

1	h T	he	R	ar	e l	Ea	rth	n E	Ele	m	en	ts	(F	RE	E)		18 2 He
2	1.0079 2 3 4 Li Be											13 5 B	6 C	15 7 N	16 ⁸	9 F	4.0026 10 Ne
з	6.941 9.0122 11 12 Na Mg											10.811 13 AI	12.011 14 Si	14.007 15 P	15.999 16 S	18.998 17 CI	20.18 18 Ar
	22.99 24 305	3	4	5	6	7	8	9	10	11	12	26.982	28.086	30.974	32.066	35.453	39.948
4	19 20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	K Ca	Sc	Ti		Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	39.098 40.078	44.956	47.88	50.941	51.996	54.938	55.847	58.933	58.693	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.8
5		33 V					-		n.			4.5		Con.		<u>.</u>	
	RD SF	Ŷ	-2r	ND	WO	IC	Ru	RN	Pa	Ag	Ca	In	sn	SD	Te		Ae
	85.468 87.62 55 56	88.906 57	91.224	92.906	95.94 74	(97.91) 75	101.07	102.91	106.42	107.87	112.41	114.82 81	118.71	121.76 83	127.6 84	126.9 85	131.29
6	Cs Ba	La	Hf	Та	w	Re	Os	Ir	Pt	Au	На	т	Pb	Bi	Po	At	Rn
	132.01 127.33	138.91	118.49	190.95	183.84	186.21	100.23	192.22	195.09	196.97	200.59	204 39	207.2	208.98	(209)	(210)	(222)
-	87 88	89	104	105	106	107	108	109	110	111	112	204.00	201.2	1200.00	[[205]	(210)	[[222]
<u>^</u>	Fr Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub						
	(223) (226)	(227)	261.1)	(262.1)	(263.1)	(262.1)	(265.1)	(266.1)	(269)	(272)	(277)						
												-					
	Г	50	Inc	100	24	lan.	100	10.4	lon.	100	les.	100	lan	170	24		
1	Lanthankto	58	59	00	-	02	03	04	05	00	07		69	10			
	Series	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu		
1		140.12	140.91	144.24	(144.9)	150.36	151.97	157.25	158.93	162.5	164.93	167.26	168.93	173.04	174.97		
	Actinide	Th	De		hlm	Des	A	0	PL	~	5.0	Em	D.C.	NIa	1	-	
	Serles	In	Pa	0	мр	Pu	Am	Cm	BK	Cr	ES	Pm	wid	NO	Group Le	gend .	
		232.04	231.04	238.03	(237)	(244.1)	(243.1)	(247.1)	(247.1)	(251.1)	(252.1)	(257.1)	(258.1)	(259.1)	Alkali N Alkali E Metal Trans. 1	Met.	Actinides Lanthanides Non-metal Halogen ias

Comp		data (data	a in ppm)	iunte abundances
REE	Chondrite	Kilauea	Kilauea/Chondrite	
La	0.31	9.05	29.19	
Ce	0.808	22.4	27.72	
Pr	0.122	3.09	25.33	
Nd	0.600	15.6	26.00	
Sm	0.195	4.02	20.61	Divide sample by
Eu	0.0735	1.40	19.04	chondritic abundance
Gd	0.259	4.36	16.83	
Tb	0.0474	0.72	15.19	
Dy	0.322	3.93	12.20	
Но	0.0718	0.77	10.72	
Er	0.210	1.91	9.095	
Yb	0.209	1.58	7.55	
Lu	0.0322	0.22	6.83	

Garnet concent	rates the	HREE	and frac	ctionate	es among	, them	
Thus if garnet i	s in equ	ilibrium	with th	e partia	l melt (a	residua	1
phase in the sou	irce left	behind)	expect	a steep	(-) slope	e in REE	and
HREE	Tab	l e 9-1 . Pa	rtition Co	efficients	for some	commonly	used
		trac	e element	s in basa	Itic and and	lesitic rock	S
		Olivine	Орх	Срх	Garnet	Plag	Amph
	Rb	0.006	0.02	0.04	0.001	0.1	0.3
Shallow (< 40	Sr	0.01	0.01	0.14	0.001	1.8	0.57
Irm) nortial	Ва	0.006	0.12	0.07	0.002	0.23	0.31
km) partial	Ni	14	5	2.6	0.4	0.01	3
melting of the	Cr	2.1	10	8.4	0.17	10	1.6
mantle will have	La o	0.007	0.02	0.08	0.05	0.14	0.27
	Ce tu	0.009	0.02	0.34	0.05	0.14	0.34
plagioclase in	Nd	0.009	0.05	0.6	0.07	80.0	0.19
the resuduum	Sm 🗒	0.009	0.05	0.9	0.06		0.91
and a Fu	Eu f	0.008	0.05	0.9	0.9	0.1/1.5*	1.01
	Tb 開	0.01	0.05	1	5.6	L 0.03	1.4
anomaly will	Ere	0.013	0.31	1	18	0.08	0.48
result	Yp 🖧	0.014	0.34	0.2	30	0.07	0.97
	Lu	0.016	0.11	0.82	35	0.08	0.89
	data froi	n Hendersor	i (1982) *	' Eu ³⁺ /Eu ²⁺	It	<i>alics</i> are es	timated

Element	Use as a petrogenetic indicator
Ni, Co, Cr	Highly compatible elements. Ni (and Co) are concentrated in olivine, and Cr in spinel and clinopyroxene. High concentrations indicate a mantle source.
V, Ti	Both show strong fractionation into Fe-Ti oxides (ilmenite or titanomagnetite). If they behave differently, Ti probably fractionates into an accessory phase, such as sphene or rutile.
Zr, Hf	Very incompatible elements that do not substitute into major silicate phases (although they may replace Ti in sphene or rutile).
Ba, Rb	Incompatible element that substitutes for K in K-feldspar, micas, or hornblende. Rb substitutes less readily in hornblende than K-spar and micas, such that the K/Ba ratio may distinguish these phases.
Sr	Substitutes for Ca in plagioclase (but not in pyroxene), and, to a lesser extent, for K in K- feldspar. Behaves as a compatible element at low pressure where plagioclase forms early, but as an incompatible at higher pressure where plagioclase is no longer stable.
REE	Garnet accommodates the HREE more than the LREE, and orthopyroxene and hornblende do so to a lesser degree. Sphene and plagioclase accommodates more LREE. Eu ²⁺ is strongly partitioned into plagioclase.
Y	Commonly incompatible (like HREE). Strongly partitioned into garnet and amphibole. Sphene and apatite also concentrate Y, so the presence of these as accessories could have a significant effect.
	Table 9-6. After Green (1980). Tectonophys., 63 , 367- 385. From Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall.

