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Querying a pointset

High-dimensional geometry is everywhere: Conformation space,
images, the web, bio, . . .
Queries in a database can be interpreted geometrically: records
are high-dim points, record queries are queries on the points.
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A typical query interpreted geometrically

date of birth

salary

3000

4000

19500000 19559999

G. Ometer
born: Aug 19, 1954
salary: $3200
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A query in 3 dimensions

date of birth

salary

3000

4000

19500000 19559999

2

4

chlidren

Ioannis Z. Emiris (and Christodoulos Fragoudakis) () Orthogonal Range Searching CompGeom’13 6 / 44



The geometric approach

We are interested in answering queries on d fields of the records
in our database.
Transform the records to points in d-dimensional space.
The transformed query asks for all points inside a d-dimensional
axis-parallel box (may be unbounded).
Such a query is called ‘‘rectangular’’ or ‘‘orthogonal’’ range query.
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Lower bounds in Rd

Trivial
Ω(k), where k = size of output.

Decision tree model

S = {(0, . . . ,0, xi ,0, . . . ,0) : −a ≤ xi ≤ a, xi 6= 0}, a ∈ N∗,

has n = 2da points. The following queries return distinct sets 6= ∅:

[−b1, c1]× · · · × [−bd, cd], 1 ≤ bi , ci ≤ a.

There are a2d queries. A decision tree has log height = Ω(d lg n).

Semigroup ops
Dynamic data structures have query time = Ω((lg n)d) [Feldman’81]
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The problem

Data
A set of points P = {p1, p2, . . . , pn} in 1-dimensional space (a set of real
numbers).

Query
Which points lie inside a ‘‘1-dimensional query rectangle’’? i.e. inside
an interval [x : x ′]?
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Efficient Data Structures

Arrays
Solve it: O(n) space, O(n log n) preprocess, O(k + log n) query
But, do not generalize in higher dim,
do not allow efficient updates: O(n).

Balanced Binary Search Trees (BBST)
The leaves of T store the points of P,
internal nodes store splitting values that guide the search.
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Balanced Binary Search Trees

v

xv

xv < xjxi ≤ xv

pi pj
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A search with the interval [18 : 77]
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A search with the interval [x, x ′]

Search for x and x ′ in T . The search ends to leaves µ and µ′.
Report all points stored at leaves between µ and µ′ plus, possibly,
the points stored at µ and µ′.

Remark
The leaves to be reported are the ones of subtrees that are rooted at
nodes whose parents are on the search paths to µ and µ′.
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The selected subtrees

µ µ′

root(T )

vsplit
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Algorithms

FindSplitNode(T , x, x ′)
v← root(T)
while v is not a leaf and
(x ′ ≤ xv or x > xv) do

if x ′ ≤ xv then
v← lc(v)

else
v← rc(v)

return v

1D-RangeQuery(T , [x : x ′])
vsplit ←
FindSplitNode(T , x, x ′)
if vsplit is a leaf then

check if xvsplit must be
reported

else {follow the path to x }
v← lc(vsplit )
while v is not a leaf do

if x ≤ xv then
ReportSubtree(rc(v))
{subtrees right of path}
v← lc(v)

else
v← rc(v)

check if xv must be
reported
. . .
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Correctness and Performance

Any reported point lies in the query range.
Any point in the range is reported.

O(n) storage.
O(n log n) preprocessing.
O(log n) update.
Θ(n) worst case case query cost.
O(k + log n) output sensitive query cost: O(k) to report the points
plus O(log n) to follow the paths to x, x ′.
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Priority queue

Implemented by heap: min element at root.
O(n) storage.
O(n) construction time.
O(log n) update time.
O(n) for [a,a′] query, O(k) for (−∞,a′]
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The problem

Data
A set of points P = {p1, p2, . . . , pn} in the plane.

Query
Which points lie inside a query rectangle [x : x ′]× [y : y′]?

Remark
Point p = (px , py) lies inside this rectangle iff px ∈ [x, x ′] and
py ∈ [y, y′].
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The way the plane is subdivided
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The corresponding binary tree
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Algorithm

BuildKdTree(P,depth)

if P contains only one point then
return a leaf storing this point

else
if depth is even then

split P with vertical l through median x-coord of points in P
P1 ← the set of points left of l or on l
P2 ← the set of points right of l

else
split P with horizontal l through median y-coord of points in P
P1 ← the set of points below l or on l
P2 ← the set of points above l

vleft ← BuidKdTree(P1,depth + 1)
vright ← BuidKdTree(P2,depth + 1)
create a node v storing l
lc(v)→ vleft

rc(v)→ vright

return v
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Building time and storage

Remarks
We split at the n

2 -th smallest (median) coordinate: O(n) time.
Preprocessing involves sorting both on x- and y-coordinate.

The building time satisfies the recurrence:

T(n) =

{
O(1) if n = 1
O(n) + 2T(n

2 ) if n > 1

T(n) = O(n log n) which subsumes the preprocessing time.
Finding median = O(n)

O(n) storage: points stored at leaves, leaf contains bucket of ≥ 1
points; alternatively stored at internal (splitting) nodes.
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Nodes in a kd-tree and regions in the plane
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Regions and the query algorithm

Internal nodes of a kd-tree correspond to rectangular regions of
the plane: can be unbounded on one or more sides.
Regions of nodes at a specific level partition the plane.
region(root(T)) is the whole plane.
Point stored at (leaf of) subtree rooted at v iff it lies in region(v)
(alternative: points stored at internal nodes)
Search the subtree of v only if the query rectangle intersects
region(v).
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A query on a kd-tree
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Algorithm

SearchKdTree(v,R)
if v is a leaf then

report point stored at v if in R
else

if region(lc(v)) is fully contained in R
then

ReportSubtree(lc(v))
else

if region(lc(v)) intersects R then
SearchKdTree(lc(v),R)

if region(rc(v)) is fully contained in R
then

ReportSubtree(rc(v))
else

if region(rc(v)) intersects R then
SearchKdTree(rc(v),R)

Works for any query
range R (e.g. triangles).
O(k) to report k points.
How many other nodes v
are visited?
For these v, query range
intersects region(v)
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Query time analysis

Any vertical line intersects region(lc(root(T))) or
region(rc(root(T))) but not both.
If a vertical line intersects region(lc(root(T))) it always intersects
the regions corresponding to both children of lc(root(T)).
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Query time analysis

The number of intersected regions in a kd-tree storing n points,
satisfies the recurrence:

Q(n) =

{
O(1) if n = 1
2 + 2Q(n

4 ) if n > 1

Q(n) = O(
√

n). The total query time is O(
√

n + k)

The analysis is rather pessimistic: In many practical situations
the query range is small and will intersect much fewer regions.
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kd-tree in higher dimensions

kd-trees also used in 3 or a higher dimension d, assuming d not too
large; actually interesting for d � lg n.

storage = O(d · n)

construction of balanced tree: O(d · n log n) by sorting per
dimension, O(n log n) by linear-time median computation.
insert/delete into balanced kd-tree = O(log n).
range query = O(d · n1−1/d + k).
nearest neighbor = O(d · n1−1/d), but O(log n) expected for
sufficiently random (not necessarily uniform) points.
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The Range Tree approach

2D range queries are two 1D range queries one on x− and one on
y−coordinate.

Find first the points whose x−coordinate lies in [x : x ′] and worry
about the y−coordinate later.
During the 1D range query a logarithmic number of subtrees is
selected.
The leaves of these subtrees contain exactly the points whose
x−coordinate lies in [x : x ′].
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The Range Tree approach

Canonical Subset of a node v

The subset of points P(v) of P stored in the leaves of the subtree rooted
at v; clearly, P(root(T )) = P.

The subset of points whose x−coordinate lies in the query range is
a disjoint union of O(log n) canonical subsets.
We are not interested in all the points in such subsets.
Report the ones whose y−coordinate lies in [y : y′]: This is
another 1D query.
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A 2-dimensional Range Tree

v

P (v)

P (v)

T

Tassoc(v) binary search tree
on y-coordinates

binary search tree
on x-coordinates
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Algorithm

Build2DRangeTree(P)
Build a BST Tassoc on the set Py

Store the points of P at the leaves of
Tassoc

if P contains only one point then
Create a leaf v storing this point
Associate Tassoc with v

else
Split P into Pleft and Pright through
xmid

vleft ← Build2DRangeTree(Pleft)
vright ← Build2DRangeTree(Pright)
create a node v storing xmid

lc(v)← vleft

rc(v)← vright

Associate Tassoc with v
return v

Preprocess maintains 2
lists of points:
sorted on x−coordinate
and on y−coordinate.
Time spent at node in
main tree: linear in size
of its canonical subset.
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Range Tree storage

p

p

p

p
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Storage and costruction time

Each point is stored only once at a given depth.
The total depth is O(log n): the amount of storage is O(n log n).
Time spent at node in main tree is linear in size of its canonical
subset, hence total construction time equals amount of storage.
Presorting is O(n log n).
Total construction time is O(n log n).
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Algorithm

2DRangeQuery(T , [x : x ′]× [y : y′])

vsplit ← FindSplitNode(T , x, x ′)
if vsplit is a leaf then

check if xvsplit must be reported
else {follow the path to x }

v← lc(vsplit )
while v is not a leaf do

if x ≤ xv then
1DRangeQuery(Tassoc(rc(v)), [y : y′])
v← lc(v)

else
v← rc(v)

check if xv must be reported
. . .
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Query time analysis

Time to report points whose y−coordinate ∈ [y : y′] is
O(log n + kv), where kv = #points reported in this call.

Q(n) =
∑

v O((log n) + kv), summing over all nodes visited.∑
v kv = k, the total number of reported points. The search paths

of x and x ′ have length O(log n):
∑

v O(log n) = O(log2 n).
Q(n) = O(log2 n + k).
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Higher-Dimensional Range Trees
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Higher-Dimensional Range Trees

P is a set on n points in d−dimensional space (d ≥ 2):
O(n logd−1 n) storage,
O(n logd−1 n) construction time,
O(logd n + k) query time.
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The idea of Fractional Cascading

S1, S2 are sets of objects with real number keys.

Problem: report all objects in S1 and S2 whose keys lie in [y : y′].
The keys are in sorted order in arrays A1 and A2.
Solution: two binary searches in A1 and A2.
If S2 ⊆ S1 we can avoid the binary search in A2.
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A Layered Range Tree
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3 10 19 23 30 37 49 59 62 70 80 89 95 99

3 10 19 37 62 80 99 23 30 49 59 70 89 95

10 19 37 80 3 62 99 23 30 49 95 59 70 89

19 80 10 37 3 99 62 30 49 23 95 59 70 89

19 80 10 37 3 99 30 23 89 70
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A query in a Layered Range Tree

The query range is [x : x ′]× [y : y′].

At vsplit find the entry in A(vsplit) whose y−coordinate ≥ y, in
O(log n) time.
For all O(log n) nodes on the paths to x, x ′, maintain pointers to
entries in A whose y−coordinate ≥ y, in O(1) time.
Report points of A(v) in O(1 + kv) time, kv = #reported points at
node v.
Total query time becomes O(log n + k).
Improves query time of higher-dim range trees by a logarithmic
factor.
[Chazelle-Guibas’86]
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