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Nearest Neighbor

A set S of n points is given in some metric space X.
Problem: given any query point q  X, ∈
find the point of S nearest to q (nearest neighbor, NN).

Idea: preprocess S so that, given q, the NN is reported quickly.
Efficient exact solutions known for only very limited cases;
hence approximation algorithms.
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Approximate nearest neighbor

Given a query point q, let NN(q) be the distance from q to its nearest 
neighbor in S. 

For a real parameter ε > 0, point p  S ∈ is an ε-nearest neighbor (ε-NN) 
of q if the distance from p to q is at most (1 + ε)NN(q).

X
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NN Formulations

Traditional computational geometry: the space is Rd, for constant d, 
under the Euclidean norm; ε  is an asymptotic quantity  of secondary 
importance to n.

Others treat d as an asymptotic quantity and seek solutions having no 
exponential dependence on d.

Others assume the metric space possesses a growth-limiting property, 
e.g. constant doubling dimension: twice the ball is included in constant 
number of balls (true for Euclidean).
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Balanced Box-Decomposition tree

[Arya, Mount et al, J.ACM'98]

Each node of the BBD-tree is associated  with a cell: this is a d-dim 
rectangle (box), or with the set theoretic difference of two such 
rectangles (boxes), one enclosed in the other.
Each cell is defined by an outer box and an optional inner box.

Each cell will be associated with the set of data points lying within the 
cell. Points which lie on the boundary between cells may be assigned 
to either cell.

The aspect ratio  (ratio of length of longest to shortest side) of the 
boxes is bounded by a constant.
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The BBD-tree is constructed by applying two operations,
as long as cell contains >1 points:

l(Fair) Splits
by a hyperplane parallel to a coordinate plane
(if inner box exists, do not intersect it)
Guarantees geometric decrease of children cells

lShrinks
partitions box into inner and outer
(if inner box, it lies inside new inner box)
Guarantees decrease of number of points in children

Two strategies:
lSplits and Shrinks alternate.
lAlways Split unless Shrink is needed

BBD Construction
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Operations
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Fair Split
Left child Right child

Shrink
Left child
(inner)

Right child
(outer)



Midpoint splitting

The midpoint is used to perform the splitting and shrinking rules.
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Centroid shrink

Midpoint splits until both children have less than 2/3 of 
the parent's points
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Example I
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Example II
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Invariants

Both operations are performed so that the following invariants hold:

All boxes satisfy the aspect ratio bound.

If the parent has an inner box, then this box lies entirely within one of 
the two children. If the operation is a shrink, then this inner box lies 
within the left (inner) child of the shrink:
Inner boxes are sticky for their enclosing outer boxes.
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Stickiness

Important concept that restricts the nature of inner boxes.
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BBD Complexity

The cells created by the midpoint rule satisfy the aspect ratio bound 
and are sticky to their parents.

Splits and shrinks are applied alternately for the construction of the 
BBD-tree.

The height of the tree is O(log n).
In general, with every 4 levels of descent in the tree, the number of 
points associated with the nodes decreases by at least a factor of 2/3.

Construction in O(d n logn) time.
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Search

Each leaf contains up to some constant number of points, e.g. 1, hence 
O(n) total space.

Given a point q  in Rd, a leaf containing q  is determined in  O(d logn) 
time (point location).

The distance between q and a cell = closest distance between q and any 
point/part of the cell.
Given q, all cells can be enumerated in order of increasing distance 
from q. The m nearest cells can be enumerated in O(md logn) time.
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Approximate Nearest Neighbor

Algorithm

 Find the leaf that contains query point q.
Find closest cell to q, compute min-distance δ between q  and the 
points in that cell.
While the distance of the next closest cell <δ(1+ε), compute min-
distance between q  and the points in this cell. If this distance <δ, 
update δ to be this distance.

The m closest cells are computed in O(md logn) time.
Number of cells visited is c < (1+6d/ε)d.
Thus, the algorithm answers ANN queries in O(cd logn) time.
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ANN software

The implementation of the algorithm is “ANN”.

Empirical runtimes on most distributions suggest there is little or  no 
significant practical advantage to using the BBD-tree over the kd-
tree, enhanced with some improvements (allowing approximation 
errors, incremental distance calculations).

Results show that,
for even very large ε, the average error is typically at least an order of 
magnitude smaller,
number of cells visited is significantly smaller than the huge predicted 
values (1+6d/ε)d.
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ANN improvement

Improvements were proposed, the best offering:
query time =O(logn + 1/εd−1 ), O(n) space.
These structures are optimal with respect to space, the ε-dependencies in 
query time are far from optimal.

Space-time tradeoff for ε-NN: Approximate Voronoi Diagrams achieve 
time O(log(n/ε)) and space O((n/εd+1 ) log(1/ε)).
Let M(n) and T(n) denote space and query time.
Then (ignoring log factors) M(n)T2(n) = O(n/εd−1 ).
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