Propositional Logic

TUTORIAL

Syntax & Grammar

Sentence	ightarrow Ator	micSentence ComplexSentence
AtomicSenter	nce \rightarrow True	e False P Q R
ComplexSent	ence \rightarrow (Set	ntence) [Sentence]
	 Se	entence
	Sent	ence Λ Sentence
	Sent	ence V Sentence
	Sent	ence ⇒ Sentence
	Sent	ence ⇔ Sentence

OPERATOR PRECEDENCE : \neg , \land , \lor , \Rightarrow , \Leftrightarrow

Truth tables for the five logical connectives

Р	Q	¬P	ΡΛQ	PVQ	$P \Rightarrow Q$	P ⇔ Q
False	False	True	False	False	True	True
False	True	True	False	True	True	False
True	False	False	False	True	False	False
True	True	False	True	True	True	True

Validity – Satisfiability

- A sentence is valid if it is true in all models. Valid sentences are also known as tautologies—they are necessarily true. (e.g. P V ¬P)
- A sentence is **satisfiable** if it is true in, or satisfied by, *some* model. (e.g. P V ¬Q)
- A sentence is **unsatisfiable** if it is false in, or unsatisfied by, *any* model. (e.g. P $\land \neg$ P)
- There is at least one **model** for a sentence, if there is an interpretation I that satisfies this sentence. I is the model of this sentence.
- Horn clause is a disjunction of literals of which *at most one is positive*. (e.g. ¬P₁ V ¬P₂ V Q)

Validity – Satisfiability Example 1

Α	В	С	$A \Rightarrow B$	A ∧ C	$(A \land C) \Rightarrow B$	$(A \Rightarrow B) \Rightarrow ((A \land C) \Rightarrow B)$
F	F	F	т	F	Т	Т
F	F	Т	Т	F	Т	Т
F	Т	F	Т	F	Т	Т
F	Т	Т	Т	F	Т	Т
Т	F	F	F	F	Т	Т
Т	F	Т	F	Т	F	Т
Т	Т	F	Т	F	Т	Т
Т	Т	Т	т	т	Т	Т

Sentence is valid, satisfiable, a tautology and has a model.

Reasoning – Example 2

Premises

- If John is a student at DI, then he is a nerd.
- If John wakes up early in the morning, then he is not cool.
- If John is a nerd, then he wakes up early in the morning.

Conclusion

If John is a student at DI, then he is not cool.

Conjunctive Normal Form

Every sentence of propositional logic is logically equivalent to a conjunction of clauses

CNF Transformation

- Eliminate \Leftrightarrow , replacing A \Leftrightarrow B = (A \Rightarrow B) \land (B \Rightarrow A).
- Eliminate \Rightarrow , replacing A \Rightarrow B = \neg A V B.
- CNF requires
 ¬ to appear only in literals, so we "move ¬ inwards" by repeated application of the following equivalences:
 - $\neg(\neg A) \equiv A$ (double-negation elimination)
 - \neg (A \land B) = (\neg A \lor \neg B) (De Morgan)
 - \neg (A V B) = (\neg A \land \neg B) (De Morgan)
- Distributive property
 - $(A \land B) \lor C \equiv (A \lor C) \land (B \lor C)$
 - $C \lor (A \land B) \equiv (C \lor A) \land (C \lor B)$

Proof by resolution – Example 2

In order to show that KB |= A, we show that (KB $\land \neg A$) is unsatisfiable. We do this by proving a contradiction.

- Codify natural language premises and conclusion into propositional logic sentences.
 - 1. JSDI \Rightarrow JN
 - 2. JWUE $\Rightarrow \neg$ JC
 - 3. JN \Rightarrow JWUE
 - $\mathsf{JSDI} \quad \Rightarrow \neg \mathsf{JC}$
- Transform our premises and conclusion to CNF
 - 1. JSDI V JN
 - 2. JSWUE V JC
 - 3. JN V JWUE

JSDI V JC

Proof by resolution – Example 2

- Add the negation of conclusion to the KB
 - 1. JSDI V JN
 - 2. JSWUE V JC
 - 3. JN V JWUE
 - 4. JSDI
 - 5. JC
- Apply resolution

• We had a contradiction so KB |= (JSDI $\Rightarrow \neg$ JC)