Computational Geometry

3rd Part (c): High-Dimensional Nearest neighbors

Ioannis Emiris

Department of Informatics and Telecommunications
University of Athens
Spring 2015

Contents

(1) Introduction

- Structure
(2) Trees
- kd-trees
- Randomized kd-trees
- Balanced Box-Decomposition trees
(3) Approximate Voronoi Diagrams
- Quadrees and representatives
- Well-separated pair decomposition (WSPD)

4 Locality sensitive hashing

- LSH functions
- Specific metrics

Outline

(1) Introduction

- Structure
(2) Trees
- kd-trees
- Randomized kd-trees
- Balanced Box-Decomposition trees
(3) Approximate Voronoi Diagrams
- Quadrees and representatives
- Well-separated pair decomposition (WSPD)
(4) Locality sensitive hashing
- LSH functions
- Specific metrics

Introduction

Given a distance function/metric:

- Preprocess: set of points/objects $P=\left\{p_{1}, \ldots, p_{n}\right\}$ in d dimensions.
- Query: Given a d-dimensional query point/object q, report the closest $p \in P$ to q.

Motivation

- Points model general objects (e.g. handwritten digits)
- Distance between points inverse to similarity measure

Applications

Wide spectrum of applications in many fields of Computer Science. Machine Learning

Applications

Wide spectrum of applications in many fields of Computer Science. Pattern Recognition and Classification

$$
\begin{aligned}
& \text { 1/112222 } \\
& \begin{array}{lllllll}
3 & 3 & 3 & 5 & 4 & 4 & 4
\end{array} 4 \begin{array}{l}
\text { nearest } \\
\text { neighbor }
\end{array} \\
& 555 \leqslant 6666 \\
& \text { query } \\
& 99990000
\end{aligned}
$$

Applications

Wide spectrum of applications in many fields of Computer Science. Searching multimedia databases.

Nearest Neighbor

Exact NN

Given set P in d dimensions, and query point q, its $N N$ is point $p_{0} \in P$:

$$
\operatorname{dist}\left(p_{0}, q\right) \leq \operatorname{dist}(p, q), \quad \forall p \in P
$$

Approximate NN

Given set P in d dimensions, approximation factor $1>\epsilon>0$, and query point q, an ϵ-NN, or ANN, is any point $p_{0} \in P$:

$$
\operatorname{dist}\left(p_{0}, q\right) \leq(1+\epsilon) \operatorname{dist}(p, q), \quad \forall p \in P
$$

$N N$ in \mathbb{R}

Sort/store the n points, use binary search for queries, then:

- Prepreprocessing in $O(n \log n)$ time
- Data structure requiring $O(n)$ space
- Answer the query in $O(\log n)$ time

NN in \mathbb{R}^{2}

- Preprocessing: Voronoi Diagram in $O(n \log n)$.
- Storage $=O(n)$.
- Given query q, find the cell it belongs (point location) in $O(\log n)$. $\mathrm{NN}=$ site of cell containing q.

Exact $N N$ in \mathbb{R}^{d}

Is it faster than linear-time?

Curse of Dimensionality:

- Complexity of Voronoi diagram grows rapidly $=O\left(n^{\lceil d / 2\rceil}\right)$.
- Planar point location methods do not extend to higher dimensions.
- The volume of the space increases so fast that data becomes sparse

State of the art:

- kd-trees: $\mathrm{Sp}=\mathrm{O}(\mathrm{n})$, Query $=O\left(d \cdot n^{1-1 / d}\right)$.

Most practical for $d \ll \log n$: $O(\log n)$ expected for "random" points

- Randomized (Clarkson'88): $S p=O\left(n^{\lceil d / 2\rceil+\delta}\right), Q \simeq \log n \cdot \exp (d)$.
- n hyperplanes: point location $O\left(d^{5} \log n\right), S p=O\left(n^{d+\delta}\right)($ Meiser'93)

Approximate NN in \mathbb{R}^{d}

- BBD tree (Arya,Mount et al.94,98) yield optimal query for $d=O(1)$. In practice like kd-trees:
- ANN software (Mount)
- CGAL offers "lazy" kd-trees
- FLANN exploits structure by randomized kd-trees (Lowe-Muja)
- AVD achieve best asymptotic query-space tradeoff wrt n, for $d=O(1)$ (Arya,Mount et al.'09). ©AVD
Improvement in non-extreme cases (Arya,Fonseca,Mount'11)
- Locality sensitive hashing (LSH) for ϵ-NN $>$ เsH
$\mathrm{Sp} \simeq n^{1 / \epsilon^{2}}, Q \simeq d \log n($ Indyk, Motwani'98)
$\mathrm{Sp} \simeq d n \log n, Q \simeq d n^{1 /(1+\epsilon)}($ Panigrahy'06) $($ Andoni,Indyk'06)

Tradeoff and Lower bound

Lower bound on Approximate NN in \mathbb{R}^{d} (Arya, Mount et al.)
Let $S(n), Q(n)$ denote space and query time. Then, ignoring log factors, the space-time tradeoff is bounded as follows:

$$
S(n) Q^{2}(n)=\Omega\left(\frac{n}{\epsilon^{d-1}}\right) .
$$

Outline

(1) Introduction

- Structure
(2) Trees
- kd-trees
- Randomized kd-trees
- Balanced Box-Decomposition trees
(3) Approximate Voronoi Diagrams
- Quadrees and representatives
- Well-separated pair decomposition (WSPD)

4 Locality sensitive hashing

- LSH functions
- Specific metrics

Grid for Uniform points

- n uniformly distributed points in $[0,1]^{d}$
- Cell structure (array) using $c=O(1)$ (Bentley-W-Yao'80):
-- n / c cells/boxes, each of side $(c / n)^{1 / d}<1$.
-- Box's volume $=c / n$, expected \#points per box $=c$.
-- Expected query time $=O(1)$, for $d=O(1)$.
-- But \#visited boxes $\leq 3^{d}-1$.

Doubling dimension

- Consider general metric spaces, try to capture structure.
- Doubling (Assouad' 83) dimension of pointset P is λ if 2^{λ} balls of radius $r / 2$ centered at P are needed to cover any ball of radius r.
E.g. \mathbb{R}^{d} has doubling dimension $\Theta(d)$; models growth-limiting property.
- ϵ-NN: $\mathrm{Sp}=O(n), Q=O\left(\log n+1 / \epsilon^{\lambda}\right)$ (HarPeled-Mendel'O6).
- Random Projection trees (Dasgupta-Freund,STOC) and randomly rotated kd-trees (Vempala) behave well for small doubling dimension

Dimension reduction

- Exact isometry (metric preservation) in $\leq n-1$ dimensions.
- Defn. Near isometry: Bi-Lipschitz embedding $f:(X, d) \rightarrow(Y, e)$ if

$$
\exists C>0: C \cdot d(p, q) \leq e(f(p), f(q)) \leq(1+\epsilon) C \cdot d(p, q), \quad \forall p, q \in X
$$

- Thm (Johnson-Lindenstrauss' 84). $X \subset \mathbb{R}^{d}$ then $f:\left(X, L_{2}\right) \rightarrow\left(\mathbb{R}^{k}, L_{2}\right)$ is bi-Lipschitz for random projection s.t. $k=O\left(\log |X| / \epsilon^{2}\right)$ whp.
- Thm (Magen’02), (M.-Zouzias). $X \subset \mathbb{R}^{d}$ then $f:\left(X, L_{2}\right) \rightarrow\left(\mathbb{R}^{k}, L_{2}\right)$ preserves distance of points from t-dim affine hulls within ϵ, for $k=O\left(t \log |X| / \epsilon^{2}\right)$ whp.

ϵ-Nearest-Space

(Magen'02)

Given $X=\cup_{i=1}^{s} s_{i}: \operatorname{dim} s_{i}=t=O(1)$, let $d^{\prime}=\binom{d}{2}+d+1$,

$$
\xi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d^{\prime}}: x \mapsto\left(1, x_{1}, \ldots, x_{d}, x_{1} x_{2}, \ldots x_{d-1} x_{d}\right)
$$

Given $x \in \mathbb{R}^{d}$, nearest S_{i} iff first $\xi\left(S_{i}\right)$ hit upwards from $\xi(x)$. Exercise: Prove it! Does $\xi(x)$ also need $x_{1}^{2}, \ldots, x_{d}^{2}$?

Reduction

Upward-hit implemented by (Meiser'93) in $\mathbb{R}^{d^{2}}$. Embedding using $t \cdot s$ points. Hence X-query $=O\left(\log ^{11} s / \epsilon^{20}\right)$, space $\simeq s^{\log ^{2} s / \epsilon^{4}}$.

Query $\in \mathbb{R}^{d}$

$k=O\left(Q \log s / \epsilon^{2}\right)$ dimensions work w/prob $1 / s^{Q}$ by extending (Magen,Thm.2). Exercises: Extend Thm.2. Finish the analysis.

NN-preserving embedding

- Suppose $\lambda=$ doubling dim.

Then, linear embedding to \mathbb{R}^{k} is NN-preserving whp, with

$$
k=O\left(\lambda \frac{\log (1 / \epsilon)}{\epsilon^{2}}\right)
$$

- So ϵ-NN: space $=O\left(n / \epsilon^{k}\right)$, query $=O(k \log (n / \epsilon))$.
- $X=\cup_{i=1}^{s} S_{i}: f\left(S_{i}\right)$ affine sets, then Nearest-Object-preserving f yields $k=O\left(\lambda \log s \cdot \log (1 / \epsilon) / \epsilon^{2}\right)$ whp.
(Indyk-Naor'07)

Outline

(1) Introduction

- Structure
(2) Trees
- kd-trees
- Randomized kd-trees
- Balanced Box-Decomposition trees
(3) Approximate Voronoi Diagrams
- Quadrees and representatives
- Well-separated pair decomposition (WSPD)

4) Locality sensitive hashing

- LSH functions
- Specific metrics

Outline

(1) Introduction

- Structure
(2) Trees
- kd-trees
- Randomized kd-trees
- Balanced Box-Decomposition trees
(3) Approximate Voronoi Diagrams
- Quadrees and representatives
- Well-separated pair decomposition (WSPD)

4) Locality sensitive hashing

- LSH functions
- Specific metrics

kd-trees

- Different strategies to pick splitting coordinate.
- Leaves contain bucket of ≥ 1 points.

Complexity:

- $S p=O(d \cdot n)$.
- construction of balanced tree: $O(d \cdot n \log n)$ by sorting per dimension, $O(n \log n)$ by linear-time median computation.
- insert/delete into balanced kd-tree $=O(\log n)$.
- $\mathrm{NN}=O\left(d \cdot n^{1-1 / d}\right)$ at worst, but $O(\log n)$ expected, if $d=O(1)$, for several distributions (Bentley et al'77,Bentley'90). Topdown: $\log n$ to bucket, expected $O(1)$ neighbors, recurse to root

Topdown NN

Procedure NN(node), given query q

if node is bucket (leaf) then
Search all points in node, update current best
else \{internal node\}
if cut-coor $(q) \leq$ node's cut-value then
NN(left-child)
if cut-coor $(q)+$ current best distance $>$ node's cut-value then NN(right-child)
end if
else $\{$ cut-coor $(q)>$ node's cut-value\}
NN(right-child)
if cut-coor (q) - current best distance \leq node's cut-value then NN(left-child)
end if
end if(left/right)
end if(node)

Overall algorithm: NN(root).

Running example

Exercises

run algo

(1) Run NN for a query point of your choice in the previous example dataset.
(2) Find a query point in the previous example dataset for which the current best point is updated a max number of times: how large can this be?

worst case

Find 7 points in \mathbb{R}^{2} and a query that needs to check all nodes in the kd-tree for deterministic NN .

Splitting at max spread

median of set

closest to box centre

Extensions

kNN

- Store k current best points.
- Current ball encloses k current best points.
- Eliminate sibling if none of its points closer than any of k current best points.

Outline

(1) Introduction

- Structure
(2) Trees
- kd-trees
- Randomized kd-trees
- Balanced Box-Decomposition trees
(3) Approximate Voronoi Diagrams
- Quadrees and representatives
- Well-separated pair decomposition (WSPD)
(4) Locality sensitive hashing
- LSH functions
- Specific metrics

Construction and query

Construct:

- Create r kd-trees s.t. searches are largely independent.
- Find $O(1)$ coord's maximizing variance: Pick random splitting coordinate. Hence small number of coordinates used for splitting.
- Principal Component Analysis finds moment axes: rotate to align them with the coordinte axes.

Search:

- Upper bound on total \#nodes to be searched.
- Single Priority queue stores candidates across r trees.
- Result similar to searching after projection to lower-dim space (Silpa-Anan,Hartley:CVPR08)
- Overall r independent projections to lower dimension so that NN among kNN, for small k, with high probability.

FLANN: Fast Library for ANN

(Lowe:IJCVO4), software (Lowe,Muja)
Given the data: Automatic choice of algorithm and automatic configuration.

Algorithm Choices include:

- Randomized kd-trees,
- Hierarchical k-means trees.

k-means unsupervised learning

- Given k clusters, each with centroid,
- Classify data points to nearest centroid,
- Calculate each cluster's barycenter: k new centroids
- Repeat until convergence

Outline

(1) Introduction

- Structure
(2) Trees
- kd-trees
- Randomized kd-trees
- Balanced Box-Decomposition trees
(3) Approximate Voronoi Diagrams
- Quadrees and representatives
- Well-separated pair decomposition (WSPD)
(4) Locality sensitive hashing
- LSH functions
- Specific metrics

BBD-trees

Box: set theoretic difference of two boxes, one enclosed in the other.
"Empirical runtimes for most distributions show little/no practical advantage over kd-trees"
 (Arya, Mount, Netanyahu et al.'94,98).

- Construct $=O(n \log n), n=\#$ points in the tree.
- Space $=O(d n)$.
- $k \in \mathrm{NN}$ s in time $\left.O\left(d(d / \epsilon)^{d}+k\right) \log n\right)$.
- Dynamic: point insertion/deletion $=O(\log n)$.

Outline

(1) Introduction

- Structure
(2) Trees
- kd-trees
- Randomized kd-trees
- Balanced Box-Decomposition trees
(3) Approximate Voronoi Diagrams
- Quadrees and representatives
- Well-separated pair decomposition (WSPD)
(4) Locality sensitive hashing
- LSH functions
- Specific metrics

Outline

(1) Introduction

- Structure
(2) Trees
- kd-trees
- Randomized kd-trees
- Balanced Box-Decomposition trees
(3) Approximate Voronoi Diagrams
- Quadrees and representatives
- Well-separated pair decomposition (WSPD)
(4) Locality sensitive hashing
- LSH functions
- Specific metrics

Approximate Voronoi Diagram (AVD)

Motivation

Reduce space for d-dimensional Voronoi diagram of N points from $\Theta\left(N^{[d / 2\rceil}\right)$ to almost linear.

Idea

Voronoi diagram only implicitly represented in AVD. Boundaries of Voronoi regions not explicitly stored.

Description

Partition underlying space using block decomposition (e.g. quadtree), and associate cell b to point $p \in S$, s.t. p is ϵ-NN for all $q \in b$.

Complexity

AVD (Har-Peled'01)

- construction time and storage in $O\left(\frac{N}{\epsilon^{a}} \log N \log \frac{N}{\epsilon}\right) \simeq O\left(\frac{N}{\epsilon^{a}} \log ^{2} N\right)$,
- ϵ-NN query in $O\left(\log \frac{N}{\epsilon}\right) \simeq O(\log N)$.

Tradeoffs (Arya, Mount et al.:J.ACM'09)

Take parameter $2 \leq \gamma \leq \frac{1}{\epsilon}$:

$$
\text { Space }=O\left(N \gamma^{d-1} \log \frac{1}{\epsilon}\right) \text { lies between } O\left(N \log \frac{1}{\epsilon}\right) \text { and } O\left(\frac{N}{\epsilon^{d}} \log \frac{1}{\epsilon}\right) \text {. }
$$

Query $=O\left(\log (N \gamma)+\frac{1}{(\epsilon \gamma)^{\frac{d-1}{2}}}\right)$ is between $O\left(\log N+\frac{1}{\epsilon^{\frac{d-1}{2}}}\right)$ and $O\left(\log \frac{N}{\epsilon}\right)$.

Decomposition

- (PR) Quadtree recursively decomposes space into congruent blocks (subboxes inside boxes), until each block $=\emptyset$ or contains 1 point.
- Cell b represented by site $r_{b} \in S$, s.t. $r_{b}=\epsilon$-NN for every point in b.
- If b represented by >1 sites, e.g. r_{c} also, then r_{c} is also ϵ-NN $\forall p \in b$
- Site r_{b} can be associated with different blocks in quadtree.
- Avoid multiple associations. Decomposition blocks are maximal: reduces likelihood of multiple associations, does not guarantee it.

(t, ϵ)-AVD

- Bucket capacity $t \geq 1$.
- Allow up to t elements $r_{i b} \in S$ be associated with each block b, where each point in b has one of the $r_{i b}$ as ϵ-NN.
- If decomposition rule based on regular decomposition, then result analogous to bucket variant of (PR) Quadtree.
- Decomposition halts when number of different ϵ-NNs of points in b is $\leq t$.

Problem: Constructive definition of (t, ϵ)-AVD is circular: assumes we know NN.

Outline

(1) Introduction

- Structure
(2) Trees
- kd-trees
- Randomized kd-trees
- Balanced Box-Decomposition trees
(3) Approximate Voronoi Diagrams
- Quadrees and representatives
- Well-separated pair decomposition (WSPD)
(4) Locality sensitive hashing
- LSH functions
- Specific metrics

Definitions

The WSPD is 1st phase in constructing AVD: poly(n), but costly in practice.

Definition

Subsets X_{i}, Y_{i} are well-separated if contained in min enclosing spheres S_{x}, S_{y} :

$$
\text { distance of centers } \geq a \cdot \max \left\{\operatorname{radius}\left(S_{x}\right), \operatorname{radius}\left(S_{y}\right)\right\}
$$

where a is the separation factor.

Definition

A WSPD of S is set $\left\{\left(X_{1}, Y_{1}\right), \ldots,\left(X_{m}, Y_{m}\right)\right\}$ of pairs of subsets $\subset S$ s.t.:
(1) X_{i} and Y_{i} are well-separated with separation factor $a, i=1, \ldots, m$.
(2) For points $x \neq y \in S, \exists$ unique $\left(X_{i}, Y_{i}\right)$: either $x \in X_{i}, y \in Y_{i}$, or $x \in Y_{i}, y \in X_{i}$.

AVD from WSPD

- Construct quadtree for (t, ϵ)-AVD by digitizing bisector of well separated subsets $X, Y \subset S$.
- Apply process only to $O(n)$ well-separated pairs: \#cells produced depends on ϵ and distance between pairs, not on n.
- Produce set of cells c_{j} : Each c_{j} associated with p_{1} or p_{2} : associated point is an ϵ-NN from $\left\{p_{1}, p_{2}\right\}$.
- Consider NN search as tournament. Every pair p_{1}, p_{2} competes to see who is closer to given point.
- Algorithm eliminates $n-1$ points, remaining winning point is NN.
- By overlaying digitizations, all query points of cell share a common ϵ-NN.

Finalize AVD

- Overlay and merge digitizations in single quadtree decomposition.
- Store it as balanced box-decomposition (BBD) tree.
- Select representative for each cell by running algorithm for NN.
- Construction time \simeq (\# cells) \times (NN query).

Example: 2d

(a)

(b)

(c)

Block decompositions in decreasing refinement, induced by (a)PM M_{1}, (b) $P M_{2}$, (c) $P M_{3}$ quadtrees for AVD of $A, B, C, D, E, F, G, H, l$;

Voronoi diagram shown with broken lines.

Outline

(1) Introduction

- Structure
(2) Trees
- kd-trees
- Randomized kd-trees
- Balanced Box-Decomposition trees
(3) Approximate Voronoi Diagrams
- Quadrees and representatives
- Well-separated pair decomposition (WSPD)

4 Locality sensitive hashing

- LSH functions
- Specific metrics

LSH idea

LSH Family

We call a family H of hashing functions $\left(r, c, P_{1}, P_{2}\right)$-sensitive, $P_{1}>P_{2}$ if, for any points $p \neq q \in \mathbb{R}^{d}$ and any randomly selected function $h \in_{R} H$:

- if $\|p-q\| \leq r$, then $\operatorname{prob}_{H}[h(q)=h(p)] \geq P_{1}$,
- if $\|p-q\| \geq c$, then $\operatorname{prob}_{H}[h(q)=h(p)] \leq P_{2}$.

LSH uses hashing functions (amplified) of the form

$$
g(p)=\left(h_{1}(p), h_{2}(p), \ldots, h_{k}(p)\right)
$$

where the h_{i} are chosen at random from H (Indyk,Motwani'98)

Construction and search

Preprocess

- Select $L=n^{\rho}$ hashing functions g_{1}, \ldots, g_{L}.
- Construct L hashtables and hash all points to all tables.

Query

- Retrieve points from buckets $g_{1}(q), g_{2}(q), \ldots$ until:

Either points from all L buckets are retrieved, or Total number of points retrieved is $>2 L$.

- Answer query based on retrieved points.

Outline

(1) Introduction

- Structure
(2) Trees
- kd-trees
- Randomized kd-trees
- Balanced Box-Decomposition trees
(3) Approximate Voronoi Diagrams
- Quadrees and representatives
- Well-separated pair decomposition (WSPD)

4 Locality sensitive hashing

- LSH functions
- Specific metrics

L.S.Hashing

Projection based (Indyk et al.'04)

- Pick regular grid: Shift and rotate randomly.
- Hash function is $h: p \mapsto$ closest grid point.
- Gives $\rho=\log _{1 / P_{2}} \frac{1}{P_{1}} \simeq 1 / c$.

Near optimal (Andoni-Indyk'06)

- Project onto \mathbb{R}^{t}, constant t.
- Grid of balls: p can hit empty space: hash till ball is hit.
- Gives $\rho=1 / c^{2}+O(\log t / \sqrt{t})$,
- Space $O^{*}\left(n^{1 /(1+\epsilon)^{2}}\right)$, query $O^{*}\left(n^{1+1 /(1+\epsilon)^{2}}\right)$

Amplification

Hash-table

LSH creates hash-table using (amplified) hash functions by concatenation:

$$
g(p)=\left[h_{1}(p), h_{2}(p), \cdots, h_{k}(p)\right], \quad h_{i} \in_{R} H .
$$

If the range of g is too large; to avoid empty buckets, we may combine the $h_{i}(p)$ into a new integer $\phi(p)<g(p)$; see, e.g., Euclidean space lidim hastine

Construction

Preprocess

- Having defined H and hash-function g:
- Select L hashing functions g_{1}, \ldots, g_{L}.
- Initialize L (sparse) hashtables, hash all points to all tables using g (or ϕ).

Large $k \Rightarrow$ larger gap between P_{1}, P_{2}. Small $P_{1} \Rightarrow$ larer L so as to find neighbors. A practical choice is $L=5$ (or 6).

Range Search

Range (r, c)-Neighbor search

Input: r, c, query $q i$ from 1 to L each item p in bucket $g_{i}(q) d(q, p)<c r$ output p

Decision problem: "return p " instead of "output p ".
At end "return FAIL"; may also FAlL if many examined points.

NN search

Approximate NN

Input: query q Let $b \leftarrow$ Null; $d_{b} \leftarrow \infty$ i from 1 to L each item p in bucket $g_{i}(q)$ large number of retrieved items (e.g. $>3 L$) $b d(q, p)<d_{b}$ $b \leftarrow p ; d_{b} \leftarrow d(a, p) b$

Theoretical bounds for $c(1+\epsilon)$-NN by reduction to $\left((1+\epsilon)^{i}, c\right)$-Neighbor decision problems, $i=1,2, \ldots, \log _{1+\epsilon} d$.

Known LSH-able metrics

- Hamming distance,
- L_{2} : Euclidean distance,
- $L_{1}:$ Manhattan distance,
- L_{k} distance for any $k \in[0,2)$,
- L_{2} distance on a sphere,
- Cosine similarity,
- Jaccard coefficient.

$$
\text { Recall } \quad \operatorname{dist}_{l_{k}}(x, y)=\sqrt[k]{\sum_{i=1}^{d}\left(x_{i}-y_{i}\right)^{k}}
$$

(Andoni-Indyk:J.ACM’O8)

Outline

(1) Introduction

- Structure
(2) Trees
- kd-trees
- Randomized kd-trees
- Balanced Box-Decomposition trees
(3) Approximate Voronoi Diagrams
- Quadrees and representatives
- Well-separated pair decomposition (WSPD)

4 Locality sensitive hashing

- LSH functions
- Specific metrics

Hamming distance

Given strings x, y of length d, their Hamming distance $\mathrm{d}_{H}(x, y)$ is the number of positions at which x and y differ.

Example

Let $x=10010$ and $y=10100$. Then, $\mathrm{d}_{H}(x, y)=2$.

Definition of hash functions

Recall Given $x=\left(x_{1}, \ldots, x_{d}\right) \in\{0,1\}^{d}$:

$$
H=\left\{h_{i}(x)=x_{i}: i=1, \ldots, d\right\} .
$$

Obviously, $|H|=d$.
Pick uniformly at random $h \in_{R} H$: Then $\operatorname{prob}[h(x) \neq h(y)]=d_{H}(x, y) / d$,

$$
\operatorname{prob}[h(x)=h(y)]=1-\mathrm{d}_{H}(x, y) / d
$$

The family H is $\left(r_{1}, r_{2}, 1-r_{1} / d, 1-r_{2} / d\right)$-sensitive, for $r_{1}<r_{2}$.

LSH in Hamming Space

However probabilities $1-r_{1} / d, 1-r_{2} / d$ can be close to each other.

Amplification

Given parameter k, define new family G by concatenation:

$$
\mathcal{G}=\left\{g:\{0,1\}^{d} \rightarrow\{0,1\}^{k} \mid g(x)=\left[h^{1}(x), \cdots, h^{k}(x)\right]\right\},
$$

where $h^{i} \in_{R} H$.
-- We must have $L<|G|=d^{k}$, so as to pick L different g 's.
-- The range of each g is $\left[0,2^{k}\right)$, so $k<\lg n$.
-- May further use $\phi(\cdot)$ to avoid empty buckets; cf. Euclidean space

Build Hash-tables

Build

Pick uniformly at random L functions $g_{1}, \ldots, g_{L} \in_{R} G$ (assuming $L<d^{k}$) i from 1 to L Initialize (one-dim) hash-table T_{i}, of size 2^{k} : for each $p \in P$, store p in bucket $g_{i}(p)$.

Complexity

Time to build: $O(L n k) H$-function calls.
Space: L hashtables and n pointers to strings per table $=O(L n)$ pointers. Also store n strings $=O(d n)$ bits.
(r, c)-Neighbors: Query $=O(L(k+d))$, assuming $O(1)$ strings per bucket.

Euclidean Space

$$
\text { Recall: } \quad \operatorname{dist}_{l_{2}}(x, y)^{2}=\sum_{i=1}^{d}\left(x_{i}-y_{i}\right)^{2} .
$$

Let point $p \in \mathbb{R}^{d}$, and d-vector $v \sim \mathcal{N}(0,1)^{d}$ have coordinates identically independently distributed (i.i.d.) by the standard normal. Set $w \in \mathbb{N}^{*}$, pick t uniformly $\in_{R}[0, w)$. Define:

$$
h(p)=\left\lfloor\frac{p \cdot v+t}{w}\right\rfloor \in \mathbb{Z}
$$

essentially: project p on the line of v, shift by t, partition into cells of length w. The optimal value for w depends on P and q. In general, $w=4$ is good. Also $k=4$ (or 5), and L is 5 (or 6).

Normal distribution

Vector $v \sim \mathcal{N}(0,1)^{d}$ has coordinates distributed according to the standard normal (Gaussian) distribution:

$$
v_{i} \sim \mathcal{N}(0,1), \quad i=1,2, \ldots, d:
$$

with mean $\mu=0$, variance $\sigma^{2}=1$ (σ is the standard deviation).

Normal from Uniform

Given uniform U generator (Wikipedia):

- Marsaglia: Use independent uniform $U, V \in_{R}(-1,1), S=U^{2}+V^{2}$. If $S \geq 1$ then start over, otherwise

$$
x=U \sqrt{\frac{-2 \ln S}{S}}, \quad Y=V \sqrt{\frac{-2 \ln S}{S}}
$$

are independent and standard normally distributed.

Hash-table

We may build a k-dimensional hash-table with indexing function:

$$
g(p)=\left[h_{1}(p), h_{2}(p), \ldots, h_{k}(p)\right] .
$$

Many buckets shall be empty. Hence build 1-dim hash-table with classic index:
1-dimensional hash-function

$$
\phi(p)=\left(r_{1} h_{1}(p)+r_{2} h_{2}(p)+\cdots+r_{k} h_{k}(p) \bmod M\right) \bmod \text { TableSize }
$$

where int $r_{i} \in_{R} \mathbb{Z}$, prime $M=2^{32}-5$ if $h_{i}(p)$ are int, TableSize $=n / 2$ (or n).
Recall $(a+b) \bmod m=((a \bmod m)+(b \bmod m)) \bmod m$.

Hashing trick

Remember object IDs so as not to search entire bucket.

Object ID

$$
\operatorname{ID}(p)=r_{1} h_{1}(p)+r_{2} h_{2}(p)+\cdots+r_{k} h_{k}(p) \bmod M
$$

is locality sensitive: depends on w-length cells on the v-lines.
Then indexing hash-function is $\phi(p)=\operatorname{ID}(p)$ mod TableSize.
Store ID along with pointer to object.
Search follows pointers only for $p: \operatorname{ID}(p)=\operatorname{ID}(q)$.
Can have smaller TableSize $=n / 8$ or $n / 16$ (heuristic choice).

Hash-function

$$
\text { Recall } \quad \operatorname{dist}_{l_{1}}(x, y)=\sum_{i=1}^{d}\left|x_{i}-y_{i}\right|
$$

Consider \mathbb{R}^{d}, r is the radius of the range search.
Pick reals: $w \gg r$, uniformly distributed $s_{i} \in_{R}[0, w), i=0,1, \ldots, d-1$. Construct d-dimensional hashtable, corresponding to grid shifted by the s_{i} 's, where every cell is a bucket; the cell size is determined by w.

Locality sensitive function

$$
\text { Let } a_{i}=\left\lfloor\frac{x_{i}-s_{i}}{w}\right\rfloor \in \mathbb{Z} i=0,1, \ldots, d-1 \text {, then: }
$$

$h(x)=a_{d-1}+m \cdot a_{d-2}+\cdots+m^{d-1} \cdot a_{0}, m>\max _{i} a_{i}$.
By concatenation, hash-function

$$
g(x)=\left[h_{1}(x), h_{2}(x), \cdots, h_{k}(x)\right]
$$

LSH for Cosine distance / similarity

Consider \mathbb{R}^{d}, equipped with cosine similarity of two vectors:

$$
\cos (x, y)=(x \cdot y) /(\|x\| \cdot\|y\|)
$$

which expresses the angle between vectors x, y.
For comparing documents or, generally, long vectors based on direction, not length.

Shall be approximated by random projections (next slide).

Random projection

Let $r_{i} \sim \mathcal{N}(0,1)^{d}$. Define $h_{i}(x)=\left\{\begin{array}{ll}1, & \text { if } r_{i} \cdot x \geq 0 \\ 0, & \text { if } r_{i} \cdot x<0\end{array}\right.$.
Then $F=\left\{h_{i}(x) \mid\right.$ for every $\left.r_{i} \sim \mathcal{N}(0,1)^{d}\right\}$ is a locality sensitive family.
Intuition: Each r_{i} is normal to a hyperplane. If two vectors lie on the same side of many random hyperplanes, then very likely they are similar (Andoni-Indyk'08).

Lemma

Two vectors match with probability proportional to their cosine.
(Amplification) Given parameter k, define new family $G(F)$ by concatenation:

$$
G(F)=\left\{g: \mathbb{R}^{d} \rightarrow\{0,1\}^{k} \mid g(x)=\left[h_{1}(x), h_{2}(x), \cdots, h_{k}(x)\right]\right\}
$$

