Voronoi diagram and Delaunay triangulation

Ioannis Emiris \& Vissarion Fisikopoulos

Dept. of Informatics \& Telecommunications, University of Athens

Computational Geometry, spring 2015

Outline

(1) Voronoi diagram
(2) Delaunay triangulation
(3) Algorithms and complexity

Voronoi algorithms
(4) Generalizations and Representation

Outline

(1) Voronoi diagram
(2) Delaunay triangulation
(3) Algorithms and complexity

Voronoi algorithms
(4) Generalizations and Representation

Example and definition

Sites: $P:=\left\{p_{1}, \ldots, p_{n}\right\} \subset \mathbb{R}^{2}$

Example and definition

Sites: $P:=\left\{p_{1}, \ldots, p_{n}\right\} \subset \mathbb{R}^{2}$
Voronoi cell: $q \in V\left(p_{i}\right) \Leftrightarrow \operatorname{dist}\left(q, p_{i}\right) \leq \operatorname{dist}\left(q, p_{j}\right), \forall p_{j} \in P, j \neq i$

Example and definition

Sites: $P:=\left\{p_{1}, \ldots, p_{n}\right\} \subset \mathbb{R}^{2}$
Voronoi cell: $q \in V\left(p_{i}\right) \Leftrightarrow \operatorname{dist}\left(q, p_{i}\right) \leq \operatorname{dist}\left(q, p_{j}\right), \forall p_{j} \in P, j \neq i$

Faces of Voronoi diagram

Faces of Voronoi diagram

Faces of Voronoi diagram

Faces of Voronoi diagram

Faces of Voronoi diagram

Voronoi diagram

Formalization

- sites: points $P=\left\{p_{1}, \ldots, p_{n}\right\} \subset \mathbb{R}^{2}$.
- Voronoi cell/region $V\left(p_{i}\right)$ of site p_{i} :

$$
q \in V\left(p_{i}\right) \Leftrightarrow \operatorname{dist}\left(q, p_{i}\right) \leq \operatorname{dist}\left(q, p_{j}\right), \forall p_{j} \in P, j \neq i .
$$

- Voronoi edge is the common boundary of two adjacent cells.
- Voronoi vertex is the common boundary of 3 adjacent cells, or the intersection of ≥ 2 (hence ≥ 3) Voronoi edges.
Generically, of exactly 3 Voronoi edges.
Voronoi diagram of $P=$ dual of Delaunay triangulation of P.
- Voronoi cell \leftrightarrow vertex of Delaunay triangles: site
- neighboring cells (Voronoi edge) \leftrightarrow Delaunay edge, defined by corresponding sites (line of Voronoi edge \perp line of Delaunay edge)
- Voronoi vertex \leftrightarrow Delaunay triangle.

Outline

(1) Voronoi diagram
(2) Delaunay triangulation
(3) Algorithms and complexity Voronoi algorithms
(4) Generalizations and Representation

Triangulation

A triangulation of a pointset (sites) $P \subset \mathbb{R}^{2}$ is a collection of triplets from P, namely triangles, s.t.

- The union of the triangles covers the convex hull of P.
- Every pair of triangles intersect at a (possibly empty) common face (\emptyset, vertex, edge).
- Usually (CGAL): Set of triangle vertices $=P$.

Delaunay Triangulation: dual of Voronoi diagram

Delaunay Triangulation: dual of Voronoi diagram

Delaunay Triangulation: dual of Voronoi diagram

Delaunay Triangulation: dual of Voronoi diagram

Boris N. Delaunay
(1890-1980)

Delaunay triangulation: projection from parabola

Definition/Construction of Delaunay triangulation:

- Lift sites $p=(x) \in \mathbb{R}$ to $\widehat{p}=\left(x, x^{2}\right) \in \mathbb{R}^{2}$
- Compute the convex hull of the lifted points
- Project the lower hull to \mathbb{R}

Delaunay triangulation: going a bit higher. . .

Definition/Construction of Delaunay triangulation:

- Lift sites $p=(x, y) \in \mathbb{R}^{2}$ to $\hat{p}=\left(x, y, x^{2}+y^{2}\right) \in \mathbb{R}^{3}$
- Compute the convex hull of the lifted points
- Project the lower hull to \mathbb{R}^{2} : arbitrarily triangulate lower facets that are polygons (not triangles)

Main Delaunay property: empty sphere

Main Delaunay property: empty sphere

Main Delaunay property: empty sphere

Main Delaunay property: 1 picture proof

Thm (in $\mathbb{R}): S\left(p_{1}, p_{2}\right)$ is a Delaunay segment \Leftrightarrow its interior contains no p_{i}.

Proof. Delaunay segment $\Leftrightarrow\left(\widehat{p_{1}}, \widehat{p_{2}}\right)$ edge of the Lower Hull \Leftrightarrow no $\widehat{p_{i}}$ "below" ($\widehat{p_{1}}, \widehat{p_{2}}$) on the parabola
\Leftrightarrow no p_{i} inside the segment $\left(p_{1}, p_{2}\right)$.

Main Delaunay property: 1 picture proof

Thm (in $\left.\mathbb{R}^{2}\right): T\left(p_{1}, p_{2}, p_{3}\right)$ is a Delaunay triangle \Leftrightarrow the interior of the circle through p_{1}, p_{2}, p_{3} (enclosing circle) contains no p_{i}.
Proof. Circle $\left(p_{1}, p_{2}, p_{3}\right)$ contains no p_{i} in interior
\Leftrightarrow plane of lifted $\widehat{p}_{1}, \widehat{p}_{2}, \widehat{p}_{3}$ leaves all lifted \widehat{p}_{i} on same halfspace
$\Leftrightarrow \operatorname{CCW}\left(\widehat{p}_{1}, \widehat{p}_{2}, \widehat{p}_{3}, \widehat{p}_{i}\right)$ of same sign for all i.
Suffices to prove: p_{i} lies on $\operatorname{Circle}\left(p_{1}, p_{2}, p_{3}\right)$
$\Leftrightarrow \widehat{p}_{i}$ lies on plane of $\widehat{p}_{1}, \widehat{p}_{2}, \widehat{p}_{3} \Leftrightarrow \operatorname{CCW}\left(\widehat{p}_{1}, \widehat{p}_{2}, \widehat{p}_{3}, \widehat{p}_{i}\right)=0$.

Predicate InCircle

Given points $p, q, r, s \in \mathbb{R}^{2}$, point $s=\left(s_{x}, s_{y}\right)$ lies inside the circle through $p, q, r \Leftrightarrow$

$$
\operatorname{det}\left(\begin{array}{cccc}
p_{x} & p_{y} & p_{x}^{2}+p_{y}^{2} & 1 \\
q_{x} & q_{y} & q_{x}^{2}+q_{y}^{2} & 1 \\
r_{x} & r_{y} & r_{x}^{2}+r_{y}^{2} & 1 \\
s_{x} & s_{y} & s_{x}^{2}+s_{y}^{2} & 1
\end{array}\right)>0
$$

assuming p, q, r in clockwise order (otherwise det <0).
Lemma. InCircle $(p, q, r, s)=0 \Leftrightarrow \exists$ circle through p, q, r, s.
Proof. InCircle $(p, q, r, s)=0 \Leftrightarrow \operatorname{CCW}(\widehat{p}, \widehat{q}, \widehat{r}, \widehat{s})=0$

Delaunay faces

Theorem. Let P be a set of sites $\in \mathbb{R}^{2}$:
(i) Sites $p_{i}, p_{j}, p_{k} \in P$ are vertices of a Delaunay triangle \Leftrightarrow the circle through p_{i}, p_{j}, p_{k} contains no site of P in its interior.
(ii) Sites $p_{i}, p_{j} \in P$ form an edge of the Delaunay triangulation \Leftrightarrow there is a closed disc C that contains p_{i}, p_{j} on its boundary and does not contain any other site of P.

Triangulations of planar pointsets

Thm. Let P be set of n points in \mathbb{R}^{2}, not all colinear, $k=\#$ points on boundary of $\mathrm{CH}(P)$. Any triangulation of P has $2 n-2-k$ triangles and $3 n-3-k$ edges.

Proof.

- f: \#facets (except ∞)
- e: \#edges
- n : \#vertices

1. Euler: $n-e+(f+1)-1=1$; for d-polytope:

$$
\sum_{i=0}^{d}(-1)^{i} f_{i}=1
$$

2. Any planar triangulation: total degree $=3 f+k=2 e$.

Properties of Voronoi diagram

Lemma. $|V| \leq 2 n-5,|E| \leq 3 n-6, n=|P|$,
by Euler's theorem for planar graphs: $|V|-|E|+n-1=1$.
Max Empty Circle $C_{P}(q)$ centered at q : no interior site $p_{i} \in P$. Lem: $q \in \mathbb{R}^{2}$ is Voronoi vertex $\Leftrightarrow C(q)$ has ≥ 3 sites on perimeter
Any perpendicular bisector of segment $\left(p_{i}, p_{j}\right)$ defines a Voronoi edge $\Leftrightarrow \exists q$ on bisector s.t. $C(q)$ has only p_{i}, p_{j} on perimeter

Delaunay maximizes the smallest angle

Let T be a triangulation with m triangles.
Sort the $3 m$ angles: $a_{1} \leqslant a_{2} \leqslant \cdots \leqslant a_{3 m} . T_{a}:=\left\{a_{1}, a_{2}, \ldots, a_{3 m}\right\}$. Edge $e=\left(p_{i}, p_{j}\right)$ is illegal $\Leftrightarrow \min _{1 \leqslant i \leqslant 6} a_{i}<\min _{1 \leqslant i \leqslant 6} a_{i}^{\prime}$.

T^{\prime} obtained from T by flipping illegal e, then $T_{a}^{\prime}>_{\text {lex }} T_{a}$.

Flips yield triangulation without illegal edges.
The algorithm terminates (angles decrease), but is $O\left(n^{2}\right)$.

Insertion by flips

Outline

(1) Voronoi diagram

(2) Delaunay triangulation
(3) Algorithms and complexity

Voronoi algorithms
(4) Generalizations and Representation

Lower bound

$\Omega(n \log n)$ by reduction from sorting

Delaunay triangulation

Theorem. Let P be a set of points $\in \mathbb{R}^{2}$. A triangulation \mathcal{T} of P has no illegal edge $\Leftrightarrow \mathcal{T}$ is a Delaunay triangulation of P.

Cor. Constructing the Delaunay triangulation is a fast (optimal) way of maximizing the min angle.

Algorithms in \mathbb{R}^{2} :

- Lift, CH3, project the lower hull:

```
\(O(n \log n)\)
\(O(n \log n)\) exp., \(O\left(n^{2}\right)\) worst
\(O(n \log n)\)
\(O(n \log n)\)
```

- Incremental algorithm:
- Voronoi diagram (Fortune's sweep):
- Divide + Conquer:

See Voronoi algo's below.

Incremental Delaunay

Incremental Delaunay

Incremental Delaunay

Find triangles in conflict

Incremental Delaunay

Incremental Delaunay

Delete triangles in conflict

Incremental Delaunay

Triangulate hole

Voronoi by Lift \& Project

Lifting:

- Consider the paraboloid $x_{3}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$.
- For every site p, consider its lifted image \hat{p} on the parabola.
- Given \widehat{p}, \exists unique (hyper) plane tangent to the parabola at \widehat{p}.

Project:

- For every (hyper)plane, consider the halfspace above.
- The intersection of halfspaces is a (unbounded) convex polytope
- Its Lower Hull projects bijectively to the Voronoi diagram.

Proof:

- Let $E: x_{1}^{2}+x_{2}^{2}-x_{3}=0$ be the paraboloid equation.
$-\nabla E(a)=\left(\frac{\partial E}{\partial x_{1}}, \frac{\partial E}{\partial x_{2}}, \frac{\partial E}{\partial x_{3}}\right)_{a}=\left(2 a_{1}, 2 a_{2},-1\right)$.
- Point $x \in$ plane $h(x) \Leftrightarrow(x-a) \cdot \nabla E(a)=0 \Leftrightarrow$
$2 a_{1}\left(x_{1}-a_{1}\right)+2 a_{2}\left(x_{2}-a_{2}\right)-\left(x_{3}-a_{3}\right)=0$, which is h 's equation.

Lift \& Project in 1D

Divide \& Conquer

Fortune's sweep

Outline

(1) Voronoi diagram
(2) Delaunay triangulation
(3) Algorithms and complexity Voronoi algorithms
(4) Generalizations and Representation

General dimension polytopes

Faces of a polytope are polytopes forming its extreme elements. A facet of a d-dimensional polytope is $(d-1)$-dimensional face:

- The facets of a segment are vertices (0 -faces).
- The facets of a polygon are edges (1-faces)
- The facets of a 3-polyhedron are polygons.
- The facets of a 4d polytope are 3d polytopes.

General dimension triangulation

A triangulation of a pointset (sites) $P \subset \mathbb{R}^{d}$ is a collection of $(d+1)$-tuples from P, namely simplices, s.t.

- The union of the simplices covers the convex hull of P.
- Every pair of simplices intersect at a (possibly empty) common face.
- Usually: Set of simplex vertices $=P$.
- Delaunay: no site lies in the circum-hypersphere inscribing any simplex of the triangulation.

In 3d, two simplices may intersect at: \emptyset, vertex, edge, facet.
The triangulation is unique for generic inputs, i.e. no $d+2$ sites lie on same hypersphere, i.e. every $d+1$ sites define unique simplex. A Delaunay facet belongs to: exactly one simplex iff it belongs to $\mathrm{CH}(P)$, otherwise belongs to exactly two (neighboring) simplices.

Complexity in general dimension

- Delaunay triangulation in $\mathbb{R}^{d} \simeq$ convex hull in \mathbb{R}^{d+1}.
- Convex Hull of n points in \mathbb{R}^{d} is $\Theta\left(n \log n+n^{\lfloor d / 2\rfloor}\right)$ Hence d-Del $=\Theta\left(n \log n+n^{\lceil d / 2\rceil}\right)$
- Lower bound [McMullen] on space Complexity
- optimal deterministic [Chazelle], randomized [Seidel] algorithms
Optimal algorithms by lift/project: $\mathbb{R}^{2}: \Theta(n \log n), \mathbb{R}^{3}: \Theta\left(n^{2}\right)$.

Generalized constructions

In \mathbb{R}^{2} : Various geometric graphs defined on P are subgraphs of $\mathcal{D} \mathcal{T}(P)$, e.g. Euclidean minimum spanning tree (EMST) of P.

Delaunay triangulation $\mathcal{D} \mathcal{T}(P)$ of pointset $P \subset \mathbb{R}^{d}$: triangulation s.t. no site in P lies in the hypersphere inscribing any simplex of $\mathcal{D} \mathcal{T}(P)$.

- $\mathcal{D} \mathcal{T}(P)$ contains d-dimensional simplices.
- hypersphere $=$ circum-hypersphere of simplex.
- $\mathcal{D} \mathcal{T}(P)$ is unique for generic inputs, i.e. no $d+2$ sites lie on the same hypersphere, i.e. every $d+1$ sites define unique Delaunay "triangle".
- \mathbb{R}^{d} : Delaunay facet belongs to exactly one simplex \Leftrightarrow belongs to $\mathrm{CH}(P)$

Plane Decomposition Representation

- Doubly Connected Edge List (DCEL)
- stores: vertices, edges and cells (faces);

- for every (undirected) edge: 2 twins (directed) half-edges.
- Space complexity: $O(|V|+|E|+n)$,
$|V|=\#$ vertices, $|E|=\#$ edges, $n=\#$ input sites.
- v : $O(1)$: coordinates, pointer to half-edge where v is starting.
- half-e $O(1)$: start v, right cell, pointer next/previous/twin half-e
- DCEL operations:
- Given cell c, edge $e \subset c$, find (neighboring) cell $c^{\prime}: e \subset c^{\prime}: O(1)$
- Given cell, print every edge of cell: $O(|E|)$.
- Given vertex v find all incident edges: O (\#neighbors).

