Compilers

Parsing

Yannis Smaragdakis, U. Athens (original slides by Sam Guyer@Tufts)

Next step

- Parsing: Organize tokens into "sentences"
 - Do tokens conform to language syntax?
 - Good news: token types are just numbers
 - Bad news: language syntax is fundamentally more complex than lexical specification
 - Good news: we can still do it in linear time in most cases

Parsing

Parser

- Reads tokens from the scanner
- Checks organization of tokens against a grammar
- Constructs a derivation
- Derivation drives construction of IR

Study of parsing

- Discovering the derivation of a sentence
 - "Diagramming a sentence" in grade school
 - Formalization:
 - Mathematical model of syntax a grammar G
 - Algorithm for testing membership in L(G)

Roadmap:

- Context-free grammars
- Top-down parsers
 Ad hoc, often hand-coded, recursive decent parsers
- Bottom-up parsers
 Automatically generated LR parsers

Specifying syntax with a grammar

- Can we use regular expressions?
 - For the most part, no
- Limitations of regular expressions
 - Need something more powerful
 - Still want formal specification

(for automation)

- Context-free grammar
 - Set of rules for generating sentences
 - Expressed in Backus-Naur Form (BNF)

Context-free grammar

"produces" or "generates"

Example:

#	Production rule	
1	sheepnoise → sheepnoise baa	
2	baa	
	Alternative (shorthand))

- Formally: context-free grammar is
 - G = (s, N, T, P)
 - T: set of terminals (provided by scanner)
 - N : set of non-terminals (represent structure)
 - $s \in N$: start or goal symbol
 - **P**: set of production rules of the form $N \rightarrow (N \cup T)^*$

Language L(G)

- Language L(G)
 - L(G) is all sentences generated from start symbol
- Generating sentences
 - Use productions as rewrite rules
 - Start with goal (or start) symbol a non-terminal
 - Choose a non-terminal and "expand" it to the right-hand side of one of its productions
 - Only terminal symbols left → sentence in L(G)
 - Intermediate results known as sentential forms

Expressions

- Language of expressions
 - Numbers and identifiers
 - Allow different binary operators
 - Arbitrary nesting of expressions

#	Production rule
1	expr → expr op expr
2	/ number
3	identifier
4	<i>op</i> → +
5	/ -
6	/ *
7	1 /

What's in this language?

#	Production rule
1	expr → expr op expr
2	/ number
3	<u>identifier</u>
4	<i>op</i> → +
5	/ -
6	/ *
7	1 /

Rule	Sentential form
-	expr
1	expr op expr
3	<id,<u>x> op expr</id,<u>
5	<id,<u>x> - expr</id,<u>
1	<id,x> - expr op expr</id,x>
2	<id,<u>x> - <num,<u>2> op expr</num,<u></id,<u>
6	<id,<u>x> - <num,<u>2> * expr</num,<u></id,<u>
3	<id,<u>x> - <num,<u>2> * <id,<u>y></id,<u></num,<u></id,<u>

We can build the string "x - 2 * y"
This string is in the language

Derivations

- Using grammars
 - A sequence of rewrites is called a derivation
 - Discovering a derivation for a string is parsing
- Different derivations are possible
 - At each step we can choose any non-terminal
 - Rightmost derivation: always choose right NT
 - Leftmost derivation: always choose left NT (Other "random" derivations – not of interest)

Left vs right derivations

Two derivations of "x − 2 * y"

Rule	Sentential form
-	expr
1	expr op expr
3	<id, x=""> op expr</id,>
5	<id,x> - expr</id,x>
1	<id,x> - expr op expr</id,x>
2	<id,x> - <num,2> op expr</num,2></id,x>
6	<id,x> - <num,2> * expr</num,2></id,x>
3	<id,x> - <num,2> * <id,y></id,y></num,2></id,x>

Rule	Sentential form
-	expr
1	expr op expr
3	expr op <id,y></id,y>
6	expr * <id,y></id,y>
1	expr op expr * <id,y></id,y>
2	<i>expr op <num,2> * <id,y></id,y></num,2></i>
5	<i>expr - <num,2> * <id,y></id,y></num,2></i>
3	<id,x> - <num,2> * <id,y></id,y></num,2></id,x>

Left-most derivation

Right-most derivation

Derivations and parse trees

- Two different derivations
 - Both are correct
 - Do we care which one we use?
- Represent derivation as a parse tree
 - Leaves are terminal symbols
 - Inner nodes are non-terminals
 - To depict production $\alpha \to \beta \gamma \delta$ show nodes β, γ, δ as children of α
- Tree is used to build internal representation

Example (I)

Right-most derivation

Rule	Sentential form
-	expr
1	expr op expr
3	expr op <id,y></id,y>
6	expr * <id,y></id,y>
1	expr op expr * <id,y></id,y>
2	expr op <num,2> * <id,y></id,y></num,2>
5	expr - <num,2> * <id,y></id,y></num,2>
3	<id,x> - <num,2> * <id,y></id,y></num,2></id,x>

Parse tree

- Concrete syntax tree
 - Shows all details of syntactic structure
- What's the problem with this tree?

Abstract syntax tree

- Parse tree contains extra junk
 - Eliminate intermediate nodes
 - Move operators up to parent nodes
 - Result: abstract syntax tree

Left-most derivation

Rule	Sentential form
-	expr
1	expr op expr
3	<id, x=""> op expr</id,>
5	<id,x> - expr</id,x>
1	<id,x> - expr op expr</id,x>
2	<id,x> - <num,2> op expr</num,2></id,x>
6	<id,x> - <num,2> * expr</num,2></id,x>
3	<id,x> - <num,2> * <id,y></id,y></num,2></id,x>

Parse tree

• Solution: evaluates as x - (2 * y)

Derivations

Right-most derivation

Derivations and semantics

Problem:

- Two different valid derivations
- One captures "meaning" we want (What specifically are we trying to capture here?)
- Key idea: shape of tree implies its meaning
- Can we express precedence in grammar?
 - Notice: operations deeper in tree evaluated first
 - Solution: add an intermediate production
 - New production isolates different levels of precedence
 - Force higher precedence "deeper" in the grammar

• Two levels:

Level 1: lower precedence – higher in the tree

Level 2: higher precedence – deeper in the tree

#	Production rule
1	expr → expr + term
2	/ expr - term
3	/ term
4	term → term * factor
5	/ term / factor
6	factor
7	$ extit{factor} ightarrow extit{number}$
8	<u>identifier</u>

- Observations:
 - Larger: requires more rewriting to reach terminals
 - But, produces same parse tree under both left and right derivations

Right-most derivation

Rule	Sentential form
-	expr
2	expr - term
4	expr - term * factor
8	expr - term * <id,y></id,y>
6	expr - factor * <id,y></id,y>
7	expr - <num,2> * <id,y></id,y></num,2>
3	term - <num,2> * <id,y></id,y></num,2>
6	factor - <num,2> * <id,y></id,y></num,2>
8	<id,x> - <num,2> * <id,y></id,y></num,2></id,x>

Parse tree

➡Now right derivation yields x - (2 * y)

With precedence

In class questions

• What if I want (x-2)*y?

Some common patterns...

Another issue

Original expression grammar:

#	Production rule
1	expr→ expr op expr
2	/ number
3	identifier
4	<i>op</i> → +
5	/ -
6	/ *
7	1 /

Our favorite string: x − 2 * y

Rule	Sentential form
-	expr
1	expr op expr
1	expr op expr op expr
3	<id, x=""> op expr op expr</id,>
5	<id,x> - expr op expr</id,x>
2	<id,x> - <num,2> op expr</num,2></id,x>
6	<id,x> - <num,2> * expr</num,2></id,x>
3	<id,x> - <num,2> * <id,y></id,y></num,2></id,x>

Rule	Sentential form
-	expr
1	expr op expr
3	<id, x=""> op expr</id,>
5	<id,x> - expr</id,x>
1	<id,x> - expr op expr</id,x>
2	<id,x> - <num,2> op expr</num,2></id,x>
6	<id,x> - <num,2> * expr</num,2></id,x>
3	<id,x> - <num,2> * <id,y></id,y></num,2></id,x>

- Multiple leftmost derivations
- Such a grammar is called ambiguous
- Is this a problem?
 - Very hard to automate parsing

Ambiguous grammars

- A grammar is ambiguous iff:
 - There are multiple leftmost or multiple rightmost derivations for a single sentential form
 - Note: leftmost and rightmost derivations may differ, even in an unambiguous grammar
 - Intuitively:
 - We can choose different non-terminals to expand
 - But each non-terminal should lead to a unique set of terminal symbols
- What's a classic example?
 - If-then-else ambiguity

If-then-else

• Grammar:

#	Production rule	
1	$stmt \rightarrow \underline{if} expr \underline{then} stmt$	
2	/ <u>if expr then</u> stmt else stmt	
3	other statements	

- Problem: nested if-then-else statements
 - Each one may or may not have else
 - How to match each else with if

If-then-else ambiguity

Sentential form with two derivations:
 if expr1 then if expr2 then stmt1 else stmt2

- Restrict the grammar
 - Choose a rule: "else" matches innermost "if"
 - Codify with new productions

#	Production rule	
1	$stmt \rightarrow \underline{if} expr \underline{then} stmt$	
2	/ <u>if</u> expr then withelse else stmt	
3	other statements	
4	withelse → if expr then withelse else withelse	
5	other statements	

 Intuition: when we have an "else", all preceding nested conditions must have an "else"

Ambiguity

- Ambiguity can take different forms
 - Grammatical ambiguity (if-then-else problem)
 - Contextual ambiguity
 - In C: x * y; could follow typedef int x;
 - In Fortran: x = f(y); f could be function or array
- Cannot be solved directly in grammar
 - Issues of type (later in course)
- Deeper question:

How much can the parser do?

Parsing

- What is parsing?
 - Discovering the derivation of a string If one exists
 - Harder than generating strings
 Not surprisingly
- Two major approaches
 - Top-down parsing
 - Bottom-up parsing
- Don't work on all context-free grammars
 - Properties of grammar determine parse-ability
 - Our goal: make parsing efficient
 - We may be able to transform a grammar

Two approaches

- Top-down parsers LL(1), recursive descent
 - Start at the root of the parse tree and grow toward leaves
 - Pick a production and try to match the input
 - What happens if the parser chooses the wrong one?
- Bottom-up parsers LR(1), operator precedence
 - Start at the leaves and grow toward root
 - Issue: might have multiple possible ways to do this
 - Key idea: encode possible parse trees in an internal state (similar to our NFA → DFA conversion)
 - Bottom-up parsers handle a large class of grammars

Grammars and parsers

- LL(1) parsers
 - Left-to-right input
 - Leftmost derivation
 - 1 symbol of look-ahead
- LR(1) parsers
 - Left-to-right input
 - Rightmost derivation
 - 1 symbol of look-ahead

Grammars that they can handle are called LL(1) grammars

Grammars that they can handle are called LR(1) grammars

Also: LL(k), LR(k), SLR, LALR, ...

Top-down parsing

- Start with the root of the parse tree
 - Root of the tree: node labeled with the start symbol

Algorithm:

Repeat until the fringe of the parse tree matches input string

- At a node A, select one of A's productions
 Add a child node for each symbol on rhs
- Find the next node to be expanded

(a non-terminal)

- Done when:
 - Leaves of parse tree match input string

(success)

Example

Expression grammar

(with precedence)

#	Production rule	
1	expr → expr + term	
2	/ expr - term	
3	/ term	
4	term → term * factor	
5	/ term / factor	
6	/ factor	
7	$ extit{factor} ightarrow extit{number}$	
8	identifier	

Input string x − 2 * y

Example

Current position in the input stream

Rule	Sentential form	Input string
-	expr	↑ x - 2 * y
1	expr + term	x - 2 * y
3	term + term	↑ x - 2 * y
6	factor + term	↑ x - 2 * y
8	<id> + term</id>	x 1 - 2 * y
-	<id,x> + !erm</id,x>	x 1 - 2 * y

- Can't match next terminal
- We guessed wrong at step 2
- What should we do now?

Rule	Sentential form	Input string
-	expr	↑ x - 2 * y
1	expr + term	↑ x - 2 * y
3	term + term	↑ x - 2 * y
6	factor + term	↑ x - 2 * y
8	<id> + term</id>	x 1 - 2 * y
?	<id,x> + term</id,x>	x 1 - 2 * y

Undo all these productions

- If we can't match next terminal:
 - Rollback productions
 - Choose a different production for expr
 - Continue

Rule	Sentential form	Input string
-	expr	1 x - 2 * y
2	expr - term	↑ x - 2 * y
3	term - term	↑ x - 2 * y
6	factor - term	↑ x - 2 * y
8	<id> - term</id>	x 1 - 2 * y
-	<id,x> - term</id,x>	x - 1 2 * y
3	<id,x> - factor</id,x>	x - 1 2 * y
7	<id,x> - <num></num></id,x>	x - 2 \(\gamma\) * y

• Problem:

- More input to read
- Another cause of backtracking

Rule	Sentential form	Input string
-	expr	↑ x - 2 * y
2	expr - term	1 x - 2 * y
3	term - term	1 x - 2 * y
6	factor - term	1 x - 2 * y
8	<id> - term</id>	x 1 - 2 * y
-	<id,x> - term</id,x>	x - 1 2 * y
4	<id,x> - term * fact</id,x>	x - 1 2 * y
6	<id,x> - fact * fact</id,x>	x - 1 2 * y
7	<id,x> - <num> * fact</num></id,x>	x - 2 1 * y
-	<id,x> - <num,2> * fact</num,2></id,x>	$x - 2 * \uparrow y$
8	<id,x> - <num,2> * <id></id></num,2></id,x>	x - 2 * y 1

Rule	Sentential form	Input string
-	expr	1 x - 2 * y
2	expr - term	1 x - 2 * y
2	expr - term - term	1 x - 2 * y
2	expr - term - term - term	1 x - 2 * y
2	expr - term - term - term	1 x - 2 * y

- Problem: termination
 - Wrong choice leads to infinite expansion
 (More importantly: without consuming any input!)
 - May not be as obvious as this
 - Our grammar is left recursive

Left recursion

Formally,

A grammar is *left recursive* if \exists a non-terminal A such that $\mathbf{A} \to^* \mathbf{A} \alpha$ (for some set of symbols α)

$$A \rightarrow B \underline{x}$$

$$\boldsymbol{B} \to \boldsymbol{A} \, \underline{\boldsymbol{y}}$$

Bad news:

Top-down parsers cannot handle left recursion

Good news:

We can systematically eliminate left recursion

Notation

- Non-terminals
 - Capital letter: A, B, C
- Terminals
 - Lowercase, underline: <u>x</u>, <u>y</u>, <u>z</u>
- Some mix of terminals and non-terminals
 - Greek letters: α, β, γ
 - Example:

#	Production rule
1	$A \rightarrow B \pm \underline{x}$
1	$A \rightarrow B \alpha$

$$\alpha = + x$$

• Fix this grammar:

#	Production rule	
1	foo \rightarrow foo α	
2	/ β	

Language is β followed by zero or more α

Rewrite as

Two cases of left recursion:

#	Production rule	
1	expr → expr + term	
2	/ expr - term	
3	/ term	

#	Production rule	
4	term → term * factor	
5	/ term / factor	
6	factor	

• How do we fix these?

#	Production rule		
1	expr → term expr2		
2	expr2 → + term expr2		
3	/ - term <mark> expr2</mark>		
4	ε		

#	Production rule	
4	term → factor term2	
5	term2 → * factor term2	
6	/ / factor term2	
	/ ε	

- Resulting grammar
 - All right recursive
 - Retain original language and associativity
 - Not as intuitive to read
- Top-down parser
 - Will always terminate
 - May still backtrack

There's a lovely algorithm to do this automatically, which we will skip

#	Production rule
1	expr → term expr2
2	expr2 → + term expr2
3	/ - term expr2
4	/ ε
5	term → factor term2
6	term2 → * factor term2
7	/ / factor term2
8	/ ε
9	factor → number
10	identifier

Top-down parsers

- Problem: Left-recursion
- Solution: Technique to remove it
- What about backtracking?
 Current algorithm is brute force
- Problem: how to choose the right production?
 - Idea: use the next input token (duh)
 - How? Look at our right-recursive grammar...

#	Production rule	
1	expr →	term expr2
2	expr2 →	+ term expr2
3	1	- term expr2
4	1	ε
5	term →	factor term2
6	term2 →	* factor term2
7	1 /	tactor term2
8	8	
9	factor → n	number
10	<u>ا</u> ا	dentifier

Two productions with no choice at all

All other productions are uniquely identified by a terminal symbol at the start of RHS

- We can choose the right production by looking at the next input symbol
 - This is called *lookahead*
 - BUT, this can be tricky...

Lookahead

- Goal: avoid backtracking
 - Look at future input symbols
 - Use extra context to make right choice
- How much lookahead is needed?
 - In general, an arbitrary amount is needed for the full class of context-free grammars
 - Use fancy-dancy algorithm

CYK algorithm, O(n³)

- Fortunately,
 - Many CFGs can be parsed with limited lookahead
 - Covers most programming languages not C++ or Perl

Goal:

Given productions A $\rightarrow \alpha$ | β , the parser should be able to choose between α and β

Trying to match A
 How can the next input token help us decide?

• Solution: FIRST sets (almost a solution)

Informally:

 $\mathsf{FIRST}(\alpha)$ is the set of tokens that could appear as the first symbol in a string derived from α

• **Def:** \underline{x} in First(α) iff $\alpha \rightarrow^* \underline{x} \gamma$

- Building FIRST sets
 We'll look at this algorithm later
- The LL(1) property
 - Given $A \to \alpha$ and $A \to \beta$, we would like: $FIRST(\alpha) \cap FIRST(\beta) = \emptyset$
 - we will also write $FIRST(A \rightarrow \alpha)$, defined as $FIRST(\alpha)$
 - Parser can make right choice by with one lookahead token
 - ..almost..
 - What are we not handling?

- What about ε productions?
 - Complicates the definition of LL(1)
 - Consider $A \rightarrow \alpha$ and $A \rightarrow \beta$ and α may be empty

Production rule

In this case there is no symbol to identify α

	$ 1 S \rightarrow A \underline{z}$
F	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Example:	3 Y C
What is FIRST(#4)?	4 / ε

- - What is FIRS I (#4)?
 - $= \{ \epsilon \}$
 - What would tells us we are matching production 4?

#	Production rule
1	$S \rightarrow A \underline{z}$
2	$A \rightarrow \underline{x} B$
3	<u>у</u> С
4	/ ε

- If A was empty
 - What will the next symbol be?
 - Must be one of the symbols that immediately follows an A

Solution

- Build a Follow set for each symbol that could produce ε
- Extra condition for LL:

FIRST($A \rightarrow \beta$) must be disjoint from FIRST($A \rightarrow \alpha$) and FOLLOW(A)

FOLLOW sets

- Example:
 - FIRST(#2) = $\{ \underline{x} \}$
 - FIRST(#3) = $\{ y \}$
 - FIRST(#4) = { ε }

#	Production rule
1	$S \rightarrow A \underline{z}$
2	$A \rightarrow \underline{x} B$
3	<u>y</u> C
4	/ ε

- What can follow A?
 - Look at the context of all uses of A
 - FOLLOW(A) = $\{\underline{z}\}$
 - Now we can uniquely identify each production:
 If we are trying to match an A and the next token is z, then we matched production 4

FIRST and FOLLOW more carefully

- Notice:
 - FIRST and FOLLOW are sets
 - FIRST may contain ε in addition to other symbols

Question:

- What is FIRST(#2)?
- = FIRST(B) = { \underline{x} , \underline{y} , ε }?
- and FIRST(C)

Question:

When would we care about FOLLOW(A)?

Answer: if FIRST(C) contains ε

#	Production rule
1	$S \rightarrow A \underline{z}$
2	$A \rightarrow B C$
3	D
4	$B \rightarrow \underline{x}$
5	<u>Y</u>
6	/ ε
7	$C \rightarrow \dots$

LL(1) property

- Key idea:
 - Build parse tree top-down
 - Use look-ahead token to pick next production
 - Each production must be uniquely identified by the terminal symbols that may appear at the start of strings derived from it.
- **Def**: FIRST+(A $\rightarrow \alpha$) as
 - FIRST(α) U FOLLOW(A), if $\epsilon \in \text{FIRST}(\alpha)$
 - FIRST(α), otherwise
- **Def**: a grammar is **LL(1)** iff

$$A \rightarrow \alpha$$
 and $A \rightarrow \beta$ and FIRST+ $(A \rightarrow \alpha) \cap FIRST+(A \rightarrow \beta) = \emptyset$

Parsing LL(1) grammar

- Given an LL(1) grammar
 - Code: simple, fast routine to recognize each production
 - Given $A \to \beta_1 \mid \beta_2 \mid \beta_3$, with FIRST⁺(β_i) \cap FIRST⁺($(\beta_i) = \emptyset$ for all $i \neq j$

```
/* find rule for A*/ if (current token \in FIRST+(\beta_1)) select A \to \beta_1 else if (current token \in FIRST+(\beta_2)) select A \to \beta_2 else if (current token \in FIRST+(\beta_3)) select A \to \beta_3 else report an error and return false
```


Build parse tree top down

token stream

Is "CD"? Consider all possible strings derivable from "CD"
What is the set of tokens that can appear at start?

$$t_5 \in \mathsf{FIRST}(\mathsf{C}\;\mathsf{D}) \\ t_5 \in \mathsf{FIRST}(\mathsf{F}) \\ t_5 \in \mathsf{FOLLOW}(\mathsf{B})$$
 disjoint?

FIRST and Follow sets

The right-hand side of a production

$FIRST(\alpha)$

For some $\alpha \in (T \cup NT)^*$, define FIRST(α) as the set of tokens that appear as the first symbol in some string that derives from α

That is,
$$\underline{x} \in \mathsf{FIRST}(\alpha)$$
 iff $\alpha \Rightarrow^* \underline{x} \gamma$, for some γ and $\epsilon \in \mathsf{FIRST}(\alpha)$ iff $\alpha \Rightarrow^* \epsilon$

Follow(A)

For some $A \in NT$, define FOLLOW(A) as the set of symbols that can occur immediately after A in a valid sentence.

Computing First sets

• Idea:

Use FIRST sets of the right side of production

$$A \rightarrow B_1 B_2 B_3 \dots$$

- Cases:
 - FIRST($A \rightarrow B$) = FIRST(B_1)
 - What does FIRST(B₁) mean?
 - Union of FIRST($B_1 \rightarrow \gamma$) for all γ
 - What if ε in FIRST(B₁)?

$$\Rightarrow$$
 FIRST(A \rightarrow B) \cup = FIRST(B₂)

• What if ε in FIRST(B_i) for all i?

$$\Rightarrow$$
 FIRST(A \rightarrow B) \cup = { ε }

Why \cup = ?

repeat as needed

leave $\{\varepsilon\}$ for later

• For one production: $p = A \rightarrow \beta$

```
if (\beta is a terminal \underline{t})
            FIRST(p) = \{\underline{t}\}
else if (\beta == \varepsilon)
                                                                       Why do we need
            FIRST(p) = \{\epsilon\}
                                                                      to remove \epsilon from
else
                                                                           FIRST(B<sub>i</sub>)?
            Given \beta = B_1 B_2 B_3 \dots B_k
            i = 0
            do \{ i = i + 1; \}
                        FIRST(p) += FIRST(B_i) - {\epsilon}
            } while (\varepsilon in FIRST(B<sub>i</sub>) && i < k)
            if (\varepsilon in FIRST(B<sub>i</sub>) && i == k) FIRST(p) += {\varepsilon}
```


- For one production:
 - Given $A \rightarrow B_1 B_2 B_3 B_4 B_5$
 - Compute FIRST(**A**→**B**) using FIRST(**B**)
 - How do we get FIRST(**B**)?
- What kind of algorithm does this suggest?
 - Recursive?
 - Like a depth-first search of the productions

• Problem:

- What about recursion in the grammar?
- $A \rightarrow x B y$ and $B \rightarrow z A w$

Solution

- Start with FIRST(B) empty
- Compute FIRST(A) using empty FIRST(B)
- Now go back and compute FIRST(B)
 - What if it's no longer empty?
 - Then we recompute FIRST(A)
 - What if new FIRST(A) is different from old FIRST(A)?
 - Then we recompute FIRST(B) again...
- When do we stop?
 - When no more changes occur we reach *convergence*
 - FIRST(A) and FIRST(B) both satisfy equations
 - This is another *fixpoint* algorithm

Using fixpoints:

```
forall p FIRST(p) = {}

while (FIRST sets are changing)
    pick a random p
    compute FIRST(p)
```

- Can we be smarter?
 - Yes, visit in special order
 - Reverse post-order depth first search
 Visit all children (all right-hand sides) before visiting the left-hand side, whenever possible

#	Production rule
1	goal → expr
2	expr → term expr2
3	expr2 → + term expr2
4	/ - term expr2
5	/ ε
6	term → factor term2
7	term2 → * factor term2
8	/ / factor term2
9	/ ε
10	$ extit{factor} ightarrow extit{number}$
11	identifier

FIRST(3) = {
$$\pm$$
 }
FIRST(4) = { \pm }
FIRST(5) = { ϵ }
FIRST(7) = { \star }
FIRST(8) = { $\frac{1}{2}$ }
FIRST(9) = { ϵ }
FIRST(1) = ?
FIRST(1) = FIRST(2)
= FIRST(6)
= FIRST(10) \cup FIRST(11)
= { number, identifier }

Computing Follow sets

• Idea:

Push FOLLOW sets down, use FIRST where needed

$$A \rightarrow B_1 B_2 B_3 B_4 \dots B_k$$

- Cases:
 - What is FOLLOW(B₁)?
 - FOLLOW(B_1) = FIRST(B_2)
 - In general: Follow(B_i) = FIRST(B_{i+1})
 - What about FOLLOW(B_k)?
 - $FOLLOW(B_k) = FOLLOW(A)$
 - What if ε ∈ FIRST(B_k)?

 \Rightarrow FOLLOW(B_{k-1}) \cup = FOLLOW(A) extends to k-2, etc.

#	Production rule
1	goal → expr
2	expr → term expr2
3	expr2 → + term expr2
4	/ - term expr2
5	ε
6	term → factor term2
7	term2 → * factor term2
8	/ / factor term2
9	/ ε
10	$ extit{factor} ightarrow extit{number}$
11	<u>identifier</u>

```
FOLLOW(goal) = { EOF }

FOLLOW(expr) = FOLLOW(goal) = { EOF }

FOLLOW(expr2) = FOLLOW(expr) = { EOF }

FOLLOW(term) = ?

FOLLOW(term) += FIRST(expr2)

+= { +, -, \varepsilon }

+= { +, -, FOLLOW(expr)}

+= { +, -, EOF }
```


#	Production rule
1	goal → expr
2	expr → term expr2
3	expr2 → + term expr2
4	/ - term expr2
5	/ ε
6	term → factor term2
7	term2 → * factor term2
8	/ / factor term2
9	/ ε
10	$ extit{factor} ightarrow extit{number}$
11	identifier

```
FOLLOW(term2) += FOLLOW(term)

FOLLOW(factor) = ?

FOLLOW(factor) += FIRST(term2)

+= { *, /, \varepsilon }

+= { *, /, FOLLOW(term)}

+= { *, /, +, -, EOF }
```


Computing FOLLOW Sets


```
FOLLOW(G) \leftarrow \{EOF\}
for each A \in NT, FOLLOW(A) \leftarrow \emptyset
while (FOLLOW sets are still changing)
  for each p \in P, of the form A \rightarrow ... B_1B_2...B_k
       FOLLOW(B_k) \leftarrow FOLLOW(B_k) \cup FOLLOW(A)
       TRAILER ← FOLLOW(A)
        for i \leftarrow k down to 2
             if \varepsilon \in FIRST(B_i) then
               FOLLOW(B_{i-1}) \leftarrow FOLLOW(B_{i-1}) \cup \{FIRST(B_i) - \{\epsilon\}\}\
                                       UTRAILER
             else
                 FOLLOW(B_{i-1}) \leftarrow FOLLOW(B_{i-1}) \cup FIRST(B_i)
                 TRAILER \leftarrow \emptyset
```


LL(1) property

Def: a grammar is LL(1) iff

$$\begin{array}{c} \mathsf{A} \to \alpha \text{ and } \mathsf{A} \to \beta \text{ and} \\ \mathsf{FIRST+}(\mathsf{A} \to \alpha) \cap \mathsf{FIRST+}(\mathsf{A} \to \beta) = \varnothing \end{array}$$

- Problem
 - What if my grammar is not LL(1)?
 - May be able to fix it, with transformations
- Example:

#	Production rule		
1	A →	<u>\alpha</u>	$oldsymbol{eta}_1$
2	1	<u>\alpha</u>	$oldsymbol{eta}_2$
3	1	<u>\alpha</u>	$oldsymbol{eta}_3$

#	Production rule
1	$A \rightarrow \underline{\alpha} Z$
2	$Z \rightarrow \beta_1$
3	/ <mark>β₂</mark>
4	/ <mark>\beta_3</mark>

Left factoring

Graphically

#	Production rule
1	$A \rightarrow \alpha \beta_1$
2	$/ \alpha \beta_2$
3	$/ \alpha \beta_3$

#	Production rule
1	$A \rightarrow \alpha Z$
2	$m{Z} ightarrow m{eta}_1$
3	/ β ₂

*β*₃

#	Production rule
1	factor ightarrow identifier
2	<pre>/ identifier [expr]</pre>
3	<pre>/ identifier (expr)</pre>

After left factoring:

#	Production rule
1	<pre>factor → identifier post</pre>
2	post → [expr]
3	/ (expr)
4	ε

= Follow(*post*)
= {operators}

In this form, it has LL(1) property

Left factoring

Left factoring

Question

Using left factoring and left recursion elimination, can we turn an arbitrary CFG to a form where it meets the LL(1) condition?

Answer

Given a CFG that does not meet LL(1) condition, it is *undecidable* whether or not an LL(1) grammar exists

Example

 $\{a^n 0 b^n | n \ge 1\} \cup \{a^n 1 b^{2n} | n \ge 1\}$ has no LL(1) grammar

aaa0bbb aaa1bbbbbb

Limits of LL(1)

No LL(1) grammar for this language:

 $\{a^n 0 b^n | n \ge 1\} \cup \{a^n 1 b^{2n} | n \ge 1\}$ has no LL(1) grammar

#	Production rule
1	$G \rightarrow \underline{a} A \underline{b}$
2	/ a <i>B</i> <u>bb</u>
3	$A \rightarrow (\underline{a}) 4 \underline{b}$
4	10
5	$B \rightarrow \underline{a} B \underline{b} \underline{b}$
6	1 1

Problem: need an unbounded number of <u>a</u> characters before you can determine whether you are in the A group or the B group

Predictive parsing

- Predictive parsing
 - The parser can "predict" the correct expansion
 - Using lookahead and FIRST and FOLLOW sets
- Two kinds of predictive parsers
 - Recursive descent
 Often hand-written
 - Table-driven
 Generate tables from First and Follow sets

#	Production rule			
1	goal → expr			
2	expr → term expr2			
3	expr2 → + term expr2			
4	/ - term expr2			
5	<i> </i> ε			
6	term → factor term2			
7	term2 → * factor term2			
8	/ / factor term2			
9	/ ε			
10	$ extit{factor} ightarrow extit{number}$			
11	identifier			
12	(<i>expr</i>)			

- This produces a parser with six <u>mutually recursive</u> routines:
 - Goal
 - Expr
 - Expr2
 - Term
 - Term2
 - Factor
- Each recognizes one NT or T
- The term <u>descent</u> refers to the direction in which the parse tree is built.

Example code

Goal symbol:

```
main()
  /* Match goal --> expr */
  tok = nextToken();
  if (expr() && tok == EOF)
    then proceed to next step;
  else return false;
```

Top-level expression

```
expr()
  /* Match expr --> term expr2 */
  if (term() && expr2());
    return true;
  else return false;
```


Example code

Match expr2

```
expr2()
  /* Match expr2 --> + term expr2 */
  /* Match expr2 --> - term expr2 */

if (tok == '+' or tok == '-')
  tok = nextToken();
  if (term())
     then if (expr2())
        return true;
  else return false;

/* Match expr2 --> empty */
  return true;
```

Check FIRST and FOLLOW sets to distinguish

Example code

```
factor()
 /* Match factor --> ( expr ) */
  if (tok == '(')
   tok = nextToken();
    if (expr() && tok == ')')
      return true;
    else
      syntax error: expecting )
      return false
  /* Match factor --> num */
  if (tok is a num)
    return true
  /* Match factor --> id */
  if (tok is an id)
    return true;
```


Top-down parsing

- So far:
 - Gives us a yes or no answer
 - Is that all we want?
 - We want to build the parse tree
 - How?
- Add actions to matching routines
 - Create a node for each production
 - How do we assemble the tree?

Building a parse tree

- Notice:
 - Recursive calls match the shape of the tree

```
main
expr
term
factor
expr2
term
```

- Idea: use a stack
 - Each routine:
 - Pops off the children it needs
 - Creates its own node
 - Pushes that node back on the stack

Building a parse tree

With stack operations

Generating (automatically) a top-down parser

#	Production rule			
1	goal → expr			
2	expr → term expr2			
3	expr2 → + term expr2			
4	/ - term expr2			
5	ε			
6	term → factor term2			
7	term2 → * factor term2			
8	/ / factor term2			
9	/ ε			
10	$ extit{factor} ightarrow extit{number}$			
11	identifier			

- Two pieces:
 - Select the right RHS
 - Satisfy each part
- First piece:
 - FIRST+() for each rule
 - Mapping:

$$NT \times \Sigma \rightarrow rule\#$$

Look familiar? Automata?

Generating (automatically) a top-down parser

#	Production rule		
1	goal → expr		
2	expr → term expr2		
3	expr2 → + term expr2		
4	/ - term expr2		
5	ε		
6	term → factor term2		
7	term2 → * factor term2		
8	/ / factor term2		
9	/ ε		
10	$ extit{factor} ightarrow extit{number}$		
11	identifier		

- Second piece
 - Keep track of progress
 - Like a depth-first search
 - Use a stack
- Idea:
 - Push Goal on stack
 - Pop stack:
 - Match terminal symbol, <u>or</u>
 - Apply NT mapping, push RHS on stack

This will be clearer once we see the algorithm

Table-driven approach

- Encode mapping in a table
 - Row for each non-terminal
 - Column for each terminal symbol
 Table[NT, symbol] = rule#
 if symbol ∈ FIRST+(NT -> rhs(#))

	+,-	*,/	id, num
expr2	term expr2	error	error
term2	ϵ	factor term2	error
factor	error	error	(do nothing)


```
push the start symbol, G, onto Stack
top ← top of Stack
loop forever
 if top = EOF and token = EOF then break & report success
 if top is a terminal then
    if top matches token then
       pop Stack
                                          // recognized top
       token ← next_token()
                                          // top is a non-terminal
 else
    if TABLE[top,token] is A \rightarrow B_1B_2...B_k then
       pop Stack
                                          // get rid of A
                                         // in that order
       push Bk, Bk-1, ..., B1
 top ← top of Stack
```


Missing else's for error conditions