Orthogonal Range Searching

Ioannis Z. Emiris (and Christodoulos Fragoudakis)

Outline

(1) Introduction
(2) 1-Dimensional Range Searching
(3) 2-Dimensional

- kd-Trees
- Range Trees
- Fractional Cascading

Outline

(1) Introduction

(2) 1-Dimensional Range Searching

(3) 2-Dimensional

- kd-Trees
- Range Trees
- Fractional Cascading

Querying a pointset

- High-dimensional geometry is everywhere: Conformation space, images, the web, bio, ...
- Queries in a database can be interpreted geometrically: records are high-dim points, record queries are queries on the points.

A typical query interpreted geometrically

A query in 3 dimensions

The geometric approach

- We are interested in answering queries on d fields of the records in our database.
- Transform the records to points in d-dimensional space.
- The transformed query asks for all points inside a d-dimensional axis-parallel box (may be unbounded).
- Such a query is called "rectangular" or "orthogonal" range query.

Lower bounds in \mathbb{R}^{d}

Trivial

$\Omega(k)$, where $k=$ size of output.

Decision tree model

$$
S=\left\{\left(0, \ldots, 0, x_{i}, 0, \ldots, 0\right):-a \leq x_{i} \leq a, x_{i} \neq 0\right\}, a \in \mathbb{N}^{*}
$$

has $n=2 d a$ points. The following queries return distinct sets $\neq \emptyset$:

$$
\left[-b_{1}, c_{1}\right] \times \cdots \times\left[-b_{d}, c_{d}\right], 1 \leq b_{i}, c_{i} \leq a
$$

There are $a^{2 d}$ queries. A decision tree has log height $=\Omega(d \lg n)$.

Semigroup ops

Dynamic data structures have query time $=\Omega\left((\lg n)^{d}\right)$ [Feldman'81]

Outline

(1) Introduction

(2) 1-Dimensional Range Searching

(3) 2-Dimensional

- kd-Trees
- Range Trees
- Fractional Cascading

The problem

Data

A set of points $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ in 1-dimensional space (a set of real numbers).

Query

Which points lie inside a " 1 -dimensional query rectangle"? i.e. inside an interval $\left[x: x^{\prime}\right]$?

Efficient Data Structures

Arrays

- Solve it: $O(n)$ space, $O(n \log n)$ preprocess, $O(k+\log n)$ query
- But, do not generalize in higher dim,
- do not allow efficient updates: $O(n)$.

Balanced Binary Search Trees (BBST)

- The leaves of T store the points of P,
- internal nodes store splitting values that guide the search.

Balanced Binary Search Trees

A search with the interval [18:77]

A search with the interval $\left[x, x^{\prime}\right]$

- Search for x and x^{\prime} in T. The search ends to leaves μ and μ^{\prime}.
- Report all points stored at leaves between μ and μ^{\prime} plus, possibly, the points stored at μ and μ^{\prime}.

A search with the interval $\left[x, x^{\prime}\right]$

- Search for x and x^{\prime} in T. The search ends to leaves μ and μ^{\prime}.
- Report all points stored at leaves between μ and μ^{\prime} plus, possibly, the points stored at μ and μ^{\prime}.

Remark

The leaves to be reported are the ones of subtrees that are rooted at nodes whose parents are on the search paths to μ and μ^{\prime}.

The selected subtrees

Algorithms

FindSplitNode $\left(T, x, x^{\prime}\right)$

$$
v \leftarrow \operatorname{root}(T)
$$

while v is not a leaf and
$\left(x^{\prime} \leq x_{v}\right.$ or $\left.x>x_{v}\right)$ do
if $x^{\prime} \leq x_{v}$ then

$$
v \leftarrow l c(v)
$$

else

$$
v \leftarrow r c(v)
$$

return v

1D-RangeGuery $\left(T,\left[x: x^{\prime}\right]\right)$

$v_{\text {split }} \leftarrow$
FindSplitNode(T, $\left.x, x^{\prime}\right)$
if $v_{\text {split }}$ is a leaf then
check if $x_{v_{\text {split }}}$ must be reported
else \{follow the path to $x\}$
$v \leftarrow l c\left(v_{\text {split }}\right)$
while v is not a leaf do
if $x \leq x_{v}$ then
ReportSubtree $(r c(v))$ \{subtrees right of path\}
$v \leftarrow l c(v)$
else
$v \leftarrow r c(v)$
check if x_{v} must be reported

Correctness and Performance

- Any reported point lies in the query range.
- Any point in the range is reported.

Correctness and Performance

- Any reported point lies in the query range.
- Any point in the range is reported.
- $O(n)$ storage.
- $O(n \log n)$ preprocessing.
- $O(\log n)$ update.
- $\Theta(n)$ worst case case query cost.

Correctness and Performance

- Any reported point lies in the query range.
- Any point in the range is reported.
- $O(n)$ storage.
- $O(n \log n)$ preprocessing.
- $O(\log n)$ update.
- $\Theta(n)$ worst case case query cost.
- $O(k+\log n)$ output sensitive query cost: $O(k)$ to report the points plus $O(\log n)$ to follow the paths to x, x^{\prime}.

Priority queue

- Implemented by heap: min element at root.
- $O(n)$ storage.
- $O(n)$ construction time.
- $O(\log n)$ update time.
- $O(n)$ for $\left[a, a^{\prime}\right]$ query, $O(k)$ for $\left(-\infty, a^{\prime}\right]$

Outline

(1) Introduction

(2) 1-Dimensional Range Searching

(3) 2-Dimensional

- kd-Trees
- Range Trees
- Fractional Cascading

The problem

Data

A set of points $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ in the plane.

Query

Which points lie inside a query rectangle $\left[x: x^{\prime}\right] \times\left[y: y^{\prime}\right]$?

Remark

Point $p=\left(p_{x}, p_{y}\right)$ lies inside this rectangle iff $p_{x} \in\left[x, x^{\prime}\right]$ and $p_{y} \in\left[y, y^{\prime}\right]$.

The way the plane is subdivided

$$
\begin{aligned}
& p_{2} \bullet \quad p_{1} \bullet \quad \bullet p_{8} \\
& p_{3} \text { • } \\
& \text { - } p_{7} \\
& p_{5} \\
& p_{4} \text { • } \\
& \text { - } p_{10}
\end{aligned}
$$

The way the plane is subdivided

The corresponding binary tree

Algorithm

BuildKdTree (P, depth)

if P contains only one point then return a leaf storing this point

else

if depth is even then
split P with vertical l through median x-coord of points in P
$P_{1} \leftarrow$ the set of points left of l or on l
$P_{2} \leftarrow$ the set of points right of l
else
split P with horizontal l through median y-coord of points in P
$P_{1} \leftarrow$ the set of points below l or on l
$P_{2} \leftarrow$ the set of points above l
$v_{\text {left }} \leftarrow \operatorname{BuidKdTree}\left(P_{1}\right.$, depth +1$)$
$v_{\text {right }} \leftarrow$ BuidKdTree $\left(P_{2}\right.$, depth +1$)$
create a node v storing l
$l c(v) \rightarrow v_{l e f t}$
$r c(v) \rightarrow v_{\text {right }}$
return v

Building time and storage

Remarks

- We split at the $\frac{n}{2}$-th smallest (median) coordinate: $O(n)$ time.
- Preprocessing involves sorting both on x - and y-coordinate.
- The building time satisfies the recurrence:

$$
T(n)= \begin{cases}O(1) & \text { if } n=1 \\ O(n)+2 T\left(\frac{n}{2}\right) & \text { if } n>1\end{cases}
$$

- $T(n)=O(n \log n)$ which subsumes the preprocessing time.
- Finding median $=O(n)$
- $O(n)$ storage: points stored at leaves, leaf contains bucket of ≥ 1 points; alternatively stored at internal (splitting) nodes.

Nodes in a kd-tree and regions in the plane

Regions and the query algorithm

- Internal nodes of a kd-tree correspond to rectangular regions of the plane: can be unbounded on one or more sides.
- Regions of nodes at a specific level partition the plane.
- region $(\operatorname{root}(T))$ is the whole plane.
- Point stored at (leaf of) subtree rooted at v iff it lies in region(v) (alternative: points stored at internal nodes)
- Search the subtree of v only if the query rectangle intersects region (v).

A query on a kd-tree

Algorithm

SearchKdTree (v, R)

if v is a leaf then report point stored at v if in R

else

if region $(l c(v))$ is fully contained in R then

ReportSubtree $(l c(v))$
else
if region $(l c(v))$ intersects R then SearchKdTree $(l c(v), R)$
if region $(r c(v))$ is fully contained in R then

ReportSubtree $(r c(v))$
else
if region $(r c(v))$ intersects R then SearchKdTree $(r c(v), R)$

- Works for any query range R (e.g. triangles).
- $O(k)$ to report k points.
- How many other nodes v are visited?
- For these v, query range intersects region(v)

Query time analysis

- Any vertical line intersects region $(\operatorname{lc}(\operatorname{root}(T)))$ or $\operatorname{region}(\operatorname{rc}(\operatorname{root}(T)))$ but not both.
- If a vertical line intersects region $(l c(\operatorname{root}(T)))$ it always intersects the regions corresponding to both children of $l c(\operatorname{root}(T))$.

Query time analysis

- The number of intersected regions in a kd-tree storing n points, satisfies the recurrence:

$$
Q(n)= \begin{cases}O(1) & \text { if } n=1 \\ 2+2 Q\left(\frac{n}{4}\right) & \text { if } n>1\end{cases}
$$

- $Q(n)=O(\sqrt{n})$. The total query time is $O(\sqrt{n}+k)$
- The analysis is rather pessimistic: In many practical situations the query range is small and will intersect much fewer regions.

kd-tree in higher dimensions

kd-trees also used in 3 or a higher dimension d, assuming d not too large; actually interesting for $d \ll \lg n$.

- storage $=O(d \cdot n)$
- construction of balanced tree: $O(d \cdot n \log n)$ by sorting per dimension, $O(n \log n)$ by linear-time median computation.
- insert/delete into balanced kd-tree $=O(\log n)$.
- range query $=O\left(d \cdot n^{1-1 / d}+k\right)$.
- nearest neighbor $=O\left(d \cdot n^{1-1 / d}\right)$, but $O(\log n)$ expected for sufficiently random (not necessarily uniform) points.

The Range Tree approach

- 2 D range queries are two 1 D range queries one on x - and one on y-coordinate.

The Range Tree approach

- 2D range queries are two 1D range queries one on x - and one on y-coordinate.
- Find first the points whose x-coordinate lies in $\left[x: x^{\prime}\right]$ and worry about the y-coordinate later.

The Range Tree approach

- 2D range queries are two 1D range queries one on x - and one on y-coordinate.
- Find first the points whose x-coordinate lies in $\left[x: x^{\prime}\right]$ and worry about the y-coordinate later.
- During the 1 D range query a logarithmic number of subtrees is selected.

The Range Tree approach

- 2D range queries are two 1D range queries one on x - and one on y-coordinate.
- Find first the points whose x-coordinate lies in $\left[x: x^{\prime}\right]$ and worry about the y-coordinate later.
- During the 1 D range query a logarithmic number of subtrees is selected.
- The leaves of these subtrees contain exactly the points whose x-coordinate lies in $\left[x: x^{\prime}\right]$.

The Range Tree approach

Canonical Subset of a node v

The subset of points $P(v)$ of P stored in the leaves of the subtree rooted at v; clearly, $P(\operatorname{root}(\mathcal{T}))=P$.

The Range Tree approach

Canonical Subset of a node v

The subset of points $P(v)$ of P stored in the leaves of the subtree rooted at v; clearly, $P(\operatorname{root}(\mathcal{T}))=P$.

- The subset of points whose x-coordinate lies in the query range is a disjoint union of $O(\log n)$ canonical subsets.

The Range Tree approach

Canonical Subset of a node v

The subset of points $P(v)$ of P stored in the leaves of the subtree rooted at v; clearly, $P(\operatorname{root}(\mathcal{T}))=P$.

- The subset of points whose x-coordinate lies in the query range is a disjoint union of $O(\log n)$ canonical subsets.
- We are not interested in all the points in such subsets.

The Range Tree approach

Canonical Subset of a node v

The subset of points $P(v)$ of P stored in the leaves of the subtree rooted at v; clearly, $P(\operatorname{root}(\mathcal{T}))=P$.

- The subset of points whose x-coordinate lies in the query range is a disjoint union of $O(\log n)$ canonical subsets.
- We are not interested in all the points in such subsets.
- Report the ones whose y-coordinate lies in $\left[y: y^{\prime}\right]$: This is another 1D query.

A 2-dimensional Range Tree

Algorithm

Build2DRangeTree (P)

Build a BST $\mathcal{T}_{\text {assoc }}$ on the set P_{y}
Store the points of P at the leaves of
$\mathcal{T}_{\text {assoc }}$
if P contains only one point then Create a leaf v storing this point Associate $\mathcal{T}_{\text {assoc }}$ with v
else
Split P into $P_{\text {left }}$ and $P_{\text {right }}$ through
$x_{\text {mid }}$
$v_{l e f t} \leftarrow \operatorname{Build} 2 D R a n g e T r e e\left(P_{l e f t}\right)$
$v_{\text {right }} \leftarrow$ Build2DRangeTree $\left(P_{\text {right }}\right)$
create a node v storing $x_{\text {mid }}$
$l c(v) \leftarrow v_{l e f t}$
$r c(v) \leftarrow v_{\text {right }}$
Associate $\mathcal{T}_{\text {assoc }}$ with v
return v

Range Tree storage

Storage and costruction time

- Each point is stored only once at a given depth.
- The total depth is $O(\log n)$: the amount of storage is $O(n \log n)$.
- Time spent at node in main tree is linear in size of its canonical subset, hence total construction time equals amount of storage.
- Presorting is $O(n \log n)$.
- Total construction time is $O(n \log n)$.

Algorithm

2DRangeQuery $\left(\mathcal{T},\left[x: x^{\prime}\right] \times\left[y: y^{\prime}\right]\right)$

$v_{\text {split }} \leftarrow \operatorname{FindSplitNode}\left(\mathcal{T}, x, x^{\prime}\right)$
if $v_{\text {split }}$ is a leaf then
check if $x_{v_{\text {spit }}}$ must be reported
else \{follow the path to x \}
$v \leftarrow l c\left(v_{\text {split }}\right)$
while v is not a leaf do
if $x \leq x_{v}$ then
1DRange $\operatorname{Guery}\left(\mathcal{T}_{\text {assoc }}(r c(v)),\left[y: y^{\prime}\right]\right)$

$$
v \leftarrow l c(v)
$$

else

$$
v \leftarrow r c(v)
$$

check if x_{v} must be reported

Query time analysis

- Time to report points whose y-coordinate $\in\left[y: y^{\prime}\right]$ is $O\left(\log n+k_{v}\right)$, where $k_{v}=\#$ points reported in this call.

Query time analysis

- Time to report points whose y-coordinate $\in\left[y: y^{\prime}\right]$ is $O\left(\log n+k_{v}\right)$, where $k_{v}=\#$ points reported in this call.
- $Q(n)=\sum_{v} O\left((\log n)+k_{v}\right)$, summing over all nodes visited.

Query time analysis

- Time to report points whose y-coordinate $\in\left[y: y^{\prime}\right]$ is $O\left(\log n+k_{v}\right)$, where $k_{v}=\#$ points reported in this call.
- $Q(n)=\sum_{v} O\left((\log n)+k_{v}\right)$, summing over all nodes visited.
- $\sum_{v} k_{v}=k$, the total number of reported points. The search paths of x and x^{\prime} have length $O(\log n): \sum_{v} O(\log n)=O\left(\log ^{2} n\right)$.

Query time analysis

- Time to report points whose y-coordinate $\in\left[y: y^{\prime}\right]$ is $O\left(\log n+k_{v}\right)$, where $k_{v}=\#$ points reported in this call.
- $Q(n)=\sum_{v} O\left((\log n)+k_{v}\right)$, summing over all nodes visited.
- $\sum_{v} k_{v}=k$, the total number of reported points. The search paths of x and x^{\prime} have length $O(\log n): \sum_{v} O(\log n)=O\left(\log ^{2} n\right)$.
- $Q(n)=O\left(\log ^{2} n+k\right)$.

Higher-Dimensional Range Trees

Higher-Dimensional Range Trees

- P is a set on n points in d-dimensional space ($d \geq 2$):
- $O\left(n \log ^{d-1} n\right)$ storage,
- $O\left(n \log ^{d-1} n\right)$ construction time,
- $O\left(\log ^{d} n+k\right)$ query time.

The idea of Fractional Cascading

- S_{1}, S_{2} are sets of objects with real number keys.

The idea of Fractional Cascading

- S_{1}, S_{2} are sets of objects with real number keys.
- Problem: report all objects in S_{1} and S_{2} whose keys lie in $\left[y: y^{\prime}\right]$.

The idea of Fractional Cascading

- S_{1}, S_{2} are sets of objects with real number keys.
- Problem: report all objects in S_{1} and S_{2} whose keys lie in $\left[y: y^{\prime}\right]$.
- The keys are in sorted order in arrays A_{1} and A_{2}.

The idea of Fractional Cascading

- S_{1}, S_{2} are sets of objects with real number keys.
- Problem: report all objects in S_{1} and S_{2} whose keys lie in [$\left.y: y^{\prime}\right]$.
- The keys are in sorted order in arrays A_{1} and A_{2}.
- Solution: two binary searches in A_{1} and A_{2}.

The idea of Fractional Cascading

- S_{1}, S_{2} are sets of objects with real number keys.
- Problem: report all objects in S_{1} and S_{2} whose keys lie in [$\left.y: y^{\prime}\right]$.
- The keys are in sorted order in arrays A_{1} and A_{2}.
- Solution: two binary searches in A_{1} and A_{2}.
- If $S_{2} \subseteq S_{1}$ we can avoid the binary search in A_{2}.

The idea of Fractional Cascading

- S_{1}, S_{2} are sets of objects with real number keys.
- Problem: report all objects in S_{1} and S_{2} whose keys lie in [$\left.y: y^{\prime}\right]$.
- The keys are in sorted order in arrays A_{1} and A_{2}.
- Solution: two binary searches in A_{1} and A_{2}.
- If $S_{2} \subseteq S_{1}$ we can avoid the binary search in A_{2}.

A Layered Range Tree

A query in a Layered Range Tree

- The query range is $\left[x: x^{\prime}\right] \times\left[y: y^{\prime}\right]$.

A query in a Layered Range Tree

- The query range is $\left[x: x^{\prime}\right] \times\left[y: y^{\prime}\right]$.
- At $v_{\text {split }}$ find the entry in $A\left(v_{\text {split }}\right)$ whose y-coordinate $\geq y$, in $O(\log n)$ time.

A query in a Layered Range Tree

- The query range is $\left[x: x^{\prime}\right] \times\left[y: y^{\prime}\right]$.
- At $v_{\text {split }}$ find the entry in $A\left(v_{\text {split }}\right)$ whose y-coordinate $\geq y$, in $O(\log n)$ time.
- For all $O(\log n)$ nodes on the paths to x, x^{\prime}, maintain pointers to entries in A whose y-coordinate $\geq y$, in $O(1)$ time.

A query in a Layered Range Tree

- The query range is $\left[x: x^{\prime}\right] \times\left[y: y^{\prime}\right]$.
- At $v_{\text {split }}$ find the entry in $A\left(v_{\text {split }}\right)$ whose y-coordinate $\geq y$, in $O(\log n)$ time.
- For all $O(\log n)$ nodes on the paths to x, x^{\prime}, maintain pointers to entries in A whose y-coordinate $\geq y$, in $O(1)$ time.
- Report points of $A(v)$ in $O\left(1+k_{v}\right)$ time, $k_{v}=\#$ reported points at node v.

A query in a Layered Range Tree

- The query range is $\left[x: x^{\prime}\right] \times\left[y: y^{\prime}\right]$.
- At $v_{\text {split }}$ find the entry in $A\left(v_{\text {split }}\right)$ whose y-coordinate $\geq y$, in $O(\log n)$ time.
- For all $O(\log n)$ nodes on the paths to x, x^{\prime}, maintain pointers to entries in A whose y-coordinate $\geq y$, in $O(1)$ time.
- Report points of $A(v)$ in $O\left(1+k_{v}\right)$ time, $k_{v}=\#$ reported points at node v.
- Total query time becomes $O(\log n+k)$.

A query in a Layered Range Tree

- The query range is $\left[x: x^{\prime}\right] \times\left[y: y^{\prime}\right]$.
- At $v_{\text {split }}$ find the entry in $A\left(v_{\text {split }}\right)$ whose y-coordinate $\geq y$, in $O(\log n)$ time.
- For all $O(\log n)$ nodes on the paths to x, x^{\prime}, maintain pointers to entries in A whose y-coordinate $\geq y$, in $O(1)$ time.
- Report points of $A(v)$ in $O\left(1+k_{v}\right)$ time, $k_{v}=\#$ reported points at node v.
- Total query time becomes $O(\log n+k)$.
- Improves query time of higher-dim range trees by a logarithmic factor.

A query in a Layered Range Tree

- The query range is $\left[x: x^{\prime}\right] \times\left[y: y^{\prime}\right]$.
- At $v_{\text {split }}$ find the entry in $A\left(v_{\text {split }}\right)$ whose y-coordinate $\geq y$, in $O(\log n)$ time.
- For all $O(\log n)$ nodes on the paths to x, x^{\prime}, maintain pointers to entries in A whose y-coordinate $\geq y$, in $O(1)$ time.
- Report points of $A(v)$ in $O\left(1+k_{v}\right)$ time, $k_{v}=\#$ reported points at node v.
- Total query time becomes $O(\log n+k)$.
- Improves query time of higher-dim range trees by a logarithmic factor.
- [Chazelle-Guibas'86]

