem formulation; suitable PES; and there was 
relational necessity. It also illustrates Alcock and Weber’s (2010) requirements, i.e., 
the ability to exemplify; that examples suggest inferences; that examples are ‘correct’; 
and that examples relate to formal definitions. We also need to state that our whole 
sample of videos included several pairs who began by trying to prove a statement and 
resorted to examples only if relational necessity arose, thus showing that the 
‘Introduction to Proof’ course had not imposed exemplification as a necessary action in 
proving. 
We are able to say more: that it is the alignment of CI and TH within a suitable choice 
of representation that appeared to lead to a method of proof in many of our videos as it 
did above, that is the finding of a technical handle that somehow models the students’ 
emerging grasp of the underlying concepts.
Figure 7 represents the integration of CI & TH with MGA that we have demonstrated 
above. We would not claim that a syntactic approach might provide a technical handle 
while a semantic approach provides CI, although it was tempting to assume this when 
we set out to do our analysis. Rather, in most of our videos either the TH or the CI 
could arise while translating between representations. Finding a representation that 
aligns TH and CI was a key step in all the proof processes. This can be seen in Figure 7.
In only one of our cases was alignment found in the representation in which the 
problem was posed.
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Figure 7: Integration of CI/TH with MGA.
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