
Advanced Threads & Monitor-Style Programming

1 / 1

First: Much of What You Know About Threads Is Wrong!

// Initially x == 0 and y == 0

// Thread 1 Thread 2

x = 1; if (y == 1 && x == 0) exit();

y = 1;

◮ Can the above exit be called? How?

2 / 1

Threads Semantics

◮ You should stop thinking of threads as just executing
interleaved

◮ The interleaving model is called sequential consistency. It is
not supported in practice.

◮ Instructions can be reordered!

◮ By the compiler, by the processor, by the memory subsystem

◮ Important to always use synchronization (mutexes) to get
predictable behavior

3 / 1

Spinning in High-Level Code Is (Almost) Always Wrong!

while (!ready) /* do nothing */ ;

◮ The compiler (or hardware) is free to completely ignore this
code

◮ If another thread does ready = true, this thread may never see
it

◮ Use of mutexes and condition variables inserts the right
instructions to push data to main memory

4 / 1

Monitor-Style Programming

◮ Mutexes and condition variables are the basis of a concurrent
programming model called monitor-style programming

◮ With these two constructs, we can implement any kind of
critical section

◮ Critical section: code with controlled concurrent access
◮ some logic for concurrency (which threads can run)
◮ some logic for exclusion (which threads cannot run)

◮ Consider abstract operations lock, unlock, signal, broadcast,
wait

◮ map to pthread mutex lock, pthread mutex unlock,
pthread cond signal, etc.

◮ We otherwise ignore thread creation, initialization boilerplate

5 / 1

Monitor-Style Programming Example: Readers/Writers

◮ Build a critical section that any number of reader threads or a
single writer thread can enter, as long as there is no writer
thread in it.

◮ Concurrency logic: multiple reader threads can enter

◮ Exclusion logic: any writer thread excludes all other threads

6 / 1

Monitor-Style Programming Example: Readers/Writers

Mutex mutex;

Condition read_cond , write_cond ;

int readers = 0;

bool writer = false;

// READER: // WRITER:

lock (mutex); lock (mutex);

while (writer) while (readers >0 || writer)

wait (read_cond , mutex); wait (write_cond , mutex);

readers ++; writer = true ;

unlock(mutex); unlock(mutex);

... // read data ... // write data

lock (mutex); lock (mutex);

readers --; writer = false;

if (readers == 0) broadcast (read_cond);

signal(write_cond); signal(write_cond);

unlock(mutex); unlock(mutex);

7 / 1

Monitor-Style Programming Example: Recursive Lock
Mutex mutex;

Condition held ;

int count = 0;

thread_id holder = NULL ;

acquire () {

lock (mutex);

while (count > 0 && holder != self ())

wait (held , mutex);

count ++;

holder = self ();

unlock(mutex);

}

release () {

lock (mutex);

count --;

if (count == 0)

signal(held);

unlock(mutex);

} 8 / 1

General Pattern: Any Critical Section

◮ Usage: CS enter(); ... [critical section] ... CS exit();

[shared data , including Mutex m, Condition c]

CS_enter () {

lock (m);

while (![condition])

wait (c, m);

[change shared data to reflect in_CS]

[broadcast /signal as needed]

unlock(m);

}

CS_exit () {

lock (m);

[change shared data to reflect out_of_CS]

[broadcast /signal as needed]

unlock(m);

}

9 / 1

Why Signal/Broadcast on CS enter()?

◮ Any change to shared data may make a condition (on which
some thread waits) false

◮ Example: critical section with red and green threads, up to 3
can enter, red have priority

◮ red have priority = no green can enter, if red is waiting

10 / 1

Red+Green, Up to 3, Red Have Priority
Mutex mutex;

Condition red_cond , green_cond;

int red_waiting = 0, green = 0, red = 0;

green_acquire() {

lock(mutex);

while (green+red == 3 || red_waiting != 0)

wait(green_cond , mutex);

green ++;

unlock(mutex);

}

green_release() {

lock(mutex);

green --;

signal(green_cond);

signal(red_cond);

unlock(mutex);

} 11 / 1

Red+Green, Up to 3, Red Have Priority
red_acquire() {

lock(mutex);

red_waiting++;

while (green+red == 3)

wait(red_cond , mutex);

red_waiting --;

red++;

broadcast(green_cond);

unlock(mutex);

}

red_release() {

lock(mutex);

red --;

signal(green_cond);

signal(red_cond);

unlock(mutex);

} 12 / 1

Why Use while Around wait?
◮ Defensive programming: if we return from wait by mistake (or

spuriously), we still check
◮ Other threads may have changed the condition since the time

we were signalled
◮ Recall producer-consumer standard example:

// Consumer

lock(mutex);

while (empty(buffer)) wait(empty_cond , mutex);

get_request(buffer);

unlock(mutex);

// Producer

lock(mutex);

put_request(buffer);

broadcast(empty_cond);

unlock(mutex);

13 / 1

Monitor-Style Programming Errors

◮ Most problems with concurrent programming are simple
oversights that are easy to introduce due to partial program
knowledge and near-impossible to debug!

◮ People forget to access shared variables in locks, forget to
signal when a condition changes, etc.

14 / 1

The Golden Rules of Monitor-Style Programming

◮ Associate (in your mind+comments) every piece of shared
data in your program with a mutex that protects it. Use it
consistently.

◮ For every boolean condition (in the program text) use a
separate condition variable.

◮ Every time the boolean condition may have changed,
broadcast on the condition variable.

◮ Only call signal when you are certain that any and only one
waiting thread can enter the critical section.

◮ Globally order locks, acquire in order in all threads.

15 / 1

Example Exercise

◮ Critical section with red and green threads, up to 3 can enter,
not all the same color

16 / 1

Why Multi-Threaded Programming Is Hard

◮ The most common concurrent programming bug is a race
◮ Technically, race = unsynchronized accesses to the same

shared data by two threads, with either access being a write.

◮ But that’s not the real problem. We can avoid all races
automatically:

◮ just rewrite the program to have a lock per memory word
◮ acquire it before reading/writing
◮ release afterwards

◮ Is this enough?

17 / 1

Race/No-Race Example for Consumer Pattern
// Race

lock(mutex);

while (empty(buffer)) wait(empty_cond , mutex);

unlock(mutex);

get_request(buffer);

// No Race

lock(mutex);

while (empty(buffer)) wait(empty_cond , mutex);

unlock(mutex);

lock(mutex);

get_request(buffer);

unlock(mutex);

◮ Equally bad! We turned a race into an atomicity violation
◮ The problem is that some actions need to be

consistent/atomic
18 / 1

Other Concurrency Errors

◮ We already saw races and atomicity violations

◮ We also get ordering violations and deadlocks

◮ Ordering violation: logical error, where something is read
before it is set to the right value

◮ much like an atomicity violation

◮ Deadlock: typically a cycle in the lock holding order

◮ E.g., thread A locks m1, B locks m2, A tries to lock m2, B
tries to lock m1

19 / 1

Why Multi-Threaded Programming Is Hard (II)

◮ No safe approach:
◮ Coarse-grained locking: few, central locks (e.g., one per

program or per data structure)
◮ problem: lack of parallelism, higher chance of deadlock

◮ Fine-grained locking: locks protecting small amounts of data
(e.g., each node of a data structure)

◮ problem: higher chance of races, atomicity violations

20 / 1

Why Multi-Threaded Programming Is Hard (III)
◮ The real problem: holding locks is a global property

◮ affects entire program, cannot be hidden behind an abstract
interface

◮ results in lack of modularity: callers cannot ignore what locks
their callees acquire or what locations they access

◮ necessary for race avoidance, but also for global ordering to

avoid deadlock
◮ part of a method’s protocol which lock needs to be held when

called, which locks it acquires

◮ Condition variables are also non-local: every time some value
changes, we need to know which condition var may depend on
it to signal it!

◮ Everything exacerbated by aliasing (pointers)
◮ are two locks the same?
◮ are two data locations the same?

◮ End result: lack of composability, cannot build safe services
out of other safe services

21 / 1

Example of Difficulties: Account Library
typedef struct account {

int balance = 0;

Mutex account_mutex ;

} account_type ;

void withdraw (account_type *acc , int amount) {...}

void synch_withdraw (account_type *acc , int amount) {

lock (acc ->account_mutex);

withdraw (acc , amount);

unlock(acc -> account_mutex);

}

void deposit (account_type *acc , int amount) { ... }

void synch_deposit (account_type *acc , int amount) {

lock (acc ->account_mutex);

deposit (acc , amount);

unlock(acc -> account_mutex);

}

...
22 / 1

Example of Difficulties (cont’d)

// Client code

void move(account_type *acc1 ,

account_type *acc2 , int amount) {

synch_withdraw(acc1 , amount);

synch_deposit(acc2 , amount);

}

◮ Problem: atomicity violation
◮ state of accounts can be observed between withdrawal and

deposit
◮ how can move be made atomic?
◮ cannot just use a “move” lock: other code won’t respect it

23 / 1

One More Try

◮ Library can expose unsynchronized functions withdraw/deposit

// Client

void atomic_move (account_type *acc1 ,

account_type *acc2 , int amount) {

lock (acc1 ->account_mutex);

lock (acc2 ->account_mutex);

withdraw (acc1 , amount);

deposit (acc2 , amount);

unlock(acc2 -> account_mutex);

unlock(acc1 -> account_mutex);

}

◮ Problem: deadlock
◮ move(s,t,...) parallel with move(t,s,...)
◮ move(s,s,...): self-deadlock

24 / 1

