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In order to develop students’ capacities to “do mathematics,” classrooms must become environments
in which students are able to engage actively in rich, worthwhile mathematical activity. This paper
focuses on examining and illustrating how classroom-based factors can shape students’ engage-
ment with mathematical tasks that were set up to encourage high-level mathematical thinking
and reasoning. The findings suggest that when students’ engagement is successfully maintained
at a high level, a large number of support factors are present. A decline in the level of students’
engagement happens in different ways and for a variety of reasons. Four qualitative portraits pro-
vide concrete illustrations of the ways in which students’ engagement in high-level cognitive
processes was found to continue or decline during classroom work on tasks.

During the past decade, much discussion and concern have been focused on lim-
itations in students’ conceptual understanding as well as on their thinking, reasoning,
and problem-solving skills in mathematics (Hiebert & Carpenter, 1992; Lindquist &
Kouba, 1989; National Research Council, 1989). In response to these concerns, the
National Council of Teachers of Mathematics (NCTM) has published proposed
reforms of curriculum, evaluation, and teaching practices commonly found in primary
and secondary school mathematics classrooms (NCTM, 1989, 1991, 1995). Among
the underlying goals of these reform efforts are to enhance students’ understanding
of mathematics and to help them become better mathematical doers and thinkers. 

What does it mean to be a mathematical doer and thinker? Answers to this ques-
tion depend on one’s view of the nature of mathematics. A view of mathematics that
has gained increasing acceptance over past years is one based on a dynamic and exploratory
stance toward the discipline (Romberg, 1994). This dynamic stance toward mathe-
matics requires one to focus on the active, generative processes engaged in by doers
and users of mathematics (Schoenfeld, 1992), rather than view mathematics as a sta-
tic, structured system of facts, procedures, and concepts. Such active mathematical
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processes involve the use of mathematical tools systematically to explore patterns,
frame problems, and justify reasoning processes (Burton, 1984; National Research
Council, 1989; Romberg, 1992; Schoenfeld, 1992, 1994). 

This more dynamic notion of mathematical activity has implications for ideas about
what students need to learn and the kinds of activities in which students and
teachers should engage during classroom interactions. Students’ learning is seen
as the process of acquiring a “mathematical disposition” or a “mathematical point
of view” (Schoenfeld, 1992, 1994), as well as acquiring mathematical knowledge
and tools for working with and constructing knowledge. Having a mathematical dis-
position is characterized by such activities as looking for and exploring patterns to
understand mathematical structures and underlying relationships; using available
resources effectively and appropriately to formulate and solve problems; making
sense of mathematical ideas, thinking and reasoning in flexible ways: conjecturing,
generalizing, justifying, and communicating one’s mathematical ideas; and decid-
ing on whether mathematical results are reasonable (Schoenfeld, 1992). These activ-
ities have much in common with the active reasoning processes that Resnick
(1987) and others have proposed as characteristics of high-level thinking in a vari-
ety of academic domains. If students are to develop these capacities, then classrooms
must become environments in which they have frequent opportunities to engage in
dynamic mathematical activity that is grounded in rich, worthwhile mathematical
tasks (NCTM, 1991; Schoenfeld, 1994). 

Importance of Mathematical Instructional Tasks

Mathematical tasks are central to students’ learning because “tasks convey mes-
sages about what mathematics is and what doing mathematics entails” (NCTM, 1991,
p. 24). The tasks in which students engage provide the contexts in which they learn
to think about subject matter, and different tasks may place differing cognitive
demands on students (Doyle, 1983; Marx & Walsh, 1988; Hiebert & Wearne, 1993).
Thus, the nature of tasks can potentially influence and structure the way students think
and can serve to limit or to broaden their views of the subject matter with which they
are engaged. Students develop their sense of what it means to “do mathematics” from
their actual experiences with mathematics, and their primary opportunities to expe-
rience mathematics as a discipline are seated in the classroom activities in which they
engage (Schoenfeld, 1992, 1994). 

How feasible is it to engage students consistently and successfully in high-
level tasks for “doing mathematics” in the classroom? Academic task researchers
(Doyle 1983, 1986, 1988) have noted that high-level tasks are often complex and
longer in duration than more routine classroom activities and are thus more susceptible
to various factors that could cause a decline in students’ engagement to less
demanding thought processes. A previous study of mathematical tasks in reform
classrooms at the middle-school level (Stein, Grover, & Henningsen, 1996)
obtained results that further substantiated the difficulty of maintaining high levels
of students’ cognitive processing throughout task implementation. These findings
suggest that although attention to the nature of mathematical instructional tasks is
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important, attention to the classroom processes surrounding mathematical tasks is
equally needed. Although much has been written about types of mathematical tasks
that afford students opportunities to do mathematics, there have been fewer inves-
tigations of the kinds of instructional environments required to support the imple-
mentation of tasks for “doing mathematics.” This paper addresses that gap by focusing
on classroom-based factors that influence the ways in which students engage with
cognitively demanding mathematics tasks in real classroom settings.

Difficulties Associated with Implementing High-Level Tasks

Tasks that are set up to engage students in cognitively demanding activities often
evolve into less demanding forms of cognitive activity (Doyle 1983, 1986, 1988).
Engaging in high-level reasoning and problem solving involves more ambiguity and
higher levels of personal risk for students than do more routine activities. Such engage-
ment can evoke in students a desire for a reduction in task complexity that, in turn,
can lead them to pressure teachers to further specify the procedures for complet-
ing the task or to relax accountability requirements (Doyle, 1983). There may also
be a tendency for classroom-based work on tasks to drift away from a focus on mean-
ing and understanding toward an emphasis on accuracy and speed (Doyle, 1988).
Another factor underlying unsuccessful task implementation is a lack of alignment
between tasks and students’ prior knowledge, interests, and motivation (Bennett &
Desforges, 1988). Such mismatches may cause students to fail to engage with the
task in ways that will maintain a high level of cognitive activity. 

In general, a complex array of factors is involved in orchestrating classroom activ-
ity and balancing classroom management needs with academic demands. Factors can
be rooted in the way classroom norms are set up, in the motivation and learning dis-
positions of students, and in the general classroom management practices of teachers.
These factors include the manner in which order is established in the classroom, the
physical organization of the environment, the amount of time allotted for various activ-
ities, the manner in which transition periods between tasks are handled, the establishment
of accountability structures, and the ways in which discipline interventions are han-
dled (Doyle, 1986). However, tasks that begin as cognitively demanding ones do not
always decline, and it is equally important to understand ways in which high-level cog-
nitive demands can be maintained as the tasks are implemented in the classroom. 

Ways of Supporting Implementation of High-Level Tasks

When students “do mathematics” in the classroom, the activity has most likely
not occurred in a vacuum. Factors that contribute to the decline of high-level
demands, when considered in the reverse, can point to ways of maintaining high-
level demands. For example, Doyle (1988) argued that teachers should be especially
attentive to the extent to which meaning is emphasized and the extent to which stu-
dents are explicitly expected to demonstrate understanding of the mathematics under-
lying the activities in which they are engaged. Such an emphasis can be maintained
if explicit connections between the mathematical ideas and the activities in which
students engage are frequently drawn. Connections with what students already know
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and understand also play an important role in engaging students in high-level thought
processes (Hiebert & Carpenter, 1992). Some researchers have pointed out that if
cognitively demanding tasks are appropriate with respect to students’ levels and
kinds of prior knowledge, students’ cognitive processing during task implementation
stands a better chance of remaining at a high level (e.g., Bennett & Desforges, 1988).
Also, structuring classroom activity so that appropriate amounts of time are
devoted to tasks is important (Doyle, 1986).

In a review of research on classroom instruction for high-level understanding, Anderson
(1989) supported these ideas as well as some others. Anderson noted the importance
of the Vygotskian notion of scaffolding in helping students to understand and make
connections among important ideas. Scaffolding occurs when a student cannot
work through a task on his or her own, and a teacher or more capable peer provides
assistance that enables the student to complete the task alone, but that does not reduce
the overall complexity or cognitive demands of the task. Also, teachers can support
high-level thinking processes in students by explicitly modeling (or by having a stu-
dent model) such processes and thinking strategies (Anderson, 1989). Finally, it is
important to encourage students to engage in self-monitoring or self-questioning as
they progress through a task (Anderson, 1989; Schoenfeld, 1983; Silver, Branca, &
Adams, 1980). Self-monitoring can increase students’ feelings of competence and
control and, in turn, their motivation to remain engaged with a task at a high level.

These findings suggest that the mere presence of high-level mathematical tasks in
the classroom will not automatically result in students’ engagement in doing mathe-
matics. Without engaging in such active processes during classroom instruction,
students cannot be expected to develop the capacity to think, reason, and problem
solve in mathematically appropriate and powerful ways. Clearly, the ambient class-
room environment must actively support successful engagement of students in high-
level thinking and reasoning. 

This paper investigates the classroom factors that either hinder or support stu-
dents’engagement in high-level mathematical thinking and reasoning for doing
mathematics. The context for the present investigation consists of mathematics
classrooms that are participating in the QUASAR project1, a national educational
reform project aimed at fostering and studying the development and implementa-
tion of enhanced mathematics instructional programs for students attending mid-
dle schools in economically disadvantaged communities (Silver & Stein, 1996). The
project is based on the premise that prior failures of poor and minority students are
due to a lack of opportunities to participate in meaningful and challenging learn-
ing experiences rather than to a lack of abilities or potential. Since the fall of 1990,
groups of mathematics teachers at six geographically dispersed and ethnically diverse
urban middle schools have been working, in collaboration with resource partners
from nearby universities, to enhance their own local instruction and professional

1QUASAR (Quantitative Understanding: Amplifying Student Achievement and Reasoning) is based
at the Learning Research and Development Center at the University of Pittsburgh and is directed by Edward
A. Silver.
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development programs in order to provide their students with good mathematics instruc-
tion aimed at fostering thinking, reasoning, and problem solving. Although QUASAR
teachers have received a broad array of staff development since the inception of the
project, the teachers’ educational and professional backgrounds were typical of
most middle school mathematics teachers (QUASAR Documentation Team, 1993).
Compared to the national profile, QUASAR teachers are more ethnically diverse.

CONCEPTUAL FRAMEWORK

The present study is guided by a conceptual framework based on the construct of
a mathematical instructional task (see Stein et al., 1996, for a more detailed overview
of the content and design of the framework). The framework, shown in Figure 1, defines
a mathematical task as a classroom activity, the purpose of which is to focus students’
attention on a particular mathematical concept, idea, or skill. 

Figure 1. Relationships among various task-related variables and students’ learning outcomes.
The shaded portion represents the area primarily under investigation.

In this framework mathematical tasks pass through three phases (represented by the
rectangular boxes in Figure 1): as written by curriculum developers, as set up by the teacher
in the classroom, and as implemented by students during the lesson. The framework fur-
ther specifies two dimensions of mathematical tasks. The first dimension is task fea-
tures. Task features refer to aspects of tasks that mathematics educators have identified
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as important considerations for the development of mathematical understanding, rea-
soning, and sense making. These features include multiple solution strategies, mul-
tiple representations, and mathematical communication. During the set-up phase, these
features refer to the extent to which the task as announced by the teacher encourages
students to use more than one strategy, to use multiple representations, and to sup-
ply explanations and justifications. During the implementation phase, these features
refer to the extent to which students use the features.

The second dimension, cognitive demands, refers to the kind of thinking
processes entailed in solving the task as announced by the teacher (during the set-
up phase) and the thinking processes in which students engage (during the imple-
mentation phase). These thinking processes can range from memorization to the use
of procedures and algorithms (with or without attention to concepts, understand-
ing, or meaning) to complex thinking and reasoning strategies that would be typ-
ical of “doing mathematics” (e.g., conjecturing, justifying, or interpreting). The present
investigation focused on this second dimension of cognitive demands and the
classroom-based factors that influenced them as tasks passed from the set-up to the
implementation phase. 

According to the framework, the features and cognitive demands of tasks can be
transformed between any two successive phases. For example, a task could be set
up to require high-level cognitive activity by students, but during the implementa-
tion phase it could be transformed in such a way that students’ thinking focuses only
on procedures, with no conceptual connections. The shaded circle in Figure 1 rep-
resents the classroom-based factors that influence the ways in which students’
thinking unfolds during the task-implementation phase. These factors include class-
room norms, task conditions, and teachers’ and students’ dispositions. Classroom
norms refers to the established expectations regarding how academic work gets done,
by whom, and with what degree of quality and accountability. Task conditions refers
to attributes of tasks as they relate to a particular set of students (e.g., the extent to
which tasks build on students’ prior knowledge and the appropriateness of the
amount of time that is provided for students to complete tasks). Teacher and student
dispositions refers to relatively enduring features of pedagogical and learning behaviors
that tend to influence how teachers and students approach classroom events. Examples
include the extent to which a teacher is willing to let a student struggle with a difficult
problem, the kinds of assistance that teachers typically provide students who are having
difficulties, and the extent to which students are willing to persevere in their struggle to
solve difficult problems. Through these classroom, task, and teacher and student factors,
tasks can be shaped by the ambient classroom culture.

PURPOSE OF THE STUDY

The purpose of the present study is to identify, examine, and illustrate the ways
in which classroom-based factors shape students’ engagement with high-level
mathematical tasks. Previous work (Stein et al., 1996) has identified various patterns
of student engagement with tasks that were set up to encourage doing mathematics.
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In some cases, students engaged actively in high-level cognitive processes charac-
teristic of doing mathematics. In other cases they did not. In those cases in which
students’ engagement with the tasks did not exemplify doing mathematics, three
characteristic types of student engagement were noted: cognitive activity that
focused on the mechanical use of procedures (with no connection to underlying mean-
ing), unsystematic exploration, and activity with no mathematical focus. 

This study identifies and describes both those profiles of factors that were asso-
ciated with maintaining high levels of cognitive demand and those with each of the
characteristic patterns of decline. In addition, the study includes classroom-based
illustrations of the maintenance and decline patterns noted above and the factor pro-
files associated with them. 

METHODOLOGY

Data for the present study were drawn from an earlier investigation in which instruc-
tion in a representative sample of QUASAR classrooms was examined (Stein, et
al., 1996). This earlier study focused on the nature of mathematical tasks as vehi-
cles for building student capacity for mathematical thinking and reasoning. 

Prior Investigation

Data sources. Trained and knowledgeable observers2 wrote narrative summaries
of classroom observations. These summaries formed the primary basis of the data
used in the initial study. Each school year from the fall of 1990 to the spring of 1993,
three 3-day observation sessions (fall, winter, and spring) were conducted in three
representative teachers’ mathematics classrooms at each of four project sites. The
classroom-based illustrations described in this study were drawn from the classrooms
of four project teachers: Mr. Hernandez, Ms. Capra, Ms. Hoffman, and Mr. Kingsley.
The observer took detailed field notes on the mathematics instruction and stu-
dents’ reactions to the instruction; a camera operator simultaneously videotaped the
lesson. Following the observations, the observer used both the videotaped lesson and
his or her field notes to complete the project’s Classroom Observation Instrument
(COI).3 As part of that instrument, the observer provided descriptions and sketches
of the physical setting of the room, a chronology of instructional events, and

2Observers selected had strong backgrounds in mathematics education, educational psychology, or
a related field; a demonstrated competence in analyzing instruction; prior experience observing class-
rooms; and an understanding of ethnic or multicultural issues at the various sites. The observers
underwent extensive training and a sample of their write-ups were reviewed and feedback was provided.

3The initial draft of this instrument drew from two main sources: NCTM’s Professional Standards for
Teaching Mathematics: Working Draft (1989), and a classroom observation system used for the State of
California study of elementary school mathematics (Cohen, D. K., Peterson, P. L., Wilson, S., Ball, D.,
Putnam, R., Prawat, R., Heaton, R., Remillard, J., & Wiemers, M. (1990). Effects of state level reform of
elementary school mathematics curriculum on classroom practice [Elementary Subject Center Series No.
25], East Lansing, Michigan State University, Center for the Learning and Teaching of Elementary Subjects
and the National Center for Research on Teacher Education). The instrument has been pilot tested in sev-
eral middle school mathematics classrooms and has undergone several rounds of critique and revisions.
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responses to questions associated with five themes: mathematical tasks, classroom
discourse, the intellectual environment, management and assessment practices, and
group work (if it occurred). 

In the COI, a mathematical task is defined as a segment of classroom work that
is devoted to learning about a particular mathematical idea. The observers were instructed
to segment the instructional time of each observed lesson according to the main math-
ematical tasks with which students were engaged. The artifacts associated with these
tasks were appended to the write-up. The two tasks that occupied the largest per-
centages of class time were designated as Task A and Task B. In the mathemati-
cal tasks section of the COI, the observer described in detail the nature of these two
tasks: their mathematical content, the learning goals of the teacher for each task,
and the behaviors of the students as they engaged in these tasks. The observer also
described the extent to which each task focused students’ attention on procedural
steps with or without connections to underlying concepts and on doing mathematics
(e.g., framing problems, making conjectures, justifying, and explaining). In the remain-
ing three sections of the COI, the observer wrote about all activities that occurred
during the classroom lesson (not limited to Task A and Task B), referring specif-
ically to the two main tasks when appropriate. 

Coding procedures. For the initial study, a sample of 144 COIs was selected for
coding with the goal of gaining a representative picture of instruction across the four
project sites and the first 3 project years. Only Task A of each observation was coded,
although the entire narrative summary for the classroom observation was reviewed
and considered in making coding decisions.4 The COIs were coded using a system
based on the conceptual framework shown in Figure 1. The coding system was ini-
tially developed on the basis of a review of the literature on academic tasks (Bennett
& Desforges, 1988; Doyle, 1983, 1988; Marx & Walsh, 1988) and the cognitive psy-
chology of instruction (Anderson, 1989), the literature on mathematical thinking and
problem solving (Grouws, 1992; Silver, 1985), and mathematics reform documents
(NCTM, 1989, 1991), as well as on knowledge of the project sites and their goals. 

Nineteen coding decisions, organized into four main categories, were made for
each task. Descriptive codes included the number of minutes and percentage of class
time devoted to the task, the type(s) of resource(s) that served as the basis for the
task, the mathematical topic of the task (conventional middle-school topic, reform-
inspired topic, focus on mathematical processes more than a particular topic), the
context of the task, and whether or not the task was set up as a collaborative ven-
ture among students. 

Set-up codes were assigned on the basis of a review of the task materials (pro-
vided as appendices to the COI write-up) and the task as specified by the teachers,
both during their initial announcements of what students were to do and during the

4Videotapes of observations and additional artifacts from an observation were used as supplemental
data sources on a small number of the tasks (8%). These sources were consulted when a coder deter-
mined that the written description of the observation did not provide sufficient information on which
to base a decision.
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task at any subsequent points at which the teachers unilaterally provided additional
specifications to guide students’ approaches to the task. During the set-up phase,
codes were assigned for task features and for the cognitive demands of the task. (Only
cognitive-demand codes were used in the present study.) The cognitive demands
were classified into one of the following: memorization; the use of formulas,
algorithms, or procedures without connection to concepts, understanding, or mean-
ing; the use of formulas, algorithms, or procedures with connection to concepts, under-
standing, or meaning; and cognitive activity that can be characterized as “doing
mathematics,” including complex mathematical thinking and reasoning activities
such as making and testing conjectures, framing problems, and looking for patterns. 

Implementation codes also were made for task features and cognitive
demands. These codes were assigned with reference to the ways in which stu-
dents went about working on the task. When coding the cognitive demands of
the task as implemented, coders were asked to make judgments about the
kinds of cognitive processes in which the majority of the students appeared to
be engaged. During this phase, coders independently recognized the need for
a new code to describe a frequently observed manner of implementing doing-
mathematics tasks, one in which students explored around the edges of significant
mathematical ideas but failed to make systematic and sustained progress in devel-
oping mathematical strategies or understandings. In the present article, this new
code is called unsystematic exploration.

The final category of codes included judgments about factors associated with task
implementation. For high-level tasks that remained so during implementation, coders
were instructed to identify as many as applied from a list of possible factors that
could assist with the maintenance of tasks at high levels (e.g., the modeling of high-
level performance by teachers or capable students; sustained press for justification,
explanations, or meaning through teacher questioning, comments, and feedback;
scaffolding [teachers or more capable students simplifying the task so that it could
be solved while maintaining task complexity]; or the selection of tasks that build
on students’ prior knowledge). In the earlier study, high level was used to describe
tasks that involved doing mathematics or the use of formulas, algorithms, or pro-
cedures with connection to concepts, understanding, or meaning. For high-level tasks
that declined, coders identified the reasons for the decline from a list of possibili-
ties that included the routinization of problematic aspects of the tasks (students press
teacher to reduce task ambiguity or complexity by specifying explicit procedures
or the teacher “takes over” difficult pieces of the task); the shifting of emphasis from
meaning, concepts, or understanding to the accuracy and completeness of answers;
the lack of sufficient time for students to wrestle with the demanding aspects of the
tasks; and classroom management problems that prevent sustained engagement in
high-level cognitive activities.

The authors of this study, along with a third individual, served as the primary coders
in the initial study. A representative subset (25% of the 144 tasks) were double coded.
Consensus was reached by the two coders on all disagreements. Intercoder relia-
bility ranged from 53% to 100%, with an average of 79%. 
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Sampling for the Present Study

In the initial study, 58 of the 144 tasks were identified as being set up to encour-
age doing mathematics. These 58 tasks constitute the database for the present inves-
tigation. During the implementation phases of these 58 tasks, students were
observed to engage actively in doing mathematics in 22 of the tasks. In the remain-
ing 36 tasks, students’ engagement with the task during implementation was not observed
to exemplify doing mathematics. In 8 tasks, students’ thinking focused on proce-
dures without connections to underlying meaning; in 11 tasks, students engaged in
unsystematic exploration; and in 10 tasks, students’ thinking was perceived to have
no mathematical focus. In the remaining 7 tasks, students’ forms of thinking dur-
ing the implementation phase represented a variety of categories of cognitive
engagement, no one of which was well enough represented to justify its inclusion
in the present reporting.

Analysis Procedures for the Present Study

In order to examine the factors that were associated with maintenance or decline
of the doing-mathematics tasks, we first aggregated and summarized the relevant
subset of the factors data from the initial investigation according to the maintenance
and decline categories identified above. Within each of these maintenance and decline
categories, the number of tasks for which each factor was judged to be an influence
was calculated. From this information, frequency graphs were constructed in
order to be able to identify factor profiles (i.e., the sets of factors judged to be pre-
dominant influences in the largest percentage of tasks within each pattern). 

After identifying the factor profiles, we returned to our database of narrative
summaries and observation videotapes to select classroom episodes that could be devel-
oped into portraits exemplifying (a) the maintenance of high-level task demands and
the factors that support them and (b) each of the three identified patterns of decline
and the factors that influence them. After selecting the classroom episodes, we
developed detailed portraits describing the nature of the mathematical task in each
episode, how the task was set up by the teacher, how it was implemented by the stu-
dents, and how the identified factors influenced the implementation of the task. 

RESULTS

Maintenance of High-Level Cognitive Demands

Figure 2 shows the percentage of tasks in which each factor was judged to be an
influence in assisting students to engage in doing mathematics for the 22 tasks that
remained at that level during the implementation phase. The numerals at the top of
each bar indicate the number and percentage of tasks for which the particular factor
was judged to be an influence in maintaining cognitive demands at the level of doing
mathematics (e.g., scaffolding was judged to be an influence in 73% of the tasks). Typically,
three to five factors per task were believed by the coders to be influences in assist-
ing students to remain engaged in doing mathematics in particular tasks.
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As shown in Figure 2, five factors appeared to be prime influences associated with
maintaining student engagement at the level of doing mathematics: task builds on
students’ prior knowledge (82%), scaffolding (73%), appropriate amount of time
(77%), modeling of high-level performance (73%), and sustained press for expla-
nation and meaning (77%). These findings suggest that when tasks successfully main-
tain students’ engagement in doing mathematics, these factors would frequently be
expected to be in place supporting that high-level engagement in the tasks. 

Figure 2. Percentage of tasks on which each factor was judged to be an influence in assisting stu-
dents to engage at high levels (total number of tasks = 22; percentages total more than 100 because typ-
ically more than one factor was selected for each task)

These findings are in agreement with the more general literature on academic tasks
outlined earlier. Research has suggested that tasks that are likely to maintain high-
level cognitive demands are tasks that build on students’ prior knowledge (Bennett
& Desforges, 1988) and are allotted an appropriate amount of time for the students
to engage at a high level, that is, neither too little nor too much time (Doyle, 1986).
Teaching behaviors that were found to support high-level student engagement in
this study, including scaffolding, modeling high-level performance, and consistently
pressing students to provide meaningful explanations, have also been identified by
other researchers as important influences in tasks that encourage students to
engage at high levels (Anderson, 1989; Doyle, 1988). These findings demon-
strate that even though students were actively engaged during the tasks (as opposed
to being passive recipients), teachers still had an important role to play in proac-
tively supporting students’ high-level engagement. Two other factors that have been
identified in the literature as influential in high-level engagement, students’ self-
monitoring and frequent conceptual connections drawn by the teacher, were
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judged in this study to have less influence; that is, they were factors in only 36%
and 14% of the tasks, respectively. 

Factor Profiles for Specific Patterns of Decline

The factors that were associated with each of the three types of decline are illus-
trated in Figure 3. In this section, we begin by describing the characteristic factor
profiles for each of the three types of decline. We then look across the three pro-
files of factors to identify their similarities and differences. 

Decline into using procedures without connection to concepts, meaning, and under-
standing. The factors most frequently judged to influence those tasks in which stu-
dents’ thinking processes declined into the use of procedures without connection
to meaning or understanding were the removal of challenging aspects of the tasks,
shifts in focus from understanding to the correctness or completeness of the
answer, and inappropriate amounts of time allotted to the tasks. Of these, the fac-
tor most often cited was that the challenging aspects of the task were removed dur-
ing the implementation phase, thus necessitating lower and less sustained levels of
thinking, effort, and reasoning by students. Because high-level tasks can be perceived
by students (and teachers) as ambiguous, risky, or both, there is often a “pull” toward
reducing their complexity so as to manage the accompanying anxiety (Doyle, 1988).
Reduction in complexity can occur in several ways, including through students’ suc-
cessfully pressuring the teacher to provide explicit procedures for completing the
task or the teacher’s “taking over” difficult pieces of the task and performing them
for the students. When this is done, however, the cognitive demands of the task are
weakened and students’ cognitive processing, in turn, becomes channeled into more
predictable and (often) mechanical forms of thinking. 

Another frequently cited factor was a classroom-based shift in focus away from
meaning and understanding toward the completeness or accuracy of answers. The
desired outcome of the task becomes defined by the solution rather than by the think-
ing processes entailed in reaching the solution. Previous mathematical experiences
of both teachers and students often lead to such a narrow preoccupation with
solutions, at the expense of understanding. This orientation can easily overwhelm
tasks that were initially set up to encourage doing mathematics, especially if a focus
on process leads to a slowed instructional pace and lack of complete participation
by all. Finally, tasks that decline into procedural forms of student thinking often do
so because either too much or too little time is devoted to them. In this situation,
students have too little time to grapple with the important mathematical ideas con-
tained in the task. A quick pace gives the impression of covering much ground in
an efficient manner but often robs students of the time needed to truly engage with
the content and to explore and think in ways characteristic of doing mathematics. 

Decline into unsystematic exploration.5 The factors most frequently judged to influ-
ence the decline of tasks into unsatisfying forms of mathematical exploration

5The reader should recall that unsystematic exploration refers to students’ thinking processes characterized
by unsystematic exploration and lack of sustained progress in developing meaning or understanding.
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were inappropriateness of the task for the particular group of students, inappropriate
amounts of time allotted for those tasks, and the removal of challenging aspects of
the tasks. The factor of inappropriateness of the task spans a variety of reasons, includ-
ing low levels of motivation, lack of prior knowledge, and lack of suitably specific
task expectations. All these relate to the appropriateness of the task for a given group
of students. As such, they suggest that an important factor in the success of high-
level tasks is the consideration of the relationship between students and task;
teachers must know their students well in order to make intelligent choices regard-
ing the motivational appeal, difficulty level, and degree of task explicitness needed
to move students into the right cognitive and affective space so that high-level think-
ing can occur and progress can be made on the task. 

The second most frequently cited factor was inappropriate amounts of time. In
contrast to declines into proceduralized activity, for this type of decline (into
unsystematic exploration) the problem was too much time in the majority of tasks
for which this factor was judged to be influential. When students are observed not
to be making discernible headway toward constructing and understanding key ideas,
additional time by itself (i.e., without the introduction of additional support factors)
appears to exacerbate the situation. Finally, tasks were observed to decline into unsys-
tematic exploration because the challenging aspects of the task were removed. In
these cases, however, the removal of the challenge was less often due to the impo-
sition of a procedure and more often due to the subtle alteration of the task in such
a way that the main point of the activity was lost or overshadowed.

Another factor that contributed to the decline of tasks in this category, although
less so, was a lack of accountability for high-level products or processes. For exam-
ple, students were not expected to justify their methods, their unclear or incorrect
explanations were accepted, and they were given the impression that their work on
these tasks would not “count.” In such instances, students circumvented the “real”
tasks and tended to focus only on the work for which they received a grade. 

Decline into no mathematical activity. The factors most frequently judged to influ-
ence the decline of tasks into activity with no mathematical substance were inap-
propriateness of the task, classroom management problems, and inappropriate
amounts of time. Interestingly, classroom management problems appeared to play
a large role when tasks declined into a complete lack of mathematical engagement
on the part of the students. This suggests that teachers were struggling with keep-
ing students under control in addition to keeping them focused on the mathemat-
ics (although the two may be subtly interrelated). Once again, inappropriate
amounts of time were cited, and, in this instance, the problem was too much time
in the majority of tasks in which this factor was cited as influential.

Across the three factor profiles, the decline into procedural thinking appears to be asso-
ciated with the most clearly discernible, “crispest” pattern of factors. The predominance
of the three main factors (compared to the relatively weak presence of the other factors)
suggests a clear picture of activity in classrooms in which these types of decline occur.
Such sharp distinctions among the predominance of the various factors are not as read-
ily identifiable in the declines into unsystematic exploration. In fact, this profile is the
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least crisp of all, with several factors contributing moderately to the declines. This
suggests that there is a less readily apparent set of influences operating in these cases.
Given that declines into unsystematic exploration were not anticipated in our initial
coding system, the lack of a crisp profile may reflect inadequacies in our factor cat-
egories with respect to their ability to capture the kinds of classroom scenarios that
lead to these types of decline. The factor profile for declines into no mathematical
activity is more sharply differentiated, but not as crisp as the profile for declines into
proceduralized forms of students’ thinking. The most notable feature of this profile
was the strong presence of the factor of classroom management problems.

The one major factor that occurred across the three types of decline was inappropriate
amounts of time. Thus, it appears as though planning for appropriate amounts of
time and being flexible with timing decisions as the task implementation phase unfolds
are extremely important in order to avoid declines of all types. Major factors
appearing in two out of three profiles were the removal of challenging aspects of
the tasks (declines into proceduralized thinking and unsystematic exploration) and
inappropriateness of the task for a particular set of students (declines into unsys-
tematic exploration and into no mathematical activity). As mentioned earlier, the
factor “removal of challenging aspects of tasks” had slightly different forms in these
two types of declines. The factor of inappropriateness of the task was very broad,
covering a variety of reasons for low mathematical engagement, all of which
related to the appropriateness of the task for a particular group of students.

Qualitative Portraits

Our final objective is to provide illustrative, qualitative portraits of instruction
that represent the factor profiles we found to be associated with the instructional
patterns already described. In constructing the portraits, we did not limit our-
selves to discussing the specific mathematical tasks from a task-analytic perspec-
tive. Instead, we were cognizant of the importance of considering the overall
learning environment, including the actions and interactions of the teacher and the
students present in the classroom. 

Maintaining cognitive demands at the level of doing mathematics. The overall
goal of this sequence of lessons was to explore relationships among fractions, dec-
imals, and percentages. Prior to this lesson, students had experienced modeling frac-
tions, decimals, and percentages using multiple representations, and this particular
task represented an extension of that work. In the set-up of this task, each student
had a set of rectangular grids of various sizes (see Figure 4) and was expected to
shade a specified portion of the rectangular area. The portions to be shaded were
specified in a variety of ways including a percentage of the total, a fraction of the
total, a decimal fraction of the total, or a specific number of squares. Students were
then expected to provide for each shaded region a fraction, a decimal, or a percentage
that represented the amount of the total area shaded. Also, in a whole-class setting,
students were expected to be able to explain one or more solution strategies for each
problem. As set up, the task provided an opportunity to facilitate students’ construction
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of connections among the three modes of representing fractional quantities (fractions,
decimals, and percentages) in the context of exploring, listening to, interpreting, jus-
tifying, and explaining a variety of solution strategies for the problems. Overall, the
setup of the task was clearly oriented toward doing mathematics. During implementation
of the task, the high cognitive demands were maintained and a variety of factors came
into play to support students’ high-level engagement with the task. 

Figure 4. Problems composing the mathematical task of exploring relations among fractions, dec-
imals, and percentages (Bennett & Foreman, 1990)

1. a. Shade .725 of the area of this rectangle.
b. What fractional part of the area is shaded?
c. What percentage of the area is shaded?

2. a. Shade       of the area of this rectangle.3/8

b. What percentage of the area is shaded?
c. What decimal part of the area is shaded?

3. a. Shade six of the small squares in this rectangle.
b. What fractional part of the area is shaded?
c. What decimal part of the area is shaded?
d. What percentage of the area is shaded?
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The foremost influential factor was that the task was designed to build upon stu-
dents’ prior knowledge and experiences with decimals, percentages, and frac-
tions represented in multiple ways. Students had experienced a previous lesson on
relating percentages to length and area using a variety of representations, includ-
ing rectangular areas of various sizes. Thus students were not stymied by the pre-
sentation of areas other than the usual 10 × 10 grid. Mr. Hernandez, the teacher, often
directed students’ attention to their prior experiences. For example, as a strategy
for solving Problem 2a, one student presented a solution in which he regrouped all
the squares into eight “piles” and shaded three of the piles. To help students
decide what percentage and decimal parts were shaded (Problems 2b and 2c), Mr.
Hernandez encouraged them to reason about some basic decimal conversions
they already knew. This encouragement led students to use the facts that 1/4 = 2/8
= 25% and therefore that 1/8 = 12.5%. So, 3/8 would have to equal 37.5%, which would
be written as .375. In the discussion of Problem 3, Mr. Hernandez encouraged stu-
dents to use their prior knowledge to convert 6/40 to a percentage without using a
calculator. One student changed the fraction to 12/80 and reasoned that in order to
get to 100 from 80, he had to add 20, which was 1/4 of 80, so he also added 1/4 of
12 to the numerator to obtain a fraction of 15/100 or 15%. Another student changed
the fraction saying, “If you have 6 in 40, divide it in half, and you’d have 3 in each
part; you’d have 3 in 20.” He then multiplied the numerator and denominator by
5 to obtain the fraction 15/100, or 15%.

Another key factor in the students’ successful implementation of the task was the
scaffolding behavior exhibited by the teacher. Mr. Hernandez was able to assist stu-
dents as they reasoned through the problems without reducing the complexity of
the task at hand. For example, Mr. Hernandez called on Michelle to do Problem 1
at the overhead. In demonstrating Problem 1a, Michelle shaded in 72.5 of the 80
squares. Mr. Hernandez did not immediately correct Michelle’s error; instead, he
asked her to explain her thinking, but she said she was unsure. When Mr. Hernandez
asked her to reread the problem, she realized that she might have made an error; as
discussion of Problem 1c ensued, Mr. Hernandez asked how the class could use the
information that there were a total 80 squares. He also asked the students to think
about what would happen if they tried to distribute 100% across the 80 squares. Michelle
thought about it and replied that they could find out what percentage each square
represented and that each square would have to be more than 1%. Another student,
Cecily, thought each square would be worth 1.25%. Michelle explained further that
there would be 20 left over after allotting 1 to each square and that 20 divided among
the 80 would give 1/4 more for each square. Michelle was then able to show how
many squares should be shaded for 72.5 %. Thus, Mr. Hernandez was able to direct
Michelle’s (and the class’s) attention to appropriate aspects of the task that would
enable Michelle to succeed on her own. 

At least three other important factors that supported students’ engagement in doing
mathematics were evident. First, Mr. Hernandez allowed an appropriate amount of
time for discussion of the problems, thus affording students opportunities to con-
sider and discuss multiple solution strategies for the problems given. For example,
following Michelle’s explanation (described above) for Problem 1, another student
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multiplied .725 by 80 to get 58 and explained that he obtained a fraction of 58/80 and
reduced it to 29/40. Another student said that she divided the 80 squares into 10 equal
columns of 8 squares each and then shaded in 7 columns and 2 more squares (because
2 is 1/4 of 1/10 [of 80], or 1/4 of 8 [in this case], which equals .025) for a total of 58
squares. Another student explained how to use a calculator to find the solutions. 

Another factor evident in the lesson was modeling of high-level performance. This
factor is well-illustrated by the examples described above in Problem 1. The dis-
cussion of multiple solution strategies at the overhead projector provided an
opportunity for Mr. Hernandez, as well as several students, to model high-level per-
formance and to make their thought processes explicit. Finally, throughout all the
discussion of the problems, Mr. Hernandez pressed students to explain their solu-
tion processes. He consistently required students to attach meaning to the symbols
and representations within the context of the problems they were solving. When stu-
dents arrived at a numerical answer, Mr. Hernandez would ask such questions as,
“Can you explain what that number refers to?”

This scenario illustrates the variety of classroom, task, teacher, and student factors
that supported students’ thinking at the level of doing mathematics during the task.
As the task unfolded, Mr. Hernandez was able to orchestrate successfully the com-
plex array of factors needed to maintain the high-level cognitive demands of the task. 

Decline to procedural thinking without connection to meaning. This mathematical
task was embedded in a series of lessons that focused on problem solving. The students
had been introduced to Pólya’s four-step problem-solving process and had worked on
at least one other nonroutine problem before encountering the following: 

For Mother’s Day, Davie, my little brother, Kathy, my younger sister, and I all
contributed money to buy a present for Mom. Davie had saved 80 pennies, 2
nickels, and 1 dime. Kathy gave me 3 half-dollars that she had saved, and I con-
tributed the rest. Actually, with what Davie and Kathy gave me, the 17 coins
in my bank were just enough to make up the total cost of $8.12. What coins
were in my bank? (Meyer & Sallee, 1983, p. 335)

Students began working on this task in small groups near the end of one lesson.
There appeared to be a clear expectation that the students would work collabora-
tively to solve the problem. While the teacher, Ms. Capra, set up the task, she pro-
vided each group with one copy of the problem and one copy of a form listing Pólya’s
four problem-solving steps. Students were instructed to refer to Pólya’s steps as they
solved the problem and to document their work accordingly. The task set-up
encouraged cognitive processes that are consistent with doing mathematics. Solving
the task demanded complex and sustained mathematical thinking and reasoning,
because it could not be solved with well-rehearsed, easily accessible formulas or
procedures. Awareness of the Pólya problem-solving steps also may have encour-
aged self-monitoring and regulation of students’ own thought processes, a hallmark
of high-level thinking. 

During task implementation, students’ cognitive processes declined into procedural
thinking that made little if any connection to understanding or meaning. Students’
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failure to engage in high-level cognitive processes was influenced by a variety of fac-
tors, the foremost being the removal of challenging aspects of the problem. Specifically,
the teacher’s orchestration of students’ engagement with the task in a manner that strictly
followed Pólya’s four-step process channeled their thinking into predetermined path-
ways at the expense of their grappling with the mathematical ideas and processes embed-
ded in the task. Throughout task implementation, Ms. Capra regulated students’
thinking processes by partitioning the task into steps that matched each step of the Pólya
process. First, students were instructed to work on the first Pólya step (understanding
the problem) in their small groups and then to discuss it in a whole-class discussion.
Then they were told to do the same with the second Pólya step (devising a plan). It was
only after completing these initial two steps that students began to work on solving the
problem within their small groups. At any given point in time, students’ work was con-
strained by the products associated with a particular step in the Pólya process. 

Within each of these steps, there was evidence that students were dealing with
Pólya’s ideas at a superficial level. For example, while Ms. Capra and her students
discussed Step 1, understanding the problem, they focused on listing the main facts
of the problem (e.g., Davie contributed 80 pennies, 2 nickels, and 1 dime). They
did not advance to a discussion of the main mathematical features of the problem,
the structure of the relationships among those features, or the goal of the problem.
Similarly, during discussion of Step 2, a label of a strategy was stated (guess and
check), but no discussion took place regarding what the strategy entailed, why it
was an appropriate approach for the present situation, or how to use the strategy. 

The decline into mechanical forms of thinking was also influenced by a focus on
correct answers. In this case, the answer that was judged as correct or incorrect was
not the mathematical solution to the problem, but rather the students’ responses to Pólya’s
four-step process. The “correctness” of students’ responses to each of these steps became
the focus, rather than the validity of their mathematical approach to the problem. 

Finally, the decline of students’ engagement with high-level cognitive processes
was also influenced by lack of time. Task implementation moved very quickly, pro-
gressing from one step to the next with very little time spent on any one aspect of
the problem-solving process. At each step, the students’ small-group discussions
were halted prematurely as specific students were asked to display their responses
to the entire class. Students had only 10 minutes to work on solving the Mother’s
Day problem (Step 3) in their small groups. When Ms. Capra said it was time to
stop, many groups appeared to need and to desire more time. 

Overall, students’ work on this potentially rich task did not progress into mean-
ingful engagement with the mathematical content and processes embedded in the
problem. By fragmenting and channeling students’ thinking, the use of Pólya’s steps
(along with the rushed nature of the class) in this case, led to a mechanical, as opposed
to substantive and creative, engagement with the problem.

Decline to unsystematic exploration. The overall goal of this sequence of lessons was
to have students explore metric area measurement, as well as relationships between lin-
ear and area measurement. Students had previously experienced a series of lessons involv-
ing linear and area measurement with nonstandard units and were just beginning to explore
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metric area measure. One focus of the previous lessons had been on the relationships
among different units of measure in the context of linear versus area measurement.

In the task setup, each group of three or four students received a teacher-made activ-
ity sheet6 explaining that their first task was to build a square meter. They were also
to construct the square meter as efficiently as possible using any of the following mate-
rials (but no scissors): paper, tape, rulers, and base-ten pieces to measure. After con-
structing the square meter, students were to model a square decimeter, a square centimeter,
and a square millimeter in one corner of their square-meter model (placing smaller
squares inside the larger squares). By constructing the square meter themselves, stu-
dents could gain a good sense of the size of the square meter and how its size
related to other metric area units. In addition, students could use their models to explore
other rectangles with the same area (by cutting up and rearranging their square-meter
models). At set-up, the task encouraged students’ engagement in doing mathemat-
ics. In executing the task, students were required to rely on knowledge gained from
their prior measurement experiences and to decide what units of measure and mea-
suring tools to use, given the limitations set by their teacher, Ms. Hoffman. Also, stu-
dents had to make conjectures about how to build the square meter efficiently and accurately
and how to show the relationships among the different-sized squares.

As implementation of the task unfolded, it became clear that even though the stu-
dents were on-task, the cognitive demands of the task were not maintained. As evi-
denced by their construction methods, many groups appeared to be viewing their
squares solely in terms of linear dimensions, with no focus on area units. Many groups
built their models by first constructing four strings of paper each of length 1
meter, then forming a square, and finally filling in the empty space in the middle
(essentially building the entire perimeter first). Also, the students’ lack of engage-
ment in the intended high-level processes was evident in the way many groups inter-
preted the instructions for modeling the smaller metric squares. They seemed to have
missed the point, drawing the smaller squares as isolated models, one inside the other.
Ms. Hoffman intended for students to draw the smaller squares so that each square
shared both area and partial linear dimensions with the squares larger and smaller
than itself (see Figure 5 for an illustration), making visually apparent the relation-
ships among the different metric linear and area measures. 

One reason students failed to engage with the intended processes was the inap-
propriateness of the task with respect to the clarity and specificity of task expecta-
tions, as evidenced by the large amount of time most groups spent completing their
constructions and by the fact that students seemed to need more guidance about what
was expected in terms of how to situate the smaller squares within their square meter
models. Ms. Hoffman could have instructed students to place the smaller square areas
within the larger area so that the relationships among the linear and area measures
would have been evident. This instruction would have provided a little more direc-
tion, while maintaining the cognitive demands of the task at that point. An additional

6The teacher adapted and expanded suggestions in Teacher Activity 109B found in Bennett and Foreman
(1990).
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reason, related to the inappropriateness of the task for this group of students,
appeared to be their lack of prior knowledge needed to attack the problem efficiently.
For example, many students lacked knowledge about relationships among differ-
ent-sized linear dimensions and especially about how linear dimensions could be
related to area. 

Figure 5. “Build a square meter” task (Note. Figures are not drawn to scale)

Another factor that influenced the decline in cognitive demands was that students
may have been given too much time to build their square meters. Students were given
the entire period to complete the activity. If there had been a tighter time limit, some
groups may have been motivated to work more efficiently. Also, since many of the
groups appeared to be floundering with this part of the task, it may have been help-
ful for the teacher to intervene with these groups early in order to help them adopt
a more efficient plan of action.

A final factor that influenced the decline of this task was that some of the math-
ematically challenging aspects of the task were removed or became overshadowed
in the lengthy process of building the square meter. The groups that reached the part
of the task in which they were supposed to draw in the different-sized metric areas
did not seem to be frustrated by it. The ways in which many groups did this (shown
in Figure 5), however, indicated that they did not realize the significance of the place-
ment of these squares. Thus, this part of the task became a nonproblem for the stu-
dents, simply a matter of drawing some different-sized squares inside one another.

Despite the fact that the majority of students were actively engaged in the lesson

An arrangement that illustrates how
the lengths and areas are related

The type of arrangement constructed
by many of the students
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overall, they failed to focus on the important mathematical ideas contained within
this complex and interesting task. Students earnestly tried to engage in doing
mathematics, and the teacher earnestly tried to support the maintenance of the task
at a high level; however, for the majority of students, these efforts were unsuccessful.
The difficulties did not lie in classroom management problems, and the teacher never
shifted the focus to one correct way of doing the task. Instead, the cognitive
demands declined primarily because of several factors related to the appropriate-
ness of the task for the students and the level and kind of guidance they needed to
engage at the level of doing mathematics.

Decline to no mathematical activity. The overall goal of this sequence of the lessons
was to encourage students to use pattern finding to discover properties of two-
dimensional geometric figures rather than to memorize their properties. This partic-
ular task focused on angles and how they can be used to define different types of triangles. 

In the task setup, Mr. Kingsley, the teacher, gave each pair of students a tangram
puzzle consisting of five triangles, one square, and one nonrectangular parallelo-
gram arranged in such a way that the shapes covered the entire area of a square. The
students were also given an activity sheet asking them to systematically explore the
similarities and differences in the angles of the pieces. Students were expected to
(a) identify the two pieces that were the same as (congruent with) other pieces and
eliminate them, (b) record the type of each angle in the remaining five pieces, and
(c) examine and record similarities and differences in the angles across those five
pieces. This systematic exploration was ultimately to result in students’ recogni-
tion that the triangular tangram pieces were right isosceles triangles and that the tri-
angles’ acute angles were congruent with the acute angles in the parallelogram piece.
As set up, the task encouraged students to engage in cognitive processes that are
consistent with doing mathematics, such as discovering important mathematical ideas
through hands-on exploration of patterns, establishing and implementing a systematic
method of recording the results of one’s explorations, and making observations of
similarities and differences across the angles of different geometric figures to
deepen understandings of connections among various geometric shapes.

Students did not make much, if any, progress on this task. They were most involved
with the task when Mr. Kingsley was at their table assisting them and asking them
questions. During the rest of the time, they were only half-interested, sat idle, played
with the tangram pieces in nonmathematical ways, or talked to other students in the
class about nonmathematical topics. 

The students failed to engage in the intended high-level cognitive processes for
a variety of reasons. The foremost reason was the inappropriateness of the task with
respect to the clarity and specificity of the task expectations. Task expectations were
not specific enough to guide students toward discovering the relevant mathemat-
ical properties. The lack of specificity was especially problematic because the stu-
dents lacked the relevant prior knowledge needed to make effective comparisons
and differentiations. For example, students’ inability to distinguish acute, obtuse,
and right angles hindered their efforts to record systematically and generalize
their findings. As a result, most students played around with a few comparisons but
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failed to make progress systematically in discovering the ways in which all the tri-
angles were similar. 

Another factor that led to a decline in the cognitive demands on the students was
classroom management problems. At the beginning of the implementation phase,
some of the students needed pencils, others needed recording sheets to record the
information they discovered, and still others were working or playing with the tan-
gram pieces. Throughout the task, a significant subset of students wandered freely
around the room, visiting with their friends. Many students appeared to be engag-
ing in off-task behaviors because they were unsure how to proceed with the task.

The final factor that contributed to the decline in the level of students’ engage-
ment with this task during the implementation phase was the amount of time that
students were allowed to flounder. Despite the fact that little progress was being
made, students were allowed to continue work on this task for 38 minutes. The amount
of off-task behavior increased steadily during this time as students appeared to reach
the conclusion that they could not work effectively on the task. 

Overall, the decline into lower levels of student engagement with this potentially
rich task was representative of the ways in which other high-level tasks in our data-
base declined into no mathematical activity. In this particular case, classroom man-
agement and timing problems appeared to be closely intertwined with the problem
of mismatch between the cognitive demands of the task and students’ prior knowl-
edge. Although both the lack of attention to appropriate tasks and the recording sys-
tems that contributed to the management problems appeared from the outset of the
task, it was difficult to discern which of these problems came first.

SUMMARY AND CONCLUSIONS 

At the outset of the study, we sought to address three areas: (a) to provide a pro-
file of factors associated with tasks that were set up to engage students in cogni-
tive processes at the level of doing mathematics and that did engage students in high-level
thinking and reasoning, (b) to describe factors influencing the three characteristic
patterns of decline in students’ engagement with high-level cognitive processes, and
(c) to provide detailed qualitative portraits from our database to illustrate all four
patterns and the profiles of factors associated with them.

Our findings suggest that there was a discernible set of factors influential in assist-
ing students to engage at high levels. These included factors related to the appropri-
ateness of the task for the students and to supportive actions by teachers, such as scaffolding
and consistently pressing students to provide meaningful explanations or make mean-
ingful connections. These findings have implications for the role of the teacher in reform
classrooms, in which students are expected to be actively engaged in doing mathematics.
Not only must the teacher select and appropriately set up worthwhile mathematical tasks,
but the teacher must also proactively and consistently support students’ cognitive activ-
ity without reducing the complexity and cognitive demands of the task. 

Students’ engagement with tasks that declined to lower levels of cognitive
activity happened in different ways and for different reasons. For each of the
three patterns of decline, we were able to identify a set of predominant classroom-
based factors that contributed to the decline in the cognitive demands of the tasks;
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however, there was variation in how sharply distinguishable the factor profiles were
across decline patterns. 

The least readily identifiable factor profile was associated with decline to unsys-
tematic exploration, a pattern that was not anticipated in our initial coding system.
In this pattern, the students earnestly attempted to remain faithful to the setup of
the task at the level of doing mathematics and teachers made attempts to support
high-level engagement, but students were ultimately unsuccessful with respect to
performing at a high level and engaging with the important mathematical ideas in
the task. As we pointed out earlier, the lack of a crisp factor profile associated with
this pattern may be due to inadequacies in our factor categories. Unlike the other
two patterns that reflected a decline from doing mathematics to some other specific
level of students’ engagement with cognitive processes, this pattern declines from
doing mathematics, but does not reflect a decline to a readily identifiable level of
students’ cognitive activity. We speculate that as teachers and students become more
confident and more willing to take risks with the kinds of tasks that aim to engage
students in doing mathematics, this type of decline pattern might become more preva-
lent than other types of decline in students’ engagement. This conjecture is an empir-
ical question that may warrant further investigation.

Across all three patterns there was one factor, the appropriateness of the amount
of time (either too little or too much) allotted for the task, that appeared as a pre-
dominant influence; however, this factor appeared to function differently in each
of the three decline patterns. In agreement with research on students’ engagement
with academic tasks, these findings suggest that planning for appropriate amounts
of time and flexibility with timing decisions may play an important role in avoid-
ing decreases in the level of cognitive activity engaged in by students as tasks unfold
in the classroom (Doyle, 1986). Two other factors, removal of challenging aspects
of the task and inappropriateness of the task for a variety of reasons (e.g., lack of
interest, motivation, knowledge, or unclear task expectations), were each judged
to be predominant influences in two of the three decline patterns. The prevalence
of these factors as influences in students’ declining cognitive activity has also been
found by other researchers (Bennett & Desforges, 1988; Doyle, 1983, 1986).

The results enabled us to examine also factors that were not judged to be influ-
ential in the three characteristic patterns of decline in students’ engagement. We found
that classroom management problems were a predominant influence in only one of
the three characteristic patterns: decline to no mathematical activity. In the other
two patterns combined, classroom management was an influential factor in the decline
of only one task, a finding that seems to be at odds with the more general literature
on academic tasks; this literature suggests that classroom management problems
often affect the implementation of high-level tasks (Doyle, 1988). Future research could
investigate more deeply the variations in how classroom management did or did not
influence the different patterns of decline in the tasks available in our database.

The use of real classroom-based scenarios to illustrate empirically generated pat-
terns of students’ engagement can be seen as similar to the use of cases to illumi-
nate general principles. More generally, within the field of research on teaching,
Shulman (1986) has discussed the need for the development of specific cases that
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are connected to more general principles of instruction. According to Shulman, such
cases are useful because they connect to the complex world of everyday practice
and also to a larger set of ideas about instruction. These larger ideas have the dis-
advantage of being abstract, but at the same time, they have the advantage of being
more generalizable. When cases are selected or developed to illustrate principles
or ideas, the resultant product has the advantage of being not only an interesting account
of practice, but also a case of a particular principle. By being related to larger sets
of ideas, the cases become more meaningful, more “connectable” to other impor-
tant ideas, and more powerful as a guide for future research or practice. 

In this study, the patterns of student engagement and profiles of influential fac-
tors, although not principles, did provide a coherent framework within which the
qualitative portraits could be interpreted. Students’ engagement patterns and the fac-
tor profiles had certain qualities of abstraction and generalizability because they had
been suggested by patterns of findings from an earlier empirical investigation. When
portraits are placed into this larger conceptual space, their meanings become more
readily apparent. Individual actions of teachers and students can be interpreted within
a frame of reference that includes more general notions of pedagogy and the
development of mathematical understandings by students. 
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