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Introduction

Given a distance function/metric:

Preprocess: set of points/objects P = {p1, . . . , pn} in d dimensions.

Query: Given a d-dimensional query point/object q, report the closest

p ∈ P to q.
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Motivation

Points model general objects (e.g. handwritten digits)

Distance between points inverse to similarity measure
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Applications

Wide spectrum of applications in many fields of Computer Science. Machine

Learning
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Applications

Wide spectrum of applications in many fields of Computer Science. Pattern

Recognition and Classification
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Applications

Wide spectrum of applications in many fields of Computer Science. Searching

multimedia databases.
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Nearest Neighbor

Exact NN

Given set P in d dimensions, and query point q, its NN is point p0 ∈ P:

dist(p0, q) ≤dist(p, q), ∀p ∈ P.

Approximate NN

Given set P in d dimensions, approximation factor 1 > ε > 0, and query point q,

an ε-NN, or ANN, is any point p0 ∈ P:

dist(p0, q) ≤ (1 + ε) dist(p, q), ∀p ∈ P.
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NN in R

Sort/store the n points, use binary search for queries, then:

Prepreprocessing in O(n log n) time

Data structure requiring O(n) space

Answer the query in O(log n) time
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NN in R2

Preprocessing: Voronoi Diagram in O(n log n).

Storage = O(n).

Given query q, find the cell it belongs (point location) in O(log n).

NN = site of cell containing q.
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Exact NN in Rd

Is it faster than linear-time?

Curse of Dimensionality:

Complexity of Voronoi diagram grows rapidly = O(ndd/2e).

Planar point location methods do not extend to higher dimensions.

The volume of the space increases so fast that data becomes sparse

State of the art:

kd-trees: Sp = O(n), Query = O(d · n1−1/d).

Most practical for d � log n: O(log n) expected for ‘‘random" points

Randomized [Clarkson’88]: Sp = O(ndd/2e+δ), Q ' log n· exp(d).

n hyperplanes: point location O(d5 log n), Sp = O(nd+δ) [Meiser’93]
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Approximate NN in Rd

BBD tree [Arya,Mount et al.94,98] yield optimal query for d = O(1). BBD

In practice like kd-trees:

ann software [Mount]

cgal offers ‘‘lazy" kd-trees

flann exploits structure by randomized kd-trees [Lowe-Muja]

AVD achieve best asymptotic query-space tradeoff wrt n, for d = O(1)
[Arya,Mount et al.’09]. AVD

Improvement in non-extreme cases [Arya,Fonseca,Mount’11]

Locality sensitive hashing (LSH) for ε-NN LSH

Sp ' n1/ε2

, Q ' d log n [Indyk,Motwani’98]

Sp ' dn log n, Q ' dn1/(1+ε) [Panigrahy’06] [Andoni,Indyk’06]
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Tradeoff and Lower bound

Lower bound on Approximate NN in Rd [Arya, Mount et al.]

Let S(n),Q(n) denote space and query time. Then, ignoring log factors, the

space-time tradeoff is bounded as follows:

S(n)Q
2(n) = Ω

(
n

εd−1

)
.
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Grid for Uniform points

n uniformly distributed points in [0, 1]d

Cell structure (array) using c = O(1) [Bentley-W-Yao’80]:

-- n/c cells/boxes, each of side (c/n)1/d < 1.

-- Box’s volume = c/n, expected #points per box = c.

-- Expected query time = O(1), for d = O(1).

-- But #visited boxes ≤ 3d − 1.
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Doubling dimension

Consider general metric spaces, try to capture structure.

Doubling (Assouad’83) dimension of pointset P is λ if 2λ balls of radius r/2

centered at P are needed to cover any ball of radius r .

E.g. Rd has doubling dimension Θ(d); models growth-limiting property.

ε-NN: Sp = O(n), Q = O(log n + 1/ελ) [HarPeled-Mendel’06].

Random Projection trees [Dasgupta-Freund,STOC] and randomly rotated

kd-trees [Vempala] behave well for small doubling dimension
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Dimension reduction

Exact isometry (metric preservation) in ≤ n− 1 dimensions.

Defn. Near isometry: Bi-Lipschitz embedding f : (X , d)→ (Y , e) if

∃C > 0 : C · d(p, q) ≤ e(f(p), f(q)) ≤ (1 + ε)C · d(p, q), ∀p, q ∈ X .

Thm [Johnson-Lindenstrauss’84]. X ⊂ Rd then f : (X , L2)→ (Rk , L2) is

bi-Lipschitz for random projection s.t. k = O(log |X |/ε2) whp.

Thm [Magen’02], [M.-Zouzias]. X ⊂ Rd then f : (X , L2)→ (Rk , L2)
preserves distance of points from t-dim affine hulls within ε, for

k = O(t log |X |/ε2) whp.
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ε-Nearest-Space

[Magen’02]

Given X = ∪s
i=1Si : dim Si = t = O(1), let d′ =

(
d

2

)
+ d + 1,

ξ : Rd → Rd′ : x 7→ (1, x1, . . . , xd , x1x2, . . . xd−1xd).

Given x ∈ Rd , nearest Si iff first ξ(Si) hit upwards from ξ(x).

Exercise: Prove it! Does ξ(x) also need x2
1 , . . . , x

2
d ?

Reduction

Upward-hit implemented by [Meiser’93] in Rd2

. Embedding using t · s points.

Hence X -query = O(log11 s/ε20), space ' slog2 s/ε4

.

Query ∈ Rd

k = O(Q log s/ε2) dimensions work w/prob 1/sQ by extending [Magen,Thm.2].

Exercises: Extend Thm.2. Finish the analysis.
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NN-preserving embedding

Suppose λ = doubling dim.

Then, linear embedding to Rk is NN-preserving whp, with

k = O(λ
log(1/ε)

ε2
).

So ε-NN: space = O(n/εk), query = O(k log(n/ε)).

X = ∪s
i=1Si : f(Si) affine sets, then Nearest-Object-preserving f yields

k = O(λ log s · log(1/ε)/ε2) whp.

[Indyk-Naor’07]
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kd-trees

Different strategies to pick splitting coordinate.

Leaves contain bucket of ≥ 1 points.

Complexity:

Sp = O(d · n).

construction of balanced tree: O(d · n log n) by sorting per dimension,

O(n log n) by linear-time median computation.

insert/delete into balanced kd-tree = O(log n).

NN = O(d · n1−1/d) at worst, but O(log n) expected, if d = O(1), for

several distributions [Bentley et al’77,Bentley’90].

Topdown: log n to bucket, expected O(1) neighbors, recurse to root
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Topdown NN

Procedure NN(node), given query q

if node is bucket (leaf) then
Search all points in node, update current best

else {internal node}

if cut-coor(q) ≤ node’s cut-value then
NN(left-child)

if cut-coor(q) + current best distance > node’s cut-value then
NN(right-child)

end if
else {cut-coor(q) > node’s cut-value}

NN(right-child)

if cut-coor(q)− current best distance ≤ node’s cut-value then
NN(left-child)

end if
end if[left/right]

end if[node]

Overall algorithm: NN(root).
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Running example
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Exercises

run algo

1 Run NN for a query point of your choice in the previous example dataset.

2 Find a query point in the previous example dataset for which the current

best point is updated a max number of times: how large can this be?

worst case

Find 7 points in R2 and a query that needs to check all nodes in the kd-tree for

deterministic NN.
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Splitting at max spread

median of set closest to box centre
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Extensions

kNN

Store k current best points.

Current ball encloses k current best points.

Eliminate sibling if none of its points closer than any of k current best points.
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Construction and query

Construct:

Create r kd-trees s.t. searches are largely independent.

Find O(1) coord’s maximizing variance: Pick random splitting coordinate.

Hence small number of coordinates used for splitting.

Principal Component Analysis finds moment axes: rotate to align them with

the coordinte axes.

Search:

Upper bound on total #nodes to be searched.

Single Priority queue stores candidates across r trees.

Result similar to searching after projection to lower-dim space

[Silpa-Anan,Hartley:CVPR08]

Overall r independent projections to lower dimension so that NN among

kNN, for small k , with high probability.
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FLANN: Fast Library for ANN

[Lowe:IJCV04], software [Lowe,Muja]

Given the data: Automatic choice of algorithm and automatic configuration.

Algorithm Choices include:

Randomized kd-trees,

Hierarchical k-means trees.

k-means unsupervised learning

Given k clusters, each with centroid,

Classify data points to nearest centroid,

Calculate each cluster’s barycenter: k new centroids

Repeat until convergence
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BBD-trees

Box: set theoretic difference of two boxes, one

enclosed in the other.

"Empirical runtimes for most distributions show

little/no practical advantage over kd-trees"

[Arya, Mount, Netanyahu et al.’94,98].

Construct = O(n log n), n = #points in the tree.

Space = O(dn).

k εNNs in time O(d(d/ε)d + k) log n).

Dynamic: point insertion/deletion = O(log n).

overview
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Approximate Voronoi Diagram (AVD)

Motivation

Reduce space for d-dimensional Voronoi diagram of N points from Θ(Ndd/2e)
to almost linear.

Idea

Voronoi diagram only implicitly represented in AVD. Boundaries of Voronoi

regions not explicitly stored.

Description

Partition underlying space using block decomposition (e.g. quadtree), and

associate cell b to point p ∈ S, s.t. p is ε-NN for all q ∈ b.
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Complexity

AVD [Har-Peled’01]

construction time and storage in O( N

εd log N log
N

ε ) ' O( N

εd log2 N),

ε-NN query in O(log
N

ε ) ' O(log N).

Tradeoffs [Arya, Mount et al.:J.ACM’09]

Take parameter 2 ≤ γ ≤ 1

ε :

Space = O(Nγd−1
log

1

ε
) lies between O(N log

1

ε
) and O(

N

εd
log

1

ε
).

Query = O(log(Nγ) +
1

(εγ)
d−1

2

) is between O(log N +
1

ε
d−1

2

) and O(log
N

ε
).

overview
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Decomposition

(PR) Quadtree recursively decomposes space into congruent blocks

(subboxes inside boxes), until each block = ∅ or contains 1 point.

Cell b represented by site rb ∈ S, s.t. rb = ε-NN for every point in b.

If b represented by > 1 sites, e.g. rc also, then rc is also ε-NN ∀p ∈ b

Site rb can be associated with different blocks in quadtree.

Avoid multiple associations. Decomposition blocks are maximal: reduces

likelihood of multiple associations, does not guarantee it.
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(t, ε)-AVD

Bucket capacity t ≥ 1.

Allow up to t elements rib ∈ S be associated with each block b, where

each point in b has one of the rib as ε-NN.

If decomposition rule based on regular decomposition, then result

analogous to bucket variant of (PR) Quadtree.

Decomposition halts when number of different ε-NNs of points in b is ≤ t .

Problem: Constructive definition of (t, ε)-AVD is circular: assumes we know NN.
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Definitions

The WSPD is 1st phase in constructing AVD: poly(n), but costly in practice.

Definition

Subsets Xi , Yi are well-separated if contained in min enclosing spheres Sx , Sy :

distance of centers ≥ a ·max{radius(Sx), radius(Sy)},

where a is the separation factor.

Definition

A WSPD of S is set {(X1, Y1), . . . , (Xm, Ym)} of pairs of subsets ⊂ S s.t.:

1 Xi and Yi are well-separated with separation factor a, i = 1, . . . ,m.

2 For points x 6= y ∈ S, ∃ unique (Xi , Yi):

either x ∈ Xi , y ∈ Yi , or x ∈ Yi , y ∈ Xi .
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AVD from WSPD

Construct quadtree for (t, ε)-AVD by digitizing bisector of well separated

subsets X , Y ⊂ S.

Apply process only to O(n) well-separated pairs: #cells produced

depends on ε and distance between pairs, not on n.

Produce set of cells cj : Each cj associated with p1 or p2: associated point is

an ε-NN from {p1, p2}.
Consider NN search as tournament. Every pair p1, p2 competes to see who

is closer to given point.

Algorithm eliminates n− 1 points, remaining winning point is NN.

By overlaying digitizations, all query points of cell share a common ε-NN.
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Finalize AVD

Overlay and merge digitizations in single quadtree decomposition.

Store it as balanced box-decomposition (BBD) tree.

Select representative for each cell by running algorithm for NN.

Construction time ' (# cells) × (NN query).
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Example: 2d

Block decompositions in decreasing refinement, induced by (a)PM1, (b)PM2,

(c)PM3 quadtrees for AVD of A, B,C,D, E, F ,G,H, I;
Voronoi diagram shown with broken lines.
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LSH idea

LSH Family

We call a family H of hashing functions (r, c, P1, P2)-sensitive, P1 > P2 if, for any

points p 6= q ∈ Rd and any randomly selected function h ∈R H:

if ‖p − q‖ ≤ r , then probH[h(q) = h(p)] ≥ P1,

if ‖p − q‖ ≥ c, then probH[h(q) = h(p)] ≤ P2.

LSH uses hashing functions (amplified) of the form

g(p) = (h1(p), h2(p), . . . , hk(p))

where the hi are chosen at random from H [Indyk,Motwani’98]
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Construction and search

Preprocess

Select L = nρ hashing functions g1, . . . , gL.

Construct L hashtables and hash all points to all tables.

Query

Retrieve points from buckets g1(q), g2(q), . . . until:

Either points from all L buckets are retrieved, or

Total number of points retrieved is > 2L.

Answer query based on retrieved points.
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L.S.Hashing

Projection based [Indyk et al.’04]

Pick regular grid: Shift and rotate randomly.

Hash function is h : p 7→ closest grid point.

Gives ρ = log1/P2

1

P1
' 1/c.

Near optimal [Andoni-Indyk’06]

Project onto Rt , constant t .

Grid of balls: p can hit empty space: hash till ball is hit.

Gives ρ = 1/c2 + O(log t/
√

t),

Space O∗(n1/(1+ε)2

), query O∗(n1+1/(1+ε)2

)

overview
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Amplification

Hash-table

LSH creates hash-table using (amplified) hash functions by concatenation:

g(p) = [h1(p), h2(p), · · · , hk(p)], hi ∈R H.

If the range of g is too large; to avoid empty buckets, we may combine the

hi(p) into a new integer φ(p) < g(p); see, e.g., Euclidean space 1-dim hashing
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Construction

Preprocess

Having defined H and hash-function g:

Select L hashing functions g1, . . . , gL.

Initialize L (sparse) hashtables, hash all points to all tables using g (or φ).

Large k ⇒ larger gap between P1, P2. Small P1 ⇒ larer L so as to find

neighbors. A practical choice is L = 5 (or 6).
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Range Search

Range (r, c)-Neighbor search

Input: r, c, query q i from 1 to L each item p in bucket gi(q) d(q, p) < cr

output p

Decision problem: "return p" instead of "output p".

At end "return FAIL"; may also FAIL if many examined points.
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NN search

Approximate NN

Input: query q Let b←Null; db ←∞ i from 1 to L each item p in bucket

gi(q) large number of retrieved items (e.g. > 3L) b d(q, p) < db

b← p; db ← d(q, p) b

Theoretical bounds for c(1 + ε)-NN by reduction to ((1 + ε)i , c)-Neighbor

decision problems, i = 1, 2, . . . , log1+ε d.
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Known LSH-able metrics

Hamming distance,

L2: Euclidean distance,

L1: Manhattan distance,

Lk distance for any k ∈ [0, 2),

L2 distance on a sphere,

Cosine similarity,

Jaccard coefficient.

Recall distlk (x, y) = k

√√√√ d∑
i=1

(xi − yi)k .

[Andoni-Indyk:J.ACM’08]
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Hamming distance

Given strings x , y of length d, their Hamming distance dH(x, y) is the number of

positions at which x and y differ.

Example

Let x = 10010 and y = 10100. Then, dH(x, y) = 2.
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Definition of hash functions

Recall idea . Given x = (x1, . . . , xd) ∈ {0, 1}d :

H = {hi(x) = xi : i = 1, . . . , d}.

Obviously, |H| = d.

Pick uniformly at random h ∈R H: Then prob[h(x) 6= h(y)] = dH(x, y)/d,

prob[h(x) = h(y)] = 1− dH(x, y)/d.

The family H is (r1, r2, 1− r1/d, 1− r2/d)-sensitive, for r1 < r2.
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LSH in Hamming Space

However probabilities 1− r1/d, 1− r2/d can be close to each other.

Amplification

Given parameter k , define new family G by concatenation:

G = {g : {0, 1}d → {0, 1}k | g(x) = [h1(x), · · · , hk(x)]},

where hi ∈R H.

-- We must have L < |G| = dk , so as to pick L different g’s.

-- The range of each g is [0, 2k), so k < lg n.

-- May further use φ(·) to avoid empty buckets; cf. Euclidean space 1-dim hashing .
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Build Hash-tables

Build

Pick uniformly at random L functions g1, . . . , gL ∈R G (assuming L < dk ) i

from 1 to L Initialize (one-dim) hash-table Ti , of size 2k : for each p ∈ P, store p

in bucket gi(p).

Complexity

Time to build: O(Lnk) H-function calls.

Space: L hashtables and n pointers to strings per table = O(Ln) pointers.

Also store n strings = O(dn) bits.

(r, c)-Neighbors: Query = O(L(k + d)), assuming O(1) strings per bucket.
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Euclidean Space

Recall: distl2(x, y)2 =
d∑

i=1

(xi − yi)
2.

Let point p ∈ Rd , and d-vector v ∼ N (0, 1)d have coordinates identically

independently distributed (i.i.d.) by the standard normal. Set w ∈ N∗, pick t

uniformly ∈R [0,w). Define:

h(p) = bp · v + t

w
c ∈ Z;

essentially: project p on the line of v , shift by t , partition into cells of length w .

The optimal value for w depends on P and q. In general, w = 4 is good.

Also k = 4 (or 5), and L is 5 (or 6).
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Normal distribution

Vector v ∼ N (0, 1)d has coordinates distributed according to the standard

normal (Gaussian) distribution:

vi ∼ N (0, 1), i = 1, 2, . . . , d :

with mean µ = 0, variance σ2 = 1 (σ is the standard deviation).

The bell curve:
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Normal from Uniform

Given uniform U generator [Wikipedia]:

Marsaglia: Use independent uniform U,V ∈R (−1, 1), S = U2 + V 2. If

S ≥ 1 then start over, otherwise

X = U

√
−2 ln S

S
, Y = V

√
−2 ln S

S

are independent and standard normally distributed.
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Hash-table

We may build a k-dimensional hash-table with indexing function:

g(p) = [h1(p), h2(p), . . . , hk(p)].

Many buckets shall be empty. Hence build 1-dim hash-table with classic index:

1-dimensional hash-function

φ(p) = (r1h1(p) + r2h2(p) + · · ·+ rkhk(p) mod M) mod TableSize,

where int ri ∈R Z, prime M = 232 − 5 if hi(p) are int, TableSize= n/2 (or n).

Recall (a + b) mod m = ((a mod m) + (b mod m)) mod m.
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Hashing trick

Remember object IDs so as not to search entire bucket.

Object ID

ID(p) = r1h1(p) + r2h2(p) + · · ·+ rkhk(p) mod M

is locality sensitive: depends on w -length cells on the v -lines.

Then indexing hash-function is φ(p) = ID(p) mod TableSize.

Store ID along with pointer to object.

Search follows pointers only for p: ID(p) =ID(q).

Can have smaller TableSize= n/8 or n/16 (heuristic choice).
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Hash-function

Recall distl1(x, y) =
d∑

i=1

|xi − yi |.

Consider Rd , r is the radius of the range search.

Pick reals: w � r , uniformly distributed si ∈R [0,w), i = 0, 1, . . . , d − 1.

Construct d-dimensional hashtable, corresponding to grid shifted by the si ’s,

where every cell is a bucket; the cell size is determined by w .

Locality sensitive function

Let ai = bxi − si

w
c ∈ Z i = 0, 1, . . . , d − 1, then:

h(x) = ad−1 + m · ad−2 + · · ·+ md−1 · a0, m > maxi ai .

By concatenation, hash-function

g(x) = [h1(x), h2(x), · · · , hk(x)].
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LSH for Cosine distance / similarity

Consider Rd , equipped with cosine similarity of two vectors:

cos(x, y) = (x · y)/(‖x‖ · ‖y‖),

which expresses the angle between vectors x, y .

For comparing documents or, generally, long vectors based on direction, not

length.

Shall be approximated by random projections (next slide).
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Random projection

Let ri ∼ N (0, 1)d . Define hi(x) =

{
1, if ri · x ≥ 0

0, if ri · x < 0
.

Then F = {hi(x) | for every ri ∼ N (0, 1)d} is a locality sensitive family.

Intuition: Each ri is normal to a hyperplane. If two vectors lie on the same side of

many random hyperplanes, then very likely they are similar [Andoni-Indyk’08].

Lemma

Two vectors match with probability proportional to their cosine.

[Amplification] Given parameter k , define new family G(F) by concatenation:

G(F) = {g : Rd → {0, 1}k | g(x) = [h1(x), h2(x), · · · , hk(x)]}.
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