
Balanced Box-Decomposition trees
for Approximate nearest-neighbor

Manos Thanos (MPLA)
Ioannis Emiris (Dept Informatics)
Computational Geometry

11

Nearest Neighbor

A set S of n points is given in some metric space X.
Problem: given any query point q X, ∈
find the point of S nearest to q (nearest neighbor, NN).

Idea: preprocess S so that, given q, the NN is reported quickly.
Efficient exact solutions known for only very limited cases;
hence approximation algorithms.

2

X

Approximate nearest neighbor

Given a query point q, let NN(q) be the distance from q to its nearest
neighbor in S.

For a real parameter ε > 0, point p S ∈ is an ε-nearest neighbor (ε-NN)
of q if the distance from p to q is at most (1 + ε)NN(q).

X

3

NN Formulations

Traditional computational geometry: the space is Rd, for constant d,
under the Euclidean norm; ε is an asymptotic quantity of secondary
importance to n.

Others treat d as an asymptotic quantity and seek solutions having no
exponential dependence on d.

Others assume the metric space possesses a growth-limiting property,
e.g. constant doubling dimension: twice the ball is included in constant
number of balls (true for Euclidean).

4

Balanced Box-Decomposition tree

[Arya, Mount et al, J.ACM'98]

Each node of the BBD-tree is associated with a cell: this is a d-dim
rectangle (box), or with the set theoretic difference of two such
rectangles (boxes), one enclosed in the other.
Each cell is defined by an outer box and an optional inner box.

Each cell will be associated with the set of data points lying within the
cell. Points which lie on the boundary between cells may be assigned
to either cell.

The aspect ratio (ratio of length of longest to shortest side) of the
boxes is bounded by a constant.

5

The BBD-tree is constructed by applying two operations,
as long as cell contains >1 points:

l(Fair) Splits
by a hyperplane parallel to a coordinate plane
(if inner box exists, do not intersect it)
Guarantees geometric decrease of children cells

lShrinks
partitions box into inner and outer
(if inner box, it lies inside new inner box)
Guarantees decrease of number of points in children

Two strategies:
lSplits and Shrinks alternate.
lAlways Split unless Shrink is needed

BBD Construction

6

Operations

7

Fair Split
Left child Right child

Shrink
Left child
(inner)

Right child
(outer)

Midpoint splitting

The midpoint is used to perform the splitting and shrinking rules.

8

Left child

Left child Left
child

Right child

Right child Right
child

Centroid shrink

Midpoint splits until both children have less than 2/3 of
the parent's points

9

Example I

10

ba

a

b

Example II

ba

a

b
c

c

ed

ed

gfgf

11

empty

empty

i

i

h

h

Invariants

Both operations are performed so that the following invariants hold:

All boxes satisfy the aspect ratio bound.

If the parent has an inner box, then this box lies entirely within one of
the two children. If the operation is a shrink, then this inner box lies
within the left (inner) child of the shrink:
Inner boxes are sticky for their enclosing outer boxes.

12

Stickiness

Important concept that restricts the nature of inner boxes.

13

BBD Complexity

The cells created by the midpoint rule satisfy the aspect ratio bound
and are sticky to their parents.

Splits and shrinks are applied alternately for the construction of the
BBD-tree.

The height of the tree is O(log n).
In general, with every 4 levels of descent in the tree, the number of
points associated with the nodes decreases by at least a factor of 2/3.

Construction in O(d n logn) time.

14

Search

Each leaf contains up to some constant number of points, e.g. 1, hence
O(n) total space.

Given a point q in Rd, a leaf containing q is determined in O(d logn)
time (point location).

The distance between q and a cell = closest distance between q and any
point/part of the cell.
Given q, all cells can be enumerated in order of increasing distance
from q. The m nearest cells can be enumerated in O(md logn) time.

15

Approximate Nearest Neighbor

Algorithm

 Find the leaf that contains query point q.
Find closest cell to q, compute min-distance δ between q and the
points in that cell.
While the distance of the next closest cell <δ(1+ε), compute min-
distance between q and the points in this cell. If this distance <δ,
update δ to be this distance.

The m closest cells are computed in O(md logn) time.
Number of cells visited is c < (1+6d/ε)d.
Thus, the algorithm answers ANN queries in O(cd logn) time.

16

ANN software

The implementation of the algorithm is “ANN”.

Empirical runtimes on most distributions suggest there is little or no
significant practical advantage to using the BBD-tree over the kd-
tree, enhanced with some improvements (allowing approximation
errors, incremental distance calculations).

Results show that,
for even very large ε, the average error is typically at least an order of
magnitude smaller,
number of cells visited is significantly smaller than the huge predicted
values (1+6d/ε)d.

17

ANN improvement

Improvements were proposed, the best offering:
query time =O(logn + 1/εd−1), O(n) space.
These structures are optimal with respect to space, the ε-dependencies in
query time are far from optimal.

Space-time tradeoff for ε-NN: Approximate Voronoi Diagrams achieve
time O(log(n/ε)) and space O((n/εd+1) log(1/ε)).
Let M(n) and T(n) denote space and query time.
Then (ignoring log factors) M(n)T2(n) = O(n/εd−1).

18

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

