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tivities had two components. The first, Gender Issues, was 
presented by Nouzha el Yacoubi and Daouda Sangaré. The 
second took the form of a tale written by Valerio Vassallo 
and related by him and Sidi Bekaye Sokona. This tale ac-
companied the exhibition “Balls and Bubbles” whose nine 
panels had been brought to Bamako. In addition, 15 DVDs 
of the film “Dimensions” was provided by Etienne Ghys 
and extracts were projected on the last half-day. EdiMaths 
was covered by Malian television and the Mali Minister of 
Education was present at the opening ceremony.

EdiMaths follow-up includes a regional network web-
site, publication of the country reports and the formation 
of a regional community that plans to hold a second Edi-
Maths meeting in 2012 in Dakar.

EDiMaths was made possible by the support of 
UNESCO, the IMU, the ICMI, the International Center of 
Mathematics Pure and Applied (CIMPA), the SCAC of the 
Embassy of France in Mali, the University Joseph Fourier 
in Grenoble and the substantial support of the Ministre de 
l’Education, de l’Alphabétisation et des Langues Nation-
ales. In addition, the FAST of the University of Bamako 
gracefully placed at the disposal of EDiMaths an amphi-
theatre for the opening ceremony and a big room and a 
computer room, as well as ensured wifi access to the inter-
net for the participants. The Director of the Department of 
Mathematics provided further office space.

We are seeking sponsors for ongoing funding for fu-
ture programmes in the Capacity & Networking Project. 
We hope that others will join the ICMI/IMU community 
in this major international initiative in the mathematical 
sciences in the developing world. 

Technology and teaching of mathematics  
Work on this topic comprised two parts, the first related 
to the use of the Geogebra software for the teaching of al-
gebra and functions, the second related to probability and 
the use of Maple software. The majority of the partici-
pants had not used either of these programs before so the 
meetings combined mathematical work, didactic reflec-
tion and initiation guided by this software. The topic was 
led by Morou Amidou (Niger) and Moustapha Sokhna 
(Senegal) for the Geogebra meetings and by Morou Ami-
dou and Pierre Arnoux for the probability section. 

Transverse topics corresponding  
to regional priorities  
Four topics were selected for this part: local numbering 
systems and their influence on the teaching of number 
and operations in the region, teaching with large groups of 
pupils, the evolution of curriculum reforms involving the 
competency approach, and taking multilingualism into ac-
count in the teaching of mathematics. The discussions on 
each topic were prepared and controlled by Kalifa Traore, 
Patricia Nebout, Mustapha Sokhna, Sidi Bekaye Sokona, 
Mamadou S. Sangaré and Mamadou Kanouté. 

In all sections, and in keeping with the philosophy 
of “practising what we preach”, the sessions were a mix 
of groups and formal presentations, with a considerable 
amount of interaction amongst participants.

The development of communities of practice was fo-
cused on reports prepared by each country into their teach-
er education practices. Subsequent CANP programmes 
will build this collection of national reports. Promotion ac-
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One of the goals of teaching mathematics is to commu-
nicate the purpose and nature of mathematical proof. 
Jahnke (2008) pointed out that, in everyday thinking, the 
domain of objects to which a general statement refers is 
not completely and definitely determined. Thus the very 
notion of a “universally valid statement” is not as obvi-
ous as it might seem. The phenomenon of a statement 
with an indefinite domain of reference can also be found 
in the history of mathematics when authors speak of 
“theorems that admit exceptions”. 

This discrepancy between everyday thinking and 
mathematical thinking lies at the origin of problems that 
many mathematics teachers encounter in their class-
rooms when dealing with a universal claim and its proof. 
The solid finding (the term “solid finding” was explained 
in the previous issue of this newsletter) to be discussed 
in this article emerged from results of many empirical 
studies on students’ conceptions of proof. In a simplified 

formulation, the finding is that many students provide ex-
amples when asked to prove a universal statement. Here 
we elaborate on this phenomenon.

Universality refers to the fact that a mathematical claim 
is considered true only if it is true in all admissible cases 
without exception. This is contrary to what students meet 
in everyday life, where the “exception that confirms the 
rule” is pertinent. It is therefore not necessarily surprising 
that many students simply provide examples when asked 
to prove a universal mathematical claim, such as showing 
that the sum of any five consecutive integers is divisible by 
5. Indeed, considerable evidence exists that many students 
rely on validation by means of one or several examples to 
support general statements, that this phenomenon is per-
sistent in the sense that many students continue to do so 
even after explicit instruction about the nature of math-
ematical proof, and that the phenomenon is international 
and independent of the country in which the students learn 
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mathematics (Harel and Sowder, 2007). A student who 
seeks to prove a universal claim by showing that it holds in 
some cases is said to have an empirical proof scheme. The 
same student is also likely to expect that a statement, even 
if it has been ‘proved’, may still admit counterexamples. 
The majority of students who begin studying mathematics 
in high school have empirical proof schemes and many stu-
dents continue to act according to empirical proof schemes 
for many years, often into their college mathematics years. 
For example, Sowder and Harel studied the understand-
ing, production and appreciation of proof by students who 
had finished an undergraduate degree in mathematics. 
Their findings indicate the appearance of empirical proof 
schemes among such graduates and also how difficult it is 
to change these schemes through instruction. For example, 
one student insisted on the use of numerical examples as a 
way of proving the uniqueness of the inverse of a matrix. 

Some mathematics teachers also hold empirical proof 
schemes. For example, after explicit instruction about the 
nature of proof and verification in mathematics, Martin 
and Harel (1989) presented four statements, each with a 
general proof and with a ‘proof’ by example to a group of 
about 100 pre-service elementary teachers. An example 
of one of the statements was: “If c is divisible by b with re-
mainder 0 and b is divisible by a with remainder 0, then c 
is divisible by a with remainder 0.” Fewer than 10% of the 
students consistently rated all four ‘proofs by example’ as 
invalid. Depending on the statement, between 50% and 
80% of the pre-service teachers accepted ‘proofs by ex-
ample’ as valid proofs – just about the same number as 
accepted deductive arguments.

While the issue of empirical proof schemes has been 
mentioned by Polya and others, Bell (1976) may have 
been the first to report an empirical study about students’ 
proof schemes. Bell identified what he called students’ 
“empirical justifications” and gave illustrations. Balacheff 
(1987) later pointed out at least two subcategories of em-
pirical proofs: naïve empiricism and crucial experiment. 
Naïve empiricism means checking specific cases, often a 
few cases or the ‘first few’ cases; it may include systematic 
checking. Crucial experiment, on the other hand, uses one 
supposedly ‘general’ case, say a large number; the idea be-
hind the crucial experiment is that such a large number 
represents ‘any number’ and, hence, if ‘it’ works for this 
number then ‘it’ will work for any number. 

Fischbein (1982) investigated the notion of universality. 
He showed that only about a third of a rather large sample 
of Israeli high school students reasoned according to uni-
versality. He showed that even students who claimed that 
a specific given statement is true, that its proof is correct 
and that the proof established that the statement is true in 
general, thought that a counterexample to the statement 
was possible and required more examples to increase their 
confidence. The issue of universality has been re-examined 
many times, usually with similar results. For example, when 
presented with an empirical argument, only 46% of a sam-
ple of German senior high school students recognised that 
this argument was insufficient for proving the statement. 
High school students in U.S. geometry classes were found 
to employ empirical proof schemes and did not seem to 

appreciate the differences between empirical and deduc-
tive arguments. Also in the U.S., university bound students 
at the end of a college preparatory high school class em-
phasising reasoning and proof provided an example when 
asked to prove a simple statement from number theory.

It may be less surprising that in junior high school, 
about 70% of students used examples when asked to 
prove something (Knuth, Slaughter, Choppin and Suth-
erland, 2002), especially in view of the fact that a majority 
of teachers investigated also showed a strong use of em-
pirical proof schemes, identifying examples as being more 
convincing than other proof schemes.

Empirical proof schemes may be a consequence of 
students’ experiences outside of mathematics classes. 
Mathematical thought concerning proof is different from 
thought in all other domains of knowledge, including the 
sciences as well as everyday experience; the concept of 
formal proof is completely outside mainstream thinking. 
Teachers of mathematics at all levels (mathematicians, 
mathematics educators, schoolteachers, etc.) thus require 
students to acquire a new, non-natural basis of belief when 
they ask them to prove (Fischbein, 1982). We all need to 
be acutely aware of this situation.

The studies mentioned above firmly establish the ro-
bustness of the phenomenon, i.e. the existence and the 
widespread nature of empirical proof schemes, although 
the following studies show that the situation is, as always in 
mathematics education, complex. One of the results of the 
London proof studies (see, for example, Healy and Hoyles , 
2000) was that even for relatively simple and familiar ques-
tions the most popular approach was empirical verifica-
tion, adopted by on average 34% of the students, with a 
much higher percentage for harder questions. This result 
should be considered significant since the study included 
a sample of 2,459 14–15 year old, high-attaining (rough-
ly the top 25%) students from 94 classes across England 
(1305 girls and 1154 boys). Nevertheless, the authors con-
cluded that even though the students appeared unable to 
construct completely valid proofs, many correctly incorpo-
rated some deductive reasoning into their proofs and most 
valued general and explanatory arguments. Additionally, 
these studies found that significantly more students were 
able to recognise a correct proof than to write one and, 
crucially, they made different selections depending on two 
criteria for choice: whether it was their own approach or 
to achieve the best mark. In the number/algebra questions, 
for best mark, formal presentation (using letters) was by 
far the most popular choice with empirical argument cho-
sen infrequently. The opposite was the case for students’ 
own approaches, with empirical or prose-style answers 
much more popular than formal responses. A similar 
though less clear-cut pattern was reported for geometry, 
with ‘pragmatic’ arguments more popular for their own ap-
proach but not for achieving the best mark.

Another result, according to which many students do 
not grasp the universality notion, is the opacity of the no-
tion of “logical consequence”, which is a basic ingredient 
in proving activities. For example, many students of dif-
ferent ages, when asked to check the validity of the fol-
lowing two “syllogistic” arguments: 
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a) From the sentences “no right-angled triangle is equi-
lateral” and “some isosceles triangles are equilateral”, 
it follows that “some right-angled triangles are not 
isosceles”;

b) From the sentences “no dog is ruminant” and “some 
quadrupeds are ruminant”, it follows that “some dogs 
are not quadrupeds”;

answer that a) is correct while b) is not and justify their 
answer by observing that while the three sentences in a) 
are all true, the last one in b) is false (Lolli, 2005). How-
ever the two arguments are logically equivalent.

In summary, the research studies mentioned above 
(and it would be possible to cite many more with similar 
results) underline the phenomenon that students’ major 
approach to proving is based on empirical proof schemes. 
This raises a more general issue with respect to research 
in mathematics education (and more generally in the so-
cial sciences); are some, or even many, examples sufficient 
to make a finding solid? Or do we err in using an “em-
pirical proof scheme” to establish a solid finding in math-
ematics education? We begin answering this question by 
noting that ‘argument’ in the social sciences, including 
mathematics education, is not equivalent to ‘proof’ in 
mathematics. Mathematics and mathematics education 
have much in common but the latter makes statements 
on human beings, in particular on students, teachers and 
teacher educators. This means that mathematics educa-
tion is a complex interdisciplinary field where, in addition 
to mathematical issues, pedagogical, psychological, social 
and cultural issues also play crucial roles.

Anyway, as mathematicians and mathematics educa-
tors we might ask whether our solid finding, namely that 
students’ major approach to proving is based on empirical 
proof schemes, has a general explanation? One hypothesis 
is the following. Students’ specific problems with regard to 
proving are part of a more general challenge: to make a 
distinction between reasoning in mathematics and reason-
ing in everyday life. As mathematicians and mathemat-
ics educators, we have learned to flexibly switch between 
these two “worlds”. However, students, in particular young 
children, have little experience with mathematics as a won-
derful world with its own objects and rules. They need time 
and support to understand this new world. This is true in 
particular with respect to the nature of proving which has 
quite different meanings in mathematics and everyday life. 
From this point of view, it is very well understandable that 
students, when entering a new field, start using the meth-
ods they have successfully used so far. Don’t we also fre-
quently use such a strategy? Shouldn’t students’ so-called 
‘misconceptions’ and ‘errors’ be regarded under this new 
light? Can such ‘errors’ still be regarded as individual defi-
ciencies? Are they not, at least in part, due to an unavoid-
able and hard to overcome obstacle on the path of every 
learner of mathematics, an epistemological obstacle, an in-
evitable challenge that any learner has to face, namely the 
gap between everyday life and mathematics?

In mathematics education research we know many 
other manifestations of this obstacle, for example the 
Rosnick-Clement-phenomenon (Rosnick and Clem-
ent, 1980): when asked to algebraically express that in a 

certain college, there are six times as many students as 
there are professors, using the variables S and P, the vast 
majority of students write 6S = P rather than 6P = S. Re-
garding S and P as variables representing the numbers of 
students and professors, respectively, the sentence 6P = S 
represents that one should multiply the number of pro-
fessors P by six in order to get the number of students S. 
However, students – influenced by everyday life – regard 
S and P as objects rather than as variables, and from that 
point of view writing 6S = P is correct since it represents 
that 6 students correspond to one professor. Similarly, we 
write 1 euro = 100 cents (not a mathematical equation!) 
but we would need to write the mathematical equation 
100E = C in order to indicate that we need to multiply 
the number of euros by 100 in order to get the number of 
cents. In everyday life we rarely write 100E = C. In math-
ematics classrooms, however, the students need to learn 
that in this particular case everyday life and mathemat-
ics have opposite ways of expressing a similar situation. 
This and similar situations make mathematics education 
challenging!

It is our task as teachers, teacher educators and mathe-
maticians to find ways of supporting students to overcome 
the challenge of recognising the differences between 
mathematics and everyday life. The special case of prov-
ing makes students’ challenges regarding the relationship 
between everyday life and mathematics very visible. But 
it also probably shows that “errors” of individual students 
might have their roots in a much more general challenge. 
Hence we need to propose forms of proof (Dreyfus, Nardi, 
and Leikin, in press) that might support students in mak-
ing the transition from empirical arguments to valid proofs 
and to investigate how such progress might be achieved. 
This transition includes experiencing a need for general 
proof, for a proof that covers all cases included in a univer-
sal statement. It also includes grasping that and why ex-
amples do not constitute proof in mathematics. The transi-
tion process also includes acquiring an ability to produce 
proofs that are not example-based. Research points to the 
transition process from empirical to conceptual proof in 
terms of learning how to “switch” toward the use of more 
formal mathematics (Leng, 2010). Students have to feel a 
need for general proof and make the transition to general 
patterns of mathematical reasoning, possibly grounded in 
but not relying exclusively on evidence from examples. 

Concerning the need for proof, some researchers have 
suggested approaches that focus on how teachers can 
foster students’ intellectual need (Harel, 1998), whereas 
others have focused more on task design that generates a 
psychological need for proof (Dreyfus and Hadas, 1996). 
For example, students are likely to accept the statement 
that the three angle bisectors of a triangle meet in a single 
point as natural and hence in no need of proof or explana-
tion. However, students may be prepared by first investi-
gating the angle bisectors of a quadrilateral and realising 
that only in special cases do they intersect in a single point. 
Students may be further prepared by investigating possi-
ble mutual positions of three lines in a plane, seeing that 
they may but need not intersect in a single point. Students 
asked to investigate the angle bisectors of a triangle after 
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such preparation are less likely to expect them to intersect 
in a single point and are often surprised that they do in-
tersect in a single point for any triangle whatsoever. This 
surprise easily leads to the question of why this happens 
and hence to a need for proof.

Concerning the transition to general proof, some re-
searchers have recommended exploiting generic examples 
for facilitating the transition (e.g. Malek and Movshowitz-
Hadar, 2011). A generic example exemplifies the general 
proof argument using a specific case. For example, a ge-
neric example for proving that the sum of any five con-
secutive integers is divisible by five might run as follows: 
“Let’s, for example, take 14+15+16+17+18. The middle 
number is 16; the number before it, 15, is smaller than 16 
by 1; the number after it, 17, is larger than 16 by 1; together 
these two, 15 and 17, equal 2 times 16. Similarly, the first 
and the last number, 14 and 18, together equal 2 times 16; 
hence altogether, we have 5 times 16, which is clearly di-
visible by 5. A similar procedure can be carried out for any 
five consecutive integers.” 

Others have presented evidence that letting students 
come up with and formulate conjectures themselves may 
support proof production by creating a cognitive unity be-
tween conjecture and proof (Bartolini Bussi, Boero, Ferri, 
Garuti and Mariotti, 2007). Still others contend that care-
fully designing a transition from argument to proof holds 
some potential. This transition is particularly delicate 
when more sophisticated types of proofs are concerned, 
such as proofs by contradiction and proofs by mathemati-
cal induction. Generally, students’ mistakes in such cases 
are found largely to be manifestations of deficient proof 
schemes. It seems that pushing students’ intellectual need 
for proof and supporting the development of specific proof 
schemes in the classroom (e.g. the so-called transforma-
tional one, see Harel and Sowder, 2007) can help students 
in approaching more advanced forms of proof.

Finally, the method of scientific debate in the class-
room has been proposed, implemented and investigated. 
During scientific debates, students formulate conjectures, 
which they consider scientifically grounded; the lecturer 
does not express an opinion on their correctness but man-
ages a debate with the objective of collectively building a 
proof. Such debates have been organised for many years 
in France and their consequences have been analysed 
(Legrand, 2001). Compared to traditional lectures, such 
arguments have been found to change the attitudes of stu-
dents towards mathematics, leading them to experience 
the need for proof. 

In summary, while the findings about students’ empiri-
cal proof schemes are solid, the evidence about the transi-
tion from empirical to general proof schemes is based on 
limited evidence collected in suitable environments. This 
leaves many questions open for further research.
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Additional information
A slightly expanded version of this article with a more 
complete list of references may be found on the web at 
http://www.euro-math-soc.eu/comm-education2.html.

References
Balacheff, N. (1987). Processus de preuve et situations de validation 

[Proof processes and situations of validation]. Educational Studies in 
Mathematics, 18, 147–176.

Bartolini Bussi, M., Boero, P., Ferri, F., Garuti, R., and Mariotti, M. A. 
(2007). Approaching and developing the culture of geometry theo-
rems in school: A theoretical framework. In P. Boero (Ed.). Theorems 
in school – From History, Epistemology and Cognition to Classroom 
Practice (pp. 211–218). Rotterdam, the Netherlands: Sense Publish-
ers.

Bell, A.W. (1976). A study of pupils’ proof-explanations in mathematical 
situations. Educational Studies in Mathematics, 7, 23–40.

Dreyfus, T., and Hadas, N. (1996). Proof as answer to the question why. 
Zentralblatt für Didaktik der Mathematik, 28, 1–5.

Dreyfus, T., Nardi, E., and Leikin, R. (in press). Forms of proof and prov-
ing in the classroom. In M. de Villiers and G. Hanna (Eds.), Proof 
and proving in mathematics education – the 19th ICMI study. New 
York, NY: Springer, NISS series, Vol. 19.

Fischbein, E. (1982). Intuition and proof. For the Learning of Mathemat-
ics, 3(2), 9–18.

Harel, G. (1998). Two dual assertions: The first on learning and the sec-
ond on teaching (or vice versa). American Mathematical Monthly, 
105, 497–507.

Harel, G., and Sowder, L. (2007). Toward comprehensive perspectives 
on the learning and teaching of proof. In F. K. Lester, Jr. (Ed.), Sec-
ond handbook of research on mathematics teaching and learning (pp. 
805–842). Greenwich, CT: Information Age.

Healy, L., and Hoyles, C. (2000). A Study of proof conceptions in algebra. 
Journal for Research in Mathematics Education, 31, 396–428. 

Jahnke, H. N. (2008). Theorems that admit exceptions, including a remark 
on Toulmin. ZDM – The International Journal on Mathematics Edu-
cation, 40, 363–371.

Knuth, E. J., Slaughter, M., Choppin, J., and Sutherland, J. (2002). Map-
ping the conceptual terrain of middle school students’ competencies 
in justifying and proving. In S. Mewborn, P. Sztajn, D. Y. White, H. G. 
Wiegel, R. L. Bryant and K. Nooney (Eds.), Proceedings of the 24th 
Meeting for PME-NA, Vol. 4 (pp. 1693–1700). Athens, GA.

Legrand, M. (2001). Scientific debate in mathematics courses. In D. Hol-
ton (Ed.), The teaching and learning of mathematics at university 
level (pp. 127–136). Dordrecht, the Netherlands: Kluwer.

Leng, M. (2010). Preaxiomatic mathematical reasoning: An algebraic ap-
proach. In G. Hanna, H. N. Jahnke and H. Pulte (Eds.), Explanation 
and proof in mathematics: Philosophical and educational perspec-
tives (47–57). New York, NJ: Springer.

Lolli, G. (2005). QED Fenomenologia della dimostrazione. Torino: Bor-
inghieri.

Malek, A., and Movshovitz-Hadar, N. (2011). The effect of using trans-
parent pseudo-proofs in linear algebra. Research in Mathematics 
Education, 13, 33–58.

Martin, G., and Harel, G. (1989). Proof frames of preservice elementary 
teachers. Journal for Research in Mathematics Education, 20, 41–51.

Rosnick, P., and Clement, J. (1980). Learning without understanding: The 
effect of tutoring strategies on algebra misconceptions. The Journal 
of Mathematical Behavior, 3, 3–27




