Voronoi diagram and Delaunay triangulation

Ioannis Emiris & Vissarion Fisikopoulos

Dept. of Informatics & Telecommunications, University of Athens

Computational Geometry, spring 2015

Outline

1 Voronoi diagram

2 Delaunay triangulation

3 Algorithms and complexity Voronoi algorithms

Outline

1 Voronoi diagram

2 Delaunay triangulation

3 Algorithms and complexity Voronoi algorithms

4 Generalizations and Representation

Example and definition

Sites: $P := \{p_1, \ldots, p_n\} \subset \mathbb{R}^2$

Example and definition

Example and definition

Sites: $P := \{p_1, \dots, p_n\} \subset \mathbb{R}^2$ Voronoi cell: $q \in V(p_i) \Leftrightarrow \operatorname{dist}(q, p_i) \leq \operatorname{dist}(q, p_j), \forall p_j \in P, j \neq i$

Voronoi diagram

Formalization

- sites: points $P = \{p_1, \ldots, p_n\} \subset \mathbb{R}^2$.
- Voronoi cell/region V(p_i) of site p_i:

 $q \in V(p_i) \Leftrightarrow \operatorname{dist}(q, p_i) \leq \operatorname{dist}(q, p_j), \ \forall p_j \in P, j \neq i.$

- Voronoi edge is the common boundary of two adjacent cells.
- Voronoi vertex is the common boundary of 3 adjacent cells, or the intersection of \geq 2 (hence \geq 3) Voronoi edges. Generically, of exactly 3 Voronoi edges.

Voronoi diagram of P = dual of Delaunay triangulation of P.

- Voronoi cell \leftrightarrow vertex of Delaunay triangles: site
- neighboring cells (Voronoi edge) \leftrightarrow Delaunay edge, defined by corresponding sites (line of Voronoi edge \perp line of Delaunay edge)
- Voronoi vertex \leftrightarrow Delaunay triangle.

Outline

1 Voronoi diagram

2 Delaunay triangulation

3 Algorithms and complexity Voronoi algorithms

4 Generalizations and Representation

Triangulation

A triangulation of a pointset (sites) $P \subset \mathbb{R}^2$ is a collection of triplets from P, namely triangles, s.t.

- The union of the triangles covers the convex hull of *P*.
- ► Every pair of triangles intersect at a (possibly empty) common face (Ø, vertex, edge).
- ▶ Usually (CGAL): Set of triangle vertices = *P*.

Example: *P*, incomplete, invalid, subdivision, triangulation.

Delaunay triangulation: projection from parabola

Definition/Construction of Delaunay triangulation:

- Lift sites $p = (x) \in \mathbb{R}$ to $\widehat{p} = (x, x^2) \in \mathbb{R}^2$
- Compute the convex hull of the lifted points
- Project the lower hull to \mathbb{R}

Delaunay triangulation: going a bit higher...

Definition/Construction of Delaunay triangulation:

- Lift sites $p = (x, y) \in \mathbb{R}^2$ to $\widehat{p} = (x, y, x^2 + y^2) \in \mathbb{R}^3$
- Compute the convex hull of the lifted points
- ► Project the lower hull to ℝ²: arbitrarily triangulate lower facets that are polygons (not triangles)

Applications

Nearest Neighbors Reconstruction Meshing

Main Delaunay property: empty sphere

Main Delaunay property: empty sphere

Main Delaunay property: empty sphere

Main Delaunay property: 1 picture proof

Thm (in \mathbb{R}): $S(p_1, p_2)$ is a Delaunay segment \Leftrightarrow its interior contains no p_i .

Proof. Delaunay segment $\Leftrightarrow (\hat{p_1}, \hat{p_2})$ edge of the Lower Hull \Leftrightarrow no $\hat{p_i}$ "below" $(\hat{p_1}, \hat{p_2})$ on the parabola \Leftrightarrow no p_i inside the segment (p_1, p_2) .

Main Delaunay property: 1 picture proof

Thm (in \mathbb{R}^2): $T(p_1, p_2, p_3)$ is a Delaunay triangle \Leftrightarrow the interior of the circle through p_1, p_2, p_3 (enclosing circle) contains no p_i .

Proof. Circle (p_1, p_2, p_3) contains no p_i in interior \Leftrightarrow plane of lifted $\hat{p}_1, \hat{p}_2, \hat{p}_3$ leaves all lifted \hat{p}_i on same halfspace \Leftrightarrow CCW $(\hat{p}_1, \hat{p}_2, \hat{p}_3, \hat{p}_i)$ of same sign for all *i*. Suffices to prove: p_i lies on Circle (p_1, p_2, p_3) $\Leftrightarrow \hat{p}_i$ lies on plane of $\hat{p}_1, \hat{p}_2, \hat{p}_3 \Leftrightarrow$ CCW $(\hat{p}_1, \hat{p}_2, \hat{p}_3, \hat{p}_i) = 0$.

Predicate InCircle

Given points p, q, r, $s \in \mathbb{R}^2$, point $s = (s_x, s_y)$ lies inside the circle through p, q, $r \Leftrightarrow$

$$\det \left(\begin{array}{cccc} p_{x} & p_{y} & p_{x}^{2} + p_{y}^{2} & 1 \\ q_{x} & q_{y} & q_{x}^{2} + q_{y}^{2} & 1 \\ r_{x} & r_{y} & r_{x}^{2} + r_{y}^{2} & 1 \\ s_{x} & s_{y} & s_{x}^{2} + s_{y}^{2} & 1 \end{array} \right) > 0,$$

assuming p, q, r in clockwise order (otherwise det < 0).

Lemma. InCircle $(p, q, r, s) = 0 \Leftrightarrow \exists$ circle through p, q, r, s. Proof. InCircle $(p, q, r, s) = 0 \Leftrightarrow CCW(\hat{p}, \hat{q}, \hat{r}, \hat{s}) = 0$

Delaunay faces

Theorem. Let *P* be a set of sites $\in \mathbb{R}^2$:

- (i) Sites $p_i, p_j, p_k \in P$ are vertices of a Delaunay triangle \Leftrightarrow the circle through p_i, p_j, p_k contains no site of P in its interior.
- (ii) Sites $p_i, p_j \in P$ form an edge of the Delaunay triangulation \Leftrightarrow there is a closed disc *C* that contains p_i, p_j on its boundary and does not contain any other site of *P*.

Triangulations of planar pointsets

Thm. Let P be set of n points in \mathbb{R}^2 , not all colinear, k = # points on boundary of CH(P). Any triangulation of P has 2n - 2 - k triangles and 3n - 3 - k edges.

Proof.

- ▶ f: #facets (except ∞)
- ► e: #edges
- n: #vertices
- 1. Euler: n e + (f + 1) 1 = 1; for *d*-polytope: $\sum_{i=0}^{d} (-1)^{i} f_{i} = 1$
- 2. Any planar triangulation: total degree = 3f + k = 2e.

Properties of Voronoi diagram

Lemma. $|V| \le 2n-5$, $|E| \le 3n-6$, n = |P|, by Euler's theorem for planar graphs: |V| - |E| + n - 1 = 1. Max Empty Circle $C_P(q)$ centered at q: no interior site $p_i \in P$. Lem: $q \in \mathbb{R}^2$ is Voronoi vertex $\Leftrightarrow C(q)$ has ≥ 3 sites on perimeter Any perpendicular bisector of segment (p_i, p_j) defines a Voronoi edge $\Leftrightarrow \exists q$ on bisector s.t. C(q) has only p_i, p_i on perimeter

Delaunay maximizes the smallest angle

Let *T* be a triangulation with *m* triangles. Sort the 3*m* angles: $a_1 \leq a_2 \leq \cdots \leq a_{3m}$. $T_a := \{a_1, a_2, \dots, a_{3m}\}$. Edge $e = (p_i, p_j)$ is illegal $\Leftrightarrow \min_{1 \leq i \leq 6} a_i < \min_{1 \leq i \leq 6} a'_i$.

T' obtained from T by flipping illegal e, then $T'_a >_{lex} T_a$.

Flips yield triangulation without illegal edges. The algorithm terminates (angles decrease), but is $O(n^2)$.

Insertion by flips

Outline

1 Voronoi diagram

2 Delaunay triangulation

4 Generalizations and Representation

Lower bound

Delaunay triangulation

Theorem. Let P be a set of points $\in \mathbb{R}^2$. A triangulation \mathcal{T} of P has no illegal edge $\Leftrightarrow \mathcal{T}$ is a Delaunay triangulation of P.

Cor. Constructing the Delaunay triangulation is a fast (optimal) way of maximizing the min angle.

Algorithms in \mathbb{R}^2 :

- Lift, CH3, project the lower hull: $O(n \log n)$ - Incremental algorithm: $O(n \log n) \exp_{-1}, O(n^2)$ worst- Voronoi diagram (Fortune's sweep): $O(n \log n)$ - Divide + Conquer: $O(n \log n)$

See Voronoi algo's below.

Find triangles in conflict

Delete triangles in conflict

Triangulate hole

Voronoi by Lift & Project

Lifting:

- Consider the paraboloid $x_3 = x_1^2 + x_2^2 + x_3^2$.
- For every site p, consider its lifted image \hat{p} on the parabola.
- Given \hat{p} , \exists unique (hyper)plane tangent to the parabola at \hat{p} .

Project:

- For every (hyper)plane, consider the halfspace above.
- The intersection of halfspaces is a (unbounded) convex polytope
- Its Lower Hull projects bijectively to the Voronoi diagram.

Proof:

- Let
$$E: x_1^2 + x_2^2 - x_3 = 0$$
 be the paraboloid equation.
- $\nabla E(a) = \left(\frac{\partial E}{\partial x_1}, \frac{\partial E}{\partial x_2}, \frac{\partial E}{\partial x_3}\right)_a = (2a_1, 2a_2, -1).$
- Point $x \in$ plane $h(x) \Leftrightarrow (x - a) \cdot \nabla E(a) = 0 \Leftrightarrow$
 $2a_1(x_1 - a_1) + 2a_2(x_2 - a_2) - (x_3 - a_3) = 0$, which is *h*'s equation.

Lift & Project in 1D

Divide & Conquer

Fortune's sweep

Outline

1 Voronoi diagram

2 Delaunay triangulation

3 Algorithms and complexity Voronoi algorithms

4 Generalizations and Representation

General dimension polytopes

Faces of a polytope are polytopes forming its extreme elements. A facet of a *d*-dimensional polytope is (d-1)-dimensional face:

- The facets of a segment are vertices (0-faces).
- The facets of a polygon are edges (1-faces)
- The facets of a 3-polyhedron are polygons.
- The facets of a 4d polytope are 3d polytopes.

General dimension triangulation

A triangulation of a pointset (sites) $P \subset \mathbb{R}^d$ is a collection of (d+1)-tuples from P, namely simplices, s.t.

- The union of the simplices covers the convex hull of *P*.
- Every pair of simplices intersect at a (possibly empty) common face.
- Usually: Set of simplex vertices = P.
- Delaunay: no site lies in the circum-hypersphere inscribing any simplex of the triangulation.

In 3d, two simplices may intersect at: \emptyset , vertex, edge, facet.

The triangulation is unique for generic inputs, i.e. no d + 2 sites lie on same hypersphere, i.e. every d + 1 sites define unique simplex. A Delaunay facet belongs to: exactly one simplex iff it belongs to CH(P), otherwise belongs to exactly two (neighboring) simplices.

Complexity in general dimension

- Delaunay triangulation in $\mathbb{R}^d \simeq \text{convex hull}$ in \mathbb{R}^{d+1} .
- ► Convex Hull of *n* points in \mathbb{R}^d is $\Theta(n \log n + n^{\lfloor d/2 \rfloor})$ Hence *d*-Del = $\Theta(n \log n + n^{\lceil d/2 \rceil})$
- Lower bound [McMullen] on space Complexity
- optimal deterministic [Chazelle], randomized [Seidel] algorithms

Optimal algorithms by lift/project: \mathbb{R}^2 : $\Theta(n \log n)$, \mathbb{R}^3 : $\Theta(n^2)$.

Generalized constructions

In \mathbb{R}^2 : Various geometric graphs defined on *P* are subgraphs of $\mathcal{DT}(P)$, e.g. Euclidean minimum spanning tree (EMST) of *P*.

Delaunay triangulation $\mathcal{DT}(P)$ of pointset $P \subset \mathbb{R}^d$: triangulation s.t. no site in P lies in the hypersphere inscribing any simplex of $\mathcal{DT}(P)$.

- $\mathcal{DT}(P)$ contains *d*-dimensional simplices.
- hypersphere = circum-hypersphere of simplex.
- ▶ DT(P) is unique for generic inputs, i.e. no d + 2 sites lie on the same hypersphere, i.e. every d + 1 sites define unique Delaunay "triangle".
- ► ℝ^d: Delaunay facet belongs to exactly one simplex ⇔ belongs to CH(P)

Plane Decomposition Representation

- Doubly Connected Edge List (DCEL)
- stores: vertices, edges and cells (faces);
- for every (undirected) edge: 2 twins (directed) half-edges.
- Space complexity: O(|V| + |E| + n),
- |V| = #vertices, |E| = #edges, n = #input sites.
- v: O(1): coordinates, pointer to half-edge where v is starting.
- half-e O(1): start v, right cell, pointer next/previous/twin half-e
- DCEL operations:
- Given cell c, edge $e \subset c$, find (neighboring) cell c': $e \subset c'$: O(1)
- Given cell, print every edge of cell: O(|E|).
- Given vertex v find all incident edges: O(#neighbors).