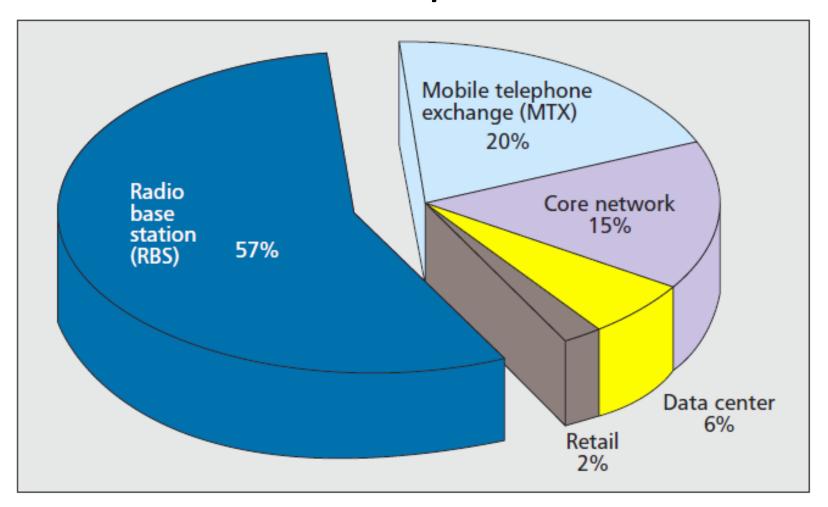
Component and System-Level Energy Saving for femtocells in Future Mobile Heterogeneous Networks

Dionysis Xenakis, Candidate PhD
Department of Informatics and Telecommunications, University of Athens
{nio@di.uoa.gr}

Table of Contents

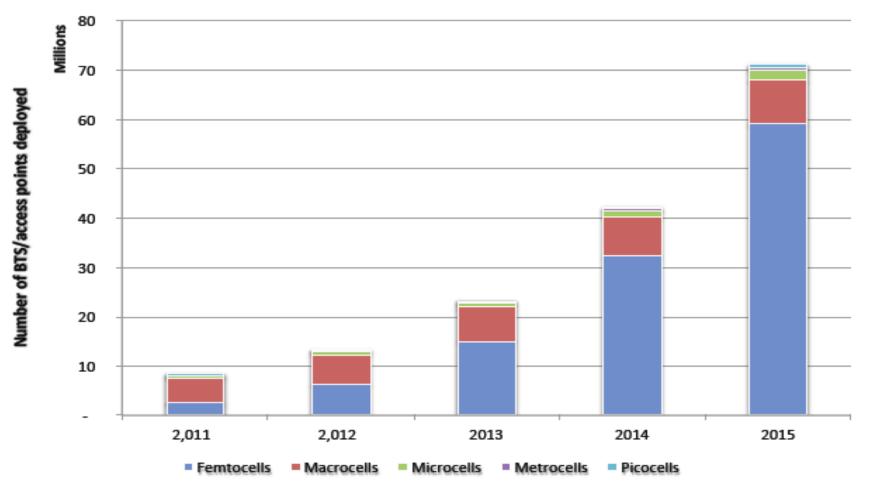
- Component and System Level Energy Saving for femtocells in Future Mobile Heterogeneous Networks
 - Understanding the EE of the mobile operator's network
 - Introduction
 - Energy consumption composition
 - Radio Access Network Energy Saving
 - EE model for outdoor Radio Base Stations
 - Forecasts for cellular deployment
 - Component-level Energy Saving
 - Energy Consumption model for femtocells
 - Component-Level Energy Saving Opportunities
 - System-level Energy Saving
 - Time Domain approaches
 - Frequency Domain approaches
 - Spatial Domain approaches
 - Research Directions

References


- This presentation is based on the following references
 - B. Debaillie, A. Giry, M.J. Gonzalez, L. Dussopt, M. Li,
 D. Ferling, V. Giannini, "Opportunities for energy savings in pico/femto-cell base-stations", 2011
 Future Netw. & Mob. Summit (FutureNetw), vol., no., pp.1-8, June 2011.
 - T. Chen, Y. Yang, H. Zhang, H. Kim, K. Horneman,
 "Network energy saving technologies for green wireless access networks", IEEE Wirel. Comm., vol.18, no.5, pp.30-38, Oct. 2011.

Introduction

- Mobile industry faces a critical energy consumption challenge
 - More wireless infrastructure has to be deployed
 - Smart-phones will exceed 1.82 billion units by 2013
 - Network load increases 10-fold every five years
 - Energy consumption increase of 16-20%
 - Mobile communications contribute 15-20% of the entire ICT energy footprint
 - 0.3-0.4 % of global CO2 emissions
 - Need for energy-efficient wireless networking

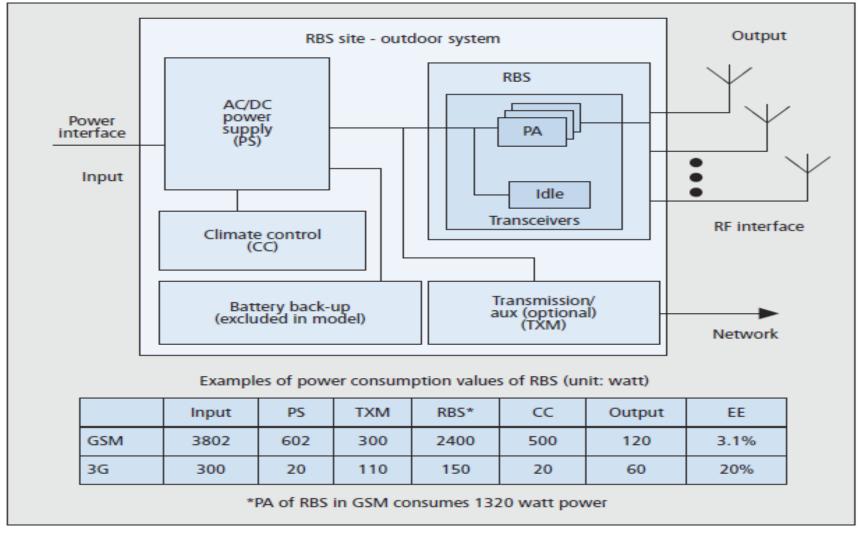

ΠΑΝΕΡΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Energy consumption Composition of a mobile operator

Radio Access Network

- Radio Access Network: The key energy contributor for a mobile operator
- Motivation for focusing on ES for the RAN
 - Wireless standards traditionally focus on maximizing the user throughput
 - Performance trade-offs: Energy Efficiency (EE) vs Throughput
 - Mobile users urgently ask for enhanced EE
 - Enjoy better mobile services and improve their Quality of Experience (QoE)
 - Provides a big energy saving pool
- Key issues
 - How will the cellular RAN evolve?
 - How to model the EE of a RBS?

How will the cellular RAN evolve?

Informa Telecoms & Media, "Small Cell Market Status", Small Cell Forum, Feb. 2012

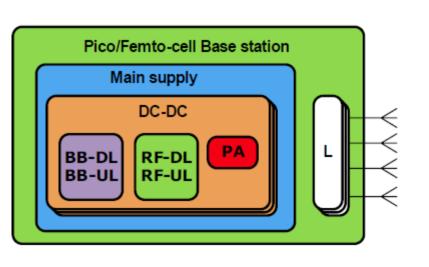

Forecasts for cellular deployment

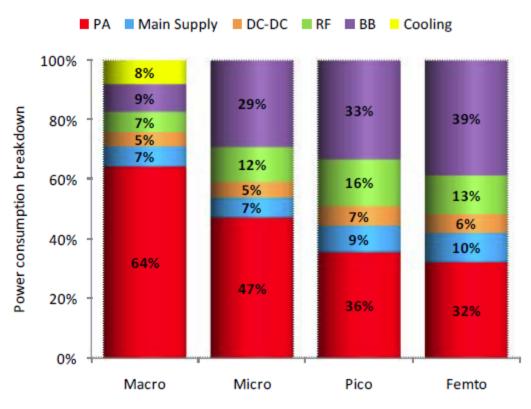
- Femtocell Market Status
 - 10-fold increase in the number of deployed femtocells from 2012 to 2015
 - The number of deployed femtocells will surpass that of deployed macrocells by six times
- ES for femtocells is challenging
 - Femtocells are deployed and managed by the consumer
 - Unplanned deployment
 - Dense and overlapping deployment
 - Plug and play operation self-x operation

How to model the EE of a RBS?

- ETSI EE model for outdoor RBS
 - RBS equipment
 - Serves one or more interfaces to the mobile device
 - Radio transceivers: Responsible for transmission and reception of radio signals, include RF Power Amplifiers (PA)
 - The PA amplifies the signal for transmission via antenna
 - In case of no traffic load, the RBS equipment could enter the idle mode (ES)
 - Support systems for the RBS
 - Power Supply (PS)
 - Connects to the AC power line or battery, and offers electrical energy to the equipment
 - Climate Control
 - Maintains the operating climate of the equipment within a defined range
 - Transmission Module (TXM)
 - Connects the RBS to the core network
 - Battery backup
 - Supplies energy to the RBS when the AC power line is down

ETSI EE model for an outdoor RBS


• EE is defined as the ratio of the radiated to the feeding power

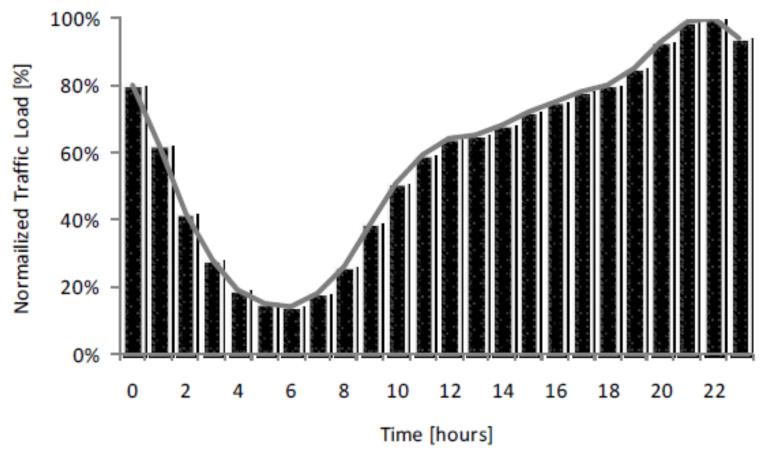

RAN Energy Saving Approaches

- Radio Access Network
 - Energy Saving approaches for femtocells
 - Component-level energy saving
 - Optimize the performance of the various (hardware) components of the femtocell
 - » Digital Baseband Engine, Power Amplifier, Analog RF transmitter, matching network
 - System-level energy saving
 - Modify some of the fundamental network parameters to save energy
 - » Cell bandwidth, number of carriers, number of antennas, Number/density of cellular stations in the network

Component-Level Energy Saving Τηλεπικοινωνιών femtocells

Simplified block diagram of a pico/femto-cell base-station

RBS power consumption breakdown for different cell-sizes

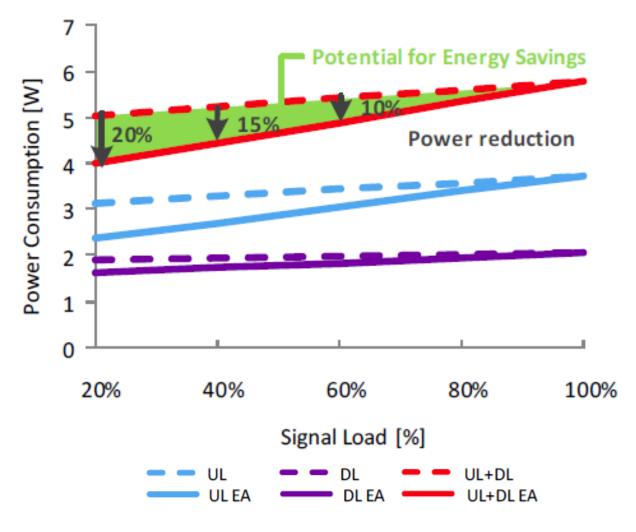


Component-Level Energy Saving Opportunities

- Base-stations are designed for serving high traffic load and achieve their maximum performance
- The daily data traffic profile for cellular systems in a dense urban environment shows high variations
 - The highest utilization is observed between 18.00 and 24.00

Daily (24h) data trāffic profile for cellular systems (Dense urban)

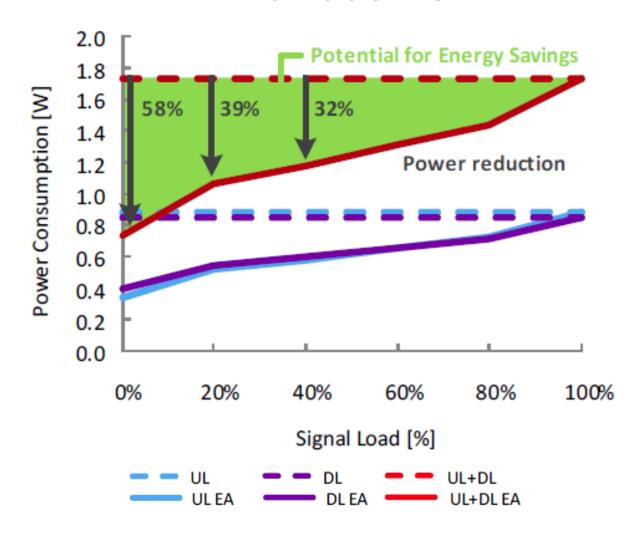
Key idea: Adapt the operation of the various femtocell components with respect to the traffic load



Component-Level Energy Saving: Digital Baseband Engine (DBE)

- DBE functionality
 - Frequency-domain processing for modulation/ demodulation or equalization, channel coding/decoding, pre-distortion, platform control and backbone network serial link
- The energy consumption of the DBE is becoming more and more dominant
 - Due to the shrinking cell size and the rapidly growing signal processing complexity
- Enable energy scalability depending on the signal load
 - Bandwidth, modulation, coding rate, number of antennas, duty-cycling in time or frequency

Component-Level Energy Saving: Digital Baseband Engine



Component-Level Energy Saving: RF Transceiver

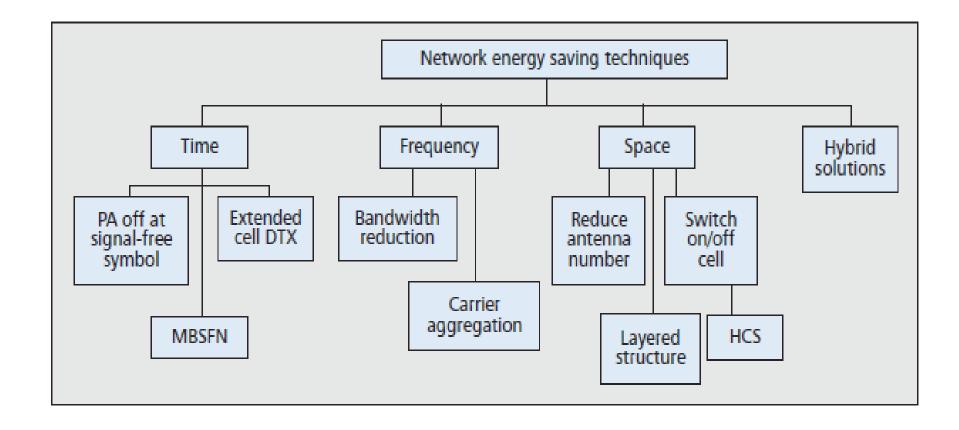
- The RF transceiver of traditional base-stations, targets to achieve the best SiNAD performance independent of the signal load
 - Signal-to-noise and distortion ratio (SiNAD) is a measure of the quality of a signal from a communications device
- Scale the transceiver to provide a 'just good enough' SiNAD performance depending on the current signal load (SDR technology)

πανεπιστημό Αθηνών Component-Level Energy Saving: RF Transceiver



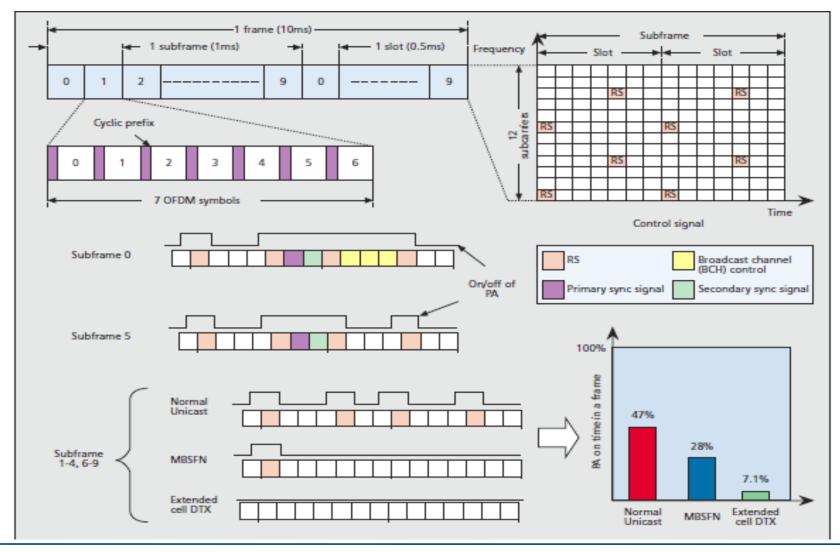
Component-Level Energy Saving: Power Amplifier

- The PA is not the major energy consumption contributor in femtocells
- Adaptive Energy Efficient Power Amplifier
 - Adjust the PA Operating Point
 - The PA operating point can be optimized according to the required RF output power level (traffic load), while fulfilling the spectral mask and PAPR specifications
 - Enable fast switching on/off of the RF power transistor
 - Minimum consumption when no RF output power is required



ΠΑΝΕΠΙΣΤΗΜΉ ΑΘΗΝΩΝ Component-Level Energy Saving: Power Amplifier

 OP5: <20% load, OP4:20%-40% load, OP3: 40%-60% load, OP2: 60%-80% load, OP1: 80%-100% load


System-Level Energy Saving

- Time domain solutions temporally shut down PAs in a RBS when there is no data traffic in the downlink
 - Tightly related to the frame structure of the cellular system
 - Three basic ways to temporally shut down PAs
 - Turning off a PA in signal-free symbols
 - Using a multicast broadcast single frequency network (MBSFN) subframe to reduce RSs
 - Use the extended cell discontinuous transmission (DTX) to further reduce the number of RSs

- PA Off at Signal-Free Symbol
 - Turn off PAs in time periods of a slot where downlink symbols are signal-free
 - Signal-free periods do not include DL RSs and control signals
 - Assuming it takes half of a symbol time to turn on a PA but the PA can be immediately turned off: The PA is only required to be on for at least 47% of the time in a frame

- Utilize the MBSFN frame structure
 - MBSFN is proposed to deliver services such as mobile TV using the LTE infrastructure
 - In an MBSFN frame, the symbols for RS in subframes 1–4 and 6–9 are reduced to 1
 - Use the MBSFN structure to further reduce the number of RSs
 - The PA operating time during a frame is then reduced to 28 percent

- Utilize the Extended Cell DTX mode (3GPP)
 - The extended cell DTX allows to further reduce
 RSs compared to the MBSFN approach
 - If there is no downlink traffic, in the extended cell
 DTX mode there is no need to have any
 transmission in subframes 1–4 and 6–9 of a frame
 - The PA operating time in a frame is further reduced to 7.1 percent

Advantages

- Significantly reduce the PA operation time when a cell is idle (apply better in rural areas)
- Need for joint time-frequency domain scheduling to make them effective in urban areas as well, and only under low traffic conditions

Disadvantages

- Without enough RSs, some UEs may experience unpredictable problems synchronizing with an RBS or decoding control signals
- Reducing RSs may also prevent UE from entering into terminal DTX mode and thus shorten its battery life

System-Level Energy Saving: Frequency domain

- Bandwidth Reduction
 - Existing cellular systems allow for scalable bandwidth utilization
 - Adapt the cell bandwidth depending on the downlink traffic load
 - Lower the overall transmit power and reduce the number of DL RSs
 - This approach is suitable only for low traffic
 - Marginal gains given that the PA is still active

System-Level Energy Saving: Τηλεπικοινωνιών Frequency domain

- Carrier Aggregation
 - Shut down the associated PAs when the corresponding aggregated carriers are not scheduled for the downlink traffic
 - Applicable to an RBS that has aggregated carriers and separate PAs attached to each group of carriers

System-Level Energy Saving: Tylenikolvwylwy Frequency domain

- Advantages
 - Frequency domain approaches are backwards compatible and easy to implement at the RBS
- Disadvantages
 - Can only be deployed for low traffic
 - Result in marginal EE gains

System-Level Energy Saving: Spatial domain

- Time and frequency domain approaches are employed in a single RBS
- Spatial domain the solutions can be extended to heterogeneous networks, and are therefore more flexible
 - Reduce the Antenna Number
 - Switch On/Off Cells
 - Layered Structure (Heterogeneous Networking)

System-Level Energy Saving: Τηλεπικοινωνιών Spatial domain

- Reducing the antenna number
 - The most commonly used energy saving technique in the spatial domain
 - Can be used when the traffic load of a cell is low
 - Advantages
 - Decreases the total output power and shrinks the cell size
 - For example, if the branches of antennas are reduced from 4 to 1, energy consumption of transceivers is reduced to 1/4, as the PAs associated with those branches can be switched off
 - Disadvantages
 - Need to boost the power of RSs and control signals so as to maintain the cell size
 - May lead to service degradation or interruption as the antenna reconfiguration is needed
 - The change of the antenna number should notify UEs properly

Βυικό και Καποδιστριακό ΙΑΝΕΠΙΣΤΗΜΙΟ ΑΘΙΡΊΩΝ System-Level Energy Saving: Spatial domain

- Switch On/Off Cell
 - A system-level approach that works in an area covered by multiple (and overlapping) cells
 - When the traffic load in a given area is low, some cells can be shut down, and the served UE units are handed over to the remaining cells
 - Those inactive cells can be turned on during the busy time autonomously or based on signals by active neighbor cells or from the core network (OAM module)
 - Advantages
 - Attains maximum energy saving
 - No need to modify the low-layer components in the RBS
 - Provides a good balance between network performance and energy saving
 - Limitations
 - Frequent switching on/off cells affects the UE services
 - Reduce the battery life of the served UEs as they have to connect with other cells far away (Reduced network density)
 - If there is no overlapping between cells, the remaining active cells need to increase their power to cover this area, (perhaps) neutralizing the energy saving gain

System-Level Energy Saving: Τηλεπικοινωνιών Spatial domain

- Layered Structure
 - Applies to heterogeneous multi-tier networks
 - Prioritized access to low-power nodes
 - E.g., prioritized access to the femtocell station
 - Advantages
 - Provides energy saving opportunities for the RBS of higher layers
 - More energy consuming in general
 - Prolongs the UE battery lifetime
 - Lower tiers are typically characterized by low-power operation and short cell radii
 - Disadvantages
 - Requires for more sophisticated admission control and mobility management algorithms
 - Lower tiers are characterized by random deployment and short cell radii

System-Level Energy Saving: Hybrid Solutions

- Hybrid solutions
 - Combine solutions in different domains to adapt energy consumption of an RBS in different traffic conditions
 - Achieve the highest ES gain
 - Ask for increased processing/interruption time and signaling for system reconfiguration
 - Need to anticipate their impact on the UE performance

System-Level Energy Saving: Research Directions

- Account for the total energy consumed in the life-cycle of the system
 - Include the energy consumed in the use phase of a system and the energy used to manufacture telecom equipment
- Investigate the impact of introducing any new architecture and device to the overall EE improvement
 - The optimization of EE at one point of the system may lead to suboptimal results at other points
- Attain a good trade-off between optimizing the QoS performance and achieving high energy saving gains
 - The improvement of EE should not compromise the supported QoS

System-Level Energy Saving: Research Directions

- Propose comprehensive energy consumption models
 - Capture the key variables of a system regarding energy consumption while providing sufficient abstraction
- Use appropriate metrics to evaluate the performance of the proposed ES technique
 - The EE metric is normally defined as a performance per unit of energy, and the performance typically refers to throughput
 - Capture the provided QoS by accounting QoS measures other than the end throughput
- Optimize the functionality of the system under a EE perspective
 - The EE problem at the system level can be modeled as a joint optimization problem which takes into account resource allocation in time, frequency and spatial domain

Thanks for your kind attention!

Questions?

Dionysis Xenakis, candidate PhD nio@di.uoa.gr