
Voronoi diagram and Delaunay triangulation

Ioannis Emiris & Vissarion Fisikopoulos

Dept. of Informatics & Telecommunications, University of Athens

Computational Geometry, spring 2015

Outline

1 Voronoi diagram

2 Delaunay triangulation

3 Algorithms and complexity
Voronoi algorithms

4 Generalizations and Representation

Outline

1 Voronoi diagram

2 Delaunay triangulation

3 Algorithms and complexity
Voronoi algorithms

4 Generalizations and Representation

Example and definition

Sites: P := {p1, . . . , pn} ⊂ R2

Example and definition
Sites: P := {p1, . . . , pn} ⊂ R2

Voronoi cell: q ∈ V (pi) ⇔ dist(q, pi) ≤ dist(q, pj), ∀pj ∈ P, j 6= i

Example and definition
Sites: P := {p1, . . . , pn} ⊂ R2

Voronoi cell: q ∈ V (pi) ⇔ dist(q, pi) ≤ dist(q, pj), ∀pj ∈ P, j 6= i

Georgy F. Voronoy
(1868 - 1908)

Faces of Voronoi diagram

Faces of Voronoi diagram

Faces of Voronoi diagram

Faces of Voronoi diagram

Faces of Voronoi diagram

Voronoi diagram

Formalization

• sites: points P = {p1, . . . , pn} ⊂ R2.

• Voronoi cell/region V (pi) of site pi :

q ∈ V (pi) ⇔ dist(q, pi) ≤ dist(q, pj), ∀pj ∈ P, j 6= i .

• Voronoi edge is the common boundary of two adjacent cells.
• Voronoi vertex is the common boundary of 3 adjacent cells, or
the intersection of ≥ 2 (hence ≥ 3) Voronoi edges.
Generically, of exactly 3 Voronoi edges.

Voronoi diagram of P = dual of Delaunay triangulation of P.
• Voronoi cell ↔ vertex of Delaunay triangles: site
• neighboring cells (Voronoi edge) ↔ Delaunay edge, defined by
corresponding sites (line of Voronoi edge ⊥ line of Delaunay edge)
• Voronoi vertex ↔ Delaunay triangle.

Outline

1 Voronoi diagram

2 Delaunay triangulation

3 Algorithms and complexity
Voronoi algorithms

4 Generalizations and Representation

Triangulation

A triangulation of a pointset (sites) P ⊂ R2 is a collection of
triplets from P, namely triangles, s.t.

I The union of the triangles covers the convex hull of P.

I Every pair of triangles intersect at a (possibly empty) common
face (∅, vertex, edge).

I Usually (CGAL): Set of triangle vertices = P.

Example: P, incomplete, invalid, subdivision, triangulation.

Delaunay Triangulation: dual of Voronoi diagram

Delaunay Triangulation: dual of Voronoi diagram

Delaunay Triangulation: dual of Voronoi diagram

Delaunay Triangulation: dual of Voronoi diagram

Boris N. Delaunay
(1890 - 1980)

Delaunay triangulation: projection from parabola

Definition/Construction of Delaunay triangulation:

I Lift sites p = (x) ∈ R to p̂ = (x , x2) ∈ R2

I Compute the convex hull of the lifted points

I Project the lower hull to R

y = x2

p1 p2 p3 p4

Delaunay triangulation: going a bit higher. . .

Definition/Construction of Delaunay triangulation:

I Lift sites p = (x , y) ∈ R2 to p̂ = (x , y , x2+y2) ∈ R3

I Compute the convex hull of the lifted points

I Project the lower hull to R2: arbitrarily triangulate lower
facets that are polygons (not triangles)

Nearest Neighbors
Reconstruction
Meshing

Applications

Main Delaunay property: empty sphere

Main Delaunay property: empty sphere

Main Delaunay property: empty sphere

Main Delaunay property: 1 picture proof

Thm (in R): S(p1, p2) is a Delaunay segment ⇔ its interior
contains no pi .

Proof. Delaunay segment ⇔ (p̂1, p̂2) edge of the Lower Hull⇔ no p̂i “below” (p̂1, p̂2) on the parabola⇔ no pi inside the segment (p1, p2).

y = x2

p1 p2 p3 p4

Main Delaunay property: 1 picture proof

Thm (in R2): T (p1, p2, p3) is a Delaunay triangle ⇔ the interior of
the circle through p1, p2, p3 (enclosing circle) contains no pi .

Proof. Circle(p1, p2, p3) contains no pi in interior⇔ plane of lifted p̂1, p̂2, p̂3 leaves all lifted p̂i on same halfspace⇔ CCW(p̂1, p̂2, p̂3, p̂i) of same sign for all i .
Suffices to prove: pi lies on Circle(p1, p2, p3)⇔ p̂i lies on plane of p̂1, p̂2, p̂3 ⇔ CCW(p̂1, p̂2, p̂3, p̂i) = 0.

Predicate InCircle

Given points p, q, r , s ∈ R2, point s = (sx , sy) lies inside the circle
through p, q, r ⇔

det

px py p2x + p2y 1
qx qy q2x + q2y 1
rx ry r2x + r2y 1
sx sy s2x + s2y 1

 > 0,

assuming p, q, r in clockwise order (otherwise det < 0).

Lemma. InCircle(p, q, r , s) = 0 ⇔ ∃ circle through p, q, r , s.
Proof. InCircle(p, q, r , s) = 0 ⇔ CCW (p̂, q̂, r̂ , ŝ) = 0

Delaunay faces

Theorem. Let P be a set of sites ∈ R2:

(i) Sites pi , pj , pk ∈ P are vertices of a Delaunay triangle ⇔ the
circle through pi , pj , pk contains no site of P in its interior.

(ii) Sites pi , pj ∈ P form an edge of the Delaunay triangulation ⇔
there is a closed disc C that contains pi , pj on its boundary
and does not contain any other site of P.

Triangulations of planar pointsets

Thm. Let P be set of n points in R2, not all colinear, k = #points
on boundary of CH(P). Any triangulation of P has 2n − 2 − k
triangles and 3n − 3 − k edges.

Proof.

I f: #facets (except ∞)

I e: #edges

I n: #vertices

1. Euler: n − e + (f + 1) − 1 = 1; for d-polytope:∑d
i=0(−1)i fi = 1

2. Any planar triangulation: total degree = 3f + k = 2e.

Properties of Voronoi diagram

Lemma. |V | ≤ 2n − 5, |E | ≤ 3n − 6, n = |P |,
by Euler’s theorem for planar graphs: |V |− |E |+ n − 1 = 1.

Max Empty Circle CP(q) centered at q: no interior site pi ∈ P.
Lem: q ∈ R2 is Voronoi vertex ⇔ C (q) has ≥ 3 sites on perimeter

Any perpendicular bisector of segment (pi , pj) defines a Voronoi
edge ⇔ ∃ q on bisector s.t. C (q) has only pi , pj on perimeter

Delaunay maximizes the smallest angle

Let T be a triangulation with m triangles.
Sort the 3m angles: a1 6 a2 6 · · · 6 a3m. Ta := {a1, a2, . . . , a3m}.
Edge e = (pi , pj) is illegal ⇔ min16i66 ai < min16i66 a

′
i .

pl

pk

pj

pi

pl

pk

pj

pi

a a′

T ′ obtained from T by flipping illegal e, then T ′
a >lex Ta.

Flips yield triangulation without illegal edges.
The algorithm terminates (angles decrease), but is O(n2).

Insertion by flips

∆1

∆2

∆3

pr

∆2

∆3

pi

pj

∆5

∆4

∆3

pi pk

∆7

∆4

∆6

Outline

1 Voronoi diagram

2 Delaunay triangulation

3 Algorithms and complexity
Voronoi algorithms

4 Generalizations and Representation

Lower bound

Ω(n log n) by reduction from sorting

(xi, x
2
i)

xi

Delaunay triangulation

Theorem. Let P be a set of points ∈ R2. A triangulation T of P
has no illegal edge ⇔ T is a Delaunay triangulation of P.

Cor. Constructing the Delaunay triangulation is a fast (optimal)
way of maximizing the min angle.

Algorithms in R2:
– Lift, CH3, project the lower hull: O(n log n)
– Incremental algorithm: O(n log n) exp., O(n2) worst
– Voronoi diagram (Fortune’s sweep): O(n log n)
– Divide + Conquer: O(n log n)

See Voronoi algo’s below.

Incremental Delaunay

Incremental Delaunay

Incremental Delaunay

Find triangles in conflict

Incremental Delaunay

Incremental Delaunay

Delete triangles in conflict

Incremental Delaunay

Triangulate hole

Voronoi by Lift & Project

Lifting:
– Consider the paraboloid x3 = x21 + x22 + x23 .
– For every site p, consider its lifted image p̂ on the parabola.
– Given p̂, ∃ unique (hyper)plane tangent to the parabola at p̂.

Project:
– For every (hyper)plane, consider the halfspace above.
– The intersection of halfspaces is a (unbounded) convex polytope
– Its Lower Hull projects bijectively to the Voronoi diagram.

Proof:
– Let E : x21 + x22 − x3 = 0 be the paraboloid equation.

– ∇E (a) =
(
∂E
∂x1
, ∂E∂x2 ,

∂E
∂x3

)
a
= (2a1, 2a2,−1).

– Point x ∈ plane h(x) ⇔ (x − a) · ∇E (a) = 0 ⇔
2a1(x1 − a1) + 2a2(x2 − a2) − (x3 − a3) = 0, which is h’s equation.

Lift & Project in 1D

pp’ q

h

h’

y=0

y=x^2

Divide & Conquer

Fortune’s sweep

2 events:

pi

pj

pk

C

L

v

pi

Outline

1 Voronoi diagram

2 Delaunay triangulation

3 Algorithms and complexity
Voronoi algorithms

4 Generalizations and Representation

General dimension polytopes

Faces of a polytope are polytopes forming its extreme elements.
A facet of a d-dimensional polytope is (d − 1)-dimensional face:
• The facets of a segment are vertices (0-faces).
• The facets of a polygon are edges (1-faces)
• The facets of a 3-polyhedron are polygons.
• The facets of a 4d polytope are 3d polytopes.

General dimension triangulation

A triangulation of a pointset (sites) P ⊂ Rd is a collection of
(d + 1)-tuples from P, namely simplices, s.t.

I The union of the simplices covers the convex hull of P.

I Every pair of simplices intersect at a (possibly empty)
common face.

I Usually: Set of simplex vertices = P.

I Delaunay: no site lies in the circum-hypersphere inscribing any
simplex of the triangulation.

In 3d, two simplices may intersect at: ∅, vertex, edge, facet.

The triangulation is unique for generic inputs, i.e. no d + 2 sites lie
on same hypersphere, i.e. every d + 1 sites define unique simplex.
A Delaunay facet belongs to: exactly one simplex iff it belongs to
CH(P), otherwise belongs to exactly two (neighboring) simplices.

Complexity in general dimension

I Delaunay triangulation in Rd ' convex hull in Rd+1.

I Convex Hull of n points in Rd is Θ(n log n + nbd/2c)
Hence d-Del = Θ(n log n + ndd/2e)

I Lower bound [McMullen] on space Complexity

I optimal deterministic [Chazelle], randomized [Seidel]
algorithms

Optimal algorithms by lift/project: R2: Θ(n log n), R3: Θ(n2).

Generalized constructions

In R2: Various geometric graphs defined on P are subgraphs of
DT (P), e.g. Euclidean minimum spanning tree (EMST) of P.

Delaunay triangulation DT (P) of pointset P ⊂ Rd : triangulation
s.t. no site in P lies in the hypersphere inscribing any simplex of
DT (P).

I DT (P) contains d-dimensional simplices.

I hypersphere = circum-hypersphere of simplex.

I DT (P) is unique for generic inputs, i.e. no d + 2 sites lie on
the same hypersphere, i.e. every d + 1 sites define unique
Delaunay “triangle”.

I Rd : Delaunay facet belongs to exactly one simplex ⇔ belongs
to CH(P)

Plane Decomposition Representation

• Doubly Connected Edge List (DCEL)
– stores: vertices, edges and cells (faces);
– for every (undirected) edge: 2 twins (directed) half-edges.

• Space complexity: O(|V |+ |E |+ n),
|V | = #vertices, |E | = #edges, n = #input sites.
– v : O(1): coordinates, pointer to half-edge where v is starting.
– half-e O(1): start v , right cell, pointer next/previous/twin half-e

• DCEL operations:
– Given cell c , edge e ⊂ c , find (neighboring) cell c ′: e ⊂ c ′: O(1)
– Given cell, print every edge of cell: O(|E |).
– Given vertex v find all incident edges: O(#neighbors).

	Voronoi diagram
	Delaunay triangulation
	Algorithms and complexity
	Voronoi algorithms

	Generalizations and Representation

