Compilers

Parsing

Yannis Smaragdakis, U. Athens (original slides by Sam Guyer@Tufts)

Next step

- Parsing: Organize tokens into "sentences"
- Do tokens conform to language syntax?
- Good news: token types are just numbers
- Bad news: language syntax is fundamentally more complex than lexical specification
- Good news: we can still do it in linear time in most cases

Parsing

- Parser
- Reads tokens from the scanner
- Checks organization of tokens against a grammar
- Constructs a derivation
- Derivation drives construction of IR

Study of parsing

- Discovering the derivation of a sentence
- "Diagramming a sentence" in grade school
- Formalization:
- Mathematical model of syntax - a grammar G
- Algorithm for testing membership in L(G)
- Roadmap:
- Context-free grammars
- Top-down parsers

Ad hoc, often hand-coded, recursive decent parsers

- Bottom-up parsers

Automatically generated LR parsers

Specifying syntax with a grammar

- Can we use regular expressions?
- For the most part, no
- Limitations of regular expressions
- Need something more powerful
- Still want formal specification
- Context-free grammar
- Set of rules for generating sentences
- Expressed in Backus-Naur Form (BNF)

Context-free grammar "producess or "generates"

- Example:

$\#$	Production rule	
1	sheepnoise \rightarrow sheepnoise baa	
2		

- Formally: context-free grammar is
- $\mathbf{G}=(\mathrm{s}, \mathrm{N}, \mathrm{T}, \mathrm{P})$
- \boldsymbol{T} : set of terminals

(provided by scanner)

- \boldsymbol{N} : set of non-terminals (represent structure)
- $\boldsymbol{s} \in \boldsymbol{N}$: start or goal symbol
- \boldsymbol{P} : set of production rules of the form $\boldsymbol{N} \rightarrow(\mathbf{N} \cup \mathbf{T})^{*}$

Language L(G)

- Language $\mathrm{L}(\mathrm{G})$
$L(G)$ is all sentences generated from start symbol
- Generating sentences
- Use productions as rewrite rules
- Start with goal (or start) symbol - a non-terminal
- Choose a non-terminal and "expand" it to the right-hand side of one of its productions
- Only terminal symbols left \rightarrow sentence in $L(G)$
- Intermediate results known as sentential forms

Expressions

- Language of expressions
- Numbers and identifiers
- Allow different binary operators
- Arbitrary nesting of expressions

\#	Production rule
1	expr \rightarrow expr op expr
2	/ number
3	\| identifier
4	op $\rightarrow+$
5	1 -
6	1 *
7	$1 /$

Language of expressions

- What's in this language?

$\#$	Production rule
1	expr \rightarrow expr op expr
2	$/$
number	
3	\mid
4	identifier
5	$\rightarrow+$
6	\mid
7	\mid
7	$/$

Rule	Sentential form
-	expr
1	expr op expr
3	<id, $\underline{\mathrm{x}}$ > op expr
5	<id, \underline{x} > - expr
1	<id, x > - expr op expr
2	<id, $\underline{\mathrm{x}}$ > - <num,2> op expr
6	<id, $\underline{\mathrm{x}}$ > - <num,2> * expr
3	<id, x > - <num,2> * <id, y >

We can build the string "x-2*y"
This string is in the language

Derivations

- Using grammars
- A sequence of rewrites is called a derivation
- Discovering a derivation for a string is parsing
- Different derivations are possible
- At each step we can choose any non-terminal
- Rightmost derivation: always choose right NT
- Leftmost derivation: always choose left NT (Other "random" derivations - not of interest)

Left vs right derivations

- Two derivations of "x - 2 * \mathbf{y} "

Rule	Sentential form
-	expr
1	expr op expr
3	<id, x> op expr
5	<id,x> - expr
1	<id,x> - expr op expr
2	<id,x> - <num,2> op expr
6	<id,x> - <num,2> * expr
3	<id,x> - <num,2> * <id,y>

Left-most derivation

Rule	Sentential form
-	expr
1	expr op expr
3	expr op <id,y>
6	expr * <id,y>
1	expr op expr * <id,y>
2	expr op <num,2> * <id,y>
5	expr - <num,2> * <id,y>
3	<id,x> - <num,2> * <id,y>

Right-most derivation

Derivations and parse trees

- Two different derivations
- Both are correct
- Do we care which one we use?
- Represent derivation as a parse tree
- Leaves are terminal symbols
- Inner nodes are non-terminals
- To depict production $\alpha \rightarrow \beta \gamma \delta$ show nodes β, γ, δ as children of α
Tree is used to build internal representation

Example (I)

Right-most derivation

Rule	Sentential form
-	expr
1	expr op expr
3	expr op <id,y>
6	expr * <id,y>
1	expr op expr * <id,y>
2	expr op <num,2> * <id,y>
5	expr - <num,2> * <id,y>
3	<id,x> - <num,2> * <id,y>

Parse tree

- Concrete syntax tree
- Shows all details of syntactic structure
- What's the problem with this tree?

Abstract syntax tree

- Parse tree contains extra junk
- Eliminate intermediate nodes
- Move operators up to parent nodes
- Result: abstract syntax tree

- Problem: Evaluates as (x-2) * y

Example (II)

Left-most derivation

Rule	Sentential form
-	expr
1	expr op expr
3	<id, $x>$ op expr
5	<id, $x>-$ expr
1	<id, $x>-$ expr op expr
2	$\langle i d, x\rangle-$ <num,2> op expr
6	<id, $x>-$ <num,2> * expr
3	$\langle i d, x\rangle-$-num,2> * <id, $y>$

Parse tree

- Solution: evaluates as x - (2 * y)

Derivations

Left-most derivation

Right-most derivation

Derivations and semantics

- Problem:
- Two different valid derivations
- One captures "meaning" we want (What specifically are we trying to capture here?)
- Key idea: shape of tree implies its meaning
- Can we express precedence in grammar?
- Notice: operations deeper in tree evaluated first
- Solution: add an intermediate production
- New production isolates different levels of precedence
- Force higher precedence "deeper" in the grammar

Adding precedence

- Two levels:

Level 1: lower precedence higher in the tree

Level 2: higher precedence deeper in the tree

$\#$	Production rule
1	expr \rightarrow expr + term
2	I expr - term
3	I term
4	term \rightarrow term * factor
5	I term / factor
6	I factor
7	factor \rightarrow number
8	identifier

- Observations:
- Larger: requires more rewriting to reach terminals
- But, produces same parse tree under both left and right derivations

Expression example

Right-most derivation
Parse tree

Rule	Sentential form
-	expr
2	expr - term
4	expr - term * factor
8	expr - term * <id, $y>$
6	expr - factor * <id,y>
7	expr - <num,2> * <id, $y>$
3	term - <num,2> * <id, y>
6	factor - <num,2> * <id, $y>$
8	<id, $x>-$ <num,2> * <id,y>

\Rightarrow Now right derivation yields $\mathbf{x}-(2$ * y$)$

With precedence

先

In class questions

- What if I want $(x-2)$ * y ?
- Some common patterns...

Another issue

- Original expression grammar:

$\#$	Production rule
1	expr \rightarrow expr op expr
2	1
3	1
number	
4	op
5	$\rightarrow+$
6	
7	
7	

- Our favorite string: $\mathbf{x}-2 * \mathbf{y}$

Another issue

Rule	Sentential form
-	expr
1	expr op expr
1	expr op expr op expr
3	<id, x> op expr op expr
5	<id,x> - expr op expr
2	<id,x> - <num,2> op expr
6	<id,x> - <num,2> * expr
3	<id,x> - <num,2> * <id,y>

Rule	Sentential form
-	expr
1	expr op expr
3	<id, x> op expr
5	<id,x> - expr
1	<id,x> - expr op expr
2	<id,x> - <num,2> op expr
6	<id,x> - <num,2> * expr
3	<id,x> - <num,2> * <id,y>

- Multiple leftmost derivations
- Such a grammar is called ambiguous
- Is this a problem?
- Very hard to automate parsing

Ambiguous grammars

- A grammar is ambiguous iff:
- There are multiple leftmost or multiple rightmost derivations for a single sentential form
- Note: leftmost and rightmost derivations may differ, even in an unambiguous grammar
- Intuitively:
- We can choose different non-terminals to expand
- But each non-terminal should lead to a unique set of terminal symbols
- What's a classic example?
- If-then-else ambiguity

If-then-else

- Grammar:

$\#$	Production rule
1	stmt \rightarrow if expr then stmt
2	I if expr then stmt else stmt
3	I...other statements...

- Problem: nested if-then-else statements
- Each one may or may not have else
- How to match each else with if

If-then-else ambiguity

- Sentential form with two derivations:
if expr1 then if expr2 then stmt1 else stmt2
prod

Removing ambiguity

- Restrict the grammar
- Choose a rule: "else" matches innermost "if"
- Codify with new productions

\#	Production rule
1 2 3 4 5	stmt \rightarrow if expr then stmt \mid if expr then withelse else stmt withelse \rightarrow if expr then withelse else withelse

- Intuition: when we have an "else", all preceding nested conditions must have an "else"

Ambiguity

- Ambiguity can take different forms
- Grammatical ambiguity
(if-then-else problem)
- Contextual ambiguity
- In C: $\quad \mathbf{x}$ * \mathbf{y}; could follow typedef int \mathbf{x};
- In Fortran: $\mathbf{x}=\mathrm{f}(\mathrm{y})$; f could be function or array

Cannot be solved directly in grammar

- Issues of type (later in course)
- Deeper question:

How much can the parser do?

Parsing

- What is parsing?
- Discovering the derivation of a string If one exists
- Harder than generating strings

Not surprisingly

- Two major approaches
- Top-down parsing
- Bottom-up parsing
- Don't work on all context-free grammars
- Properties of grammar determine parse-ability
- Our goal: make parsing efficient
- We may be able to transform a grammar

Two approaches

- Top-down parsers LL(1), recursive descent
- Start at the root of the parse tree and grow toward leaves
- Pick a production and try to match the input
- What happens if the parser chooses the wrong one?
- Bottom-up parsers LR(1), operator precedence
- Start at the leaves and grow toward root
- Issue: might have multiple possible ways to do this
- Key idea: encode possible parse trees in an internal state (similar to our NFA \rightarrow DFA conversion)
- Bottom-up parsers handle a large class of grammars

Grammars and parsers

- LL(1) parsers
- Left-to-right input
- Leftmost derivation
- 1 symbol of look-ahead
- LR(1) parsers
- Left-to-right input
- Rightmost derivation
- 1 symbol of look-ahead

Grammars that they can handle are called LL(1) grammars

Grammars that they can handle are called LR(1) grammars

- Also: LL(k), LR(k), SLR, LALR, ...

Top-down parsing

- Start with the root of the parse tree
- Root of the tree: node labeled with the start symbol
- Algorithm:

Repeat until the fringe of the parse tree matches input string

- At a node A, select one of A's productions

Add a child node for each symbol on rhs

- Find the next node to be expanded
- Done when:
- Leaves of parse tree match input string

Example

- Expression grammar
(with precedence)

$\#$	Production rule
1	expr \rightarrow expr + term
2	/ expr - term
3	I term
4	term \rightarrow term * factor
5	I term / factor
6	I factor
7	factor \rightarrow number
8	\mid identifier

- Input string x-2*y

Example

Current position in the input stream

Rule	Sentential form	Input string
-	expr	$\uparrow x-2 * y$
1	expr + term	$x-2 * y$
3	term + term	$\uparrow x-2 * y$
6	factor + term	$\uparrow x-2 * y$
8	<id> + term	$x \uparrow-2 * y$
-	$\text { <id, } x=+ \text { erm }$	$\times \uparrow-2 * y$

- Problem:
- Can't match next terminal
- We guessed wrong at step 2

- What should we do now?

Backtracking

Rule	Sentential form	Input string
-	expr	$\uparrow \mathrm{x}-2 * \mathrm{y}$
1	expr + term	$\uparrow \mathrm{x}-2 * \mathrm{y}$
3	term + term	$\uparrow \mathrm{x}-2 * \mathrm{y}$
6	factor + term	$\uparrow \mathrm{x}-2 * \mathrm{y}$
8	<id> + term	$\mathrm{x} \uparrow-2 * y$
$?$	$<i d, x>+$ term	$\mathrm{x} \uparrow-2 * y$

- If we can't match next terminal:
- Rollback productions
- Choose a different production for expr
- Continue

Retrying

Rule	Sentential form	Input string
	expr	$\uparrow x-2 * y$
2	expr - term	$\uparrow x-2 * y$
3	term - term	$\uparrow x-2 * y$
6	factor - term	$\uparrow x-2 * y$
8	<id> - term	$\mathbf{x} \uparrow-2 * y$
-	<id, x > - term	$x-\uparrow 2 * y$
3	<id, x - factor	$x-\uparrow 2 * y$
7	<id,x> - <num>	$\mathrm{x}-2 \uparrow * y$

- Problem:
- More input to read
- Another cause of backtracking

Successful parse

Rule	Sentential form	Input string
	expr	$\uparrow x-2 * y$
2	expr - term	$\uparrow x-2 * y$
3	term - term	$\uparrow x-2 * y$
6	factor - term	$\uparrow x-2 * y$
8	<id> - term	x $\uparrow-2$ * y
-	<id, x > - term	$\mathrm{x}-\uparrow 2$ * y
4	<id, x > - term * fact	$\mathrm{x}-\uparrow 2$ * y
6	<id, x > - fact * fact	$\mathrm{x}-\uparrow 2$ * y
7	<id, x > - <num> * fact	$\mathbf{x}-2 \uparrow * y$
	<id, x > - <num,2>* fact	$x-2 * \uparrow y$
8	<id, x > - <num,2> * <id>	$\mathbf{x}-2 * y \uparrow$

Other possible parses

Rule	Sentential form	Input string
-	expr	$\uparrow x-2 * y$
2	expr - term	$\uparrow x-2 * y$
2	expr - term - term	$\uparrow x-2 * y$
2	expr - term - term - term	$\uparrow x-2 * y$
2	expr - term - term - term - term	$\uparrow x-2 * y$

- Problem: termination
- Wrong choice leads to infinite expansion (More importantly: without consuming any input!)
- May not be as obvious as this
- Our grammar is left recursive

Left recursion

- Formally,

A grammar is left recursive if \exists a non-terminal A such that A \rightarrow^{*} A $\alpha \quad$ (for some set of symbols α)

$$
\begin{gathered}
\text { What does } \rightarrow^{\star} \text { mean? } \\
\mathbf{A} \rightarrow \mathbf{B} \underline{\underline{x}} \\
\mathbf{B} \rightarrow \mathbf{A} \\
\hline
\end{gathered}
$$

- Bad news:

Top-down parsers cannot handle left recursion

- Good news:

We can systematically eliminate left recursion

Notation

- Non-terminals
- Capital letter: A, B, C
- Terminals
- Lowercase, underline: $\underline{x}, \underline{y}, \underline{z}$
- Some mix of terminals and non-terminals
- Greek letters: $\alpha, \boldsymbol{\beta}, \boldsymbol{\gamma}$
- Example:

$\#$	Production rule
1	$A \rightarrow B \pm \underline{x}$
1	$A \rightarrow B \alpha$

$\alpha= \pm \underline{X}$

Eliminating left recursion

- Fix this grammar:

- Rewrite as

Back to expressions

- Two cases of left recursion:

$\#$	Production rule
1	expr \rightarrow expr + term
2	I expr - term
3	\mid term

$\#$	Production rule
4	term
5	\rightarrow term * factor
6	I term / factor

- How do we fix these?

$\#$	Production rule
1	expr \rightarrow term expr2
2	expr2 \rightarrow + term expr2
3	\mid
4	- term expr2
4	\mid

$\#$	Production rule
4	term \rightarrow factor term2
5	term2 \rightarrow * factor term2
6	$\mid /$ factor term2
	$\mid \varepsilon$

Eliminating left recursion

- Resulting grammar
- All right recursive
- Retain original language and associativity
- Not as intuitive to read
- Top-down parser
- Will always terminate
- May still backtrack

There's a lovely algorithm to do this automatically, which we will skip

\#	Production rule
1	expr \rightarrow term expr2
2	expr2 \rightarrow + term expr2
3	\| - term expr2
4	1 E
5	term \rightarrow factor term2
6	term2 \rightarrow * factor term2
7	\| / factor term2
8	1ε
9	factor \rightarrow number
10	\| identifier

Top-down parsers

- Problem: Left-recursion
- Solution: Technique to remove it
- What about backtracking?

Current algorithm is brute force

- Problem: how to choose the right production?
- Idea: use the next input token
(duh)
- How? Look at our right-recursive grammar...

Right-recursive grammar

 production by looking at the next input symbol

- This is called lookahead
- BUT, this can be tricky...

Lookahead

- Goal: avoid backtracking
- Look at future input symbols
- Use extra context to make right choice
- How much lookahead is needed?
- In general, an arbitrary amount is needed for the full class of context-free grammars
- Use fancy-dancy algorithm

CYK algorithm, $O\left(n^{3}\right)$

- Fortunately,
- Many CFGs can be parsed with limited lookahead
- Covers most programming languages not C++ or Perl

Top-down parsing

- Goal:

Given productions $A \rightarrow \alpha \mid \beta$, the parser should be able to choose between α and β

- Trying to match A

How can the next input token help us decide?

- Solution: FIRST sets
(almost a solution)
- Informally:

FIRST (α) is the set of tokens that could appear as the first symbol in a string derived from α

- Def: \underline{x} in $\operatorname{FIRST}(\alpha)$ iff $\alpha \rightarrow{ }^{*} \underline{x} \gamma$

Top-down parsing

- Building First sets

We'll look at this algorithm later

- The LL(1) property
- Given $A \rightarrow \alpha$ and $A \rightarrow \beta$, we would like:

$$
\operatorname{FIRST}(\alpha) \cap \operatorname{FIRST}(\beta)=\varnothing
$$

- we will also write $\operatorname{FIRSt}(\mathrm{A} \rightarrow \alpha)$, defined as $\operatorname{First}(\alpha)$
- Parser can make right choice by with one lookahead token
- ..almost..
- What are we not handling?

Top-down parsing

- What about ε productions?
- Complicates the definition of LL(1)
- Consider $A \rightarrow \alpha$ and $A \rightarrow \beta$ and α may be empty
- In this case there is no symbol to identify α
- Example:
- What is FIRST(\#4)?
- $=\{\varepsilon\}$

$\#$	Production rule			
1	S	\rightarrow	A	\underline{z}
2	A	\rightarrow	\underline{x}	B
3	I	y	C	
4	I	ε		

- What would tells us we are matching production 4 ?

Top-down parsing

- If A was empty

$\#$	Production rule			
$\mathbf{1}$	$S \rightarrow$	A	\underline{z}	
2	A	\rightarrow	\underline{x}	B
3		I	y	C
4		l	ε	

- What will the next symbol be?
- Must be one of the symbols that immediately follows an A
- Solution
- Build a Follow set for each symbol that could produce ε
- Extra condition for LL:

FIRST($\mathrm{A} \rightarrow \beta$) must be disjoint from FIRSt($\mathrm{A} \rightarrow \alpha$) and Follow(A)

Follow sets

- Example:
- $\operatorname{FIRST}(\# 2)=\{\underline{x}\}$
- $\operatorname{FIRST}(\# 3)=\{y\}$
- $\operatorname{FIRST}(\# 4)=\{\varepsilon\}$

$\#$	Production rule			
1	$S \rightarrow$	A	\underline{z}	
2	A	\rightarrow	\underline{x}	B
3	\mid	Y	C	
4		ε		

- What can follow A?
- Look at the context of all uses of A
- $\operatorname{Follow}(\mathrm{A})=\{\underline{z}\}$
- Now we can uniquely identify each production: If we are trying to match an A and the next token is \underline{z}, then we matched production 4

First and Follow more carefully

- Notice:
- FIRST and FOLLOW are sets
- FIRST may contain ε in addition to other symbols
- Question:
- What is FIRST(\#2)?
- $=\operatorname{FIRST}(B)=\{\underline{x}, \underline{y}, \varepsilon\}$?
- and FIRST(C)
- Question:

When would we care about FOLLOW(A)?

\#	Production rule
1	$S \rightarrow A \underline{z}$
2	$A \rightarrow B \quad C$
3	\| D
4	$B \rightarrow \underline{x}$
5	\| \mathbf{Y}
6	1 E
7	C \rightarrow..

Answer: if FIRST(C) contains ε

LL(1) property

- Key idea:
- Build parse tree top-down
- Use look-ahead token to pick next production
- Each production must be uniquely identified by the terminal symbols that may appear at the start of strings derived from it.
- Def: FIRST+(A $\rightarrow \alpha)$ as
- $\operatorname{FIRST}(\alpha) \cup \operatorname{FOLLOW}(A)$, if $\varepsilon \in \operatorname{FIRST}(\alpha)$
- $\operatorname{FIRST}(\alpha)$, otherwise
- Def: a grammar is $L L(1)$ iff
$A \rightarrow \alpha$ and $A \rightarrow \beta$ and
FIRST+(A $\rightarrow \alpha) \cap \operatorname{FIRST}+(A \rightarrow \beta)=\varnothing$

Parsing LL(1) grammar

- Given an LL(1) grammar
- Code: simple, fast routine to recognize each production
- Given $A \rightarrow \beta_{1}\left|\beta_{2}\right| \beta_{3}$, with
$\operatorname{FIRST}^{+}\left(\beta_{\mathrm{i}}\right) \cap \operatorname{FIRST}^{+}\left(\beta_{\mathrm{j}}\right)=\varnothing \quad$ for all $i!=j$

```
/* find rule for A*/
if (current token \in FIRST+( }\mp@subsup{\beta}{1}{}\mathrm{ ))
    select A -> }\mp@subsup{\beta}{1}{
else if (current token \in FIRST+( }\mp@subsup{\beta}{2}{})\mathrm{ )
    select A }->\mp@subsup{\beta}{2}{
else if (current token \in FIRST+( }\mp@subsup{\beta}{3}{})\mathrm{ )
    select A -> - }\mp@subsup{3}{3}{
else
    report an error and return false
```


Top-down parsing

- Build parse tree top down

\#	Production rule
1	$G \rightarrow A \underline{\alpha} B \zeta$
2	$A \rightarrow \underline{\beta} \underline{\gamma}$
3	$B \rightarrow C \quad D$
4	$l F$
5	1ε

Is "CD"? Consider all possible strings derivable from "CD" What is the set of tokens that can appear at start?
$\left.\begin{array}{l}t_{5} \in \operatorname{FIRST}(C D) \\ t_{5} \in \operatorname{FIRST}(F)\end{array}\right\}$ disjoint?
$\mathrm{t}_{5} \in \operatorname{FoLLow}(B)$

First and Follow sets

The right-hand side of

 a production
First(α)

For some $\alpha \in(T \cup N T)^{*}$, define $\operatorname{FIRST}(\alpha)$ as the set of tokens that appear as the first symbol in some string that derives from α

That is, $\underline{x} \in \operatorname{FIRST}(\alpha)$ iff $\alpha \Rightarrow^{*} \underline{x} \gamma$, for some γ
and $\quad \varepsilon \in \operatorname{FIRST}(\alpha)$ iff $\alpha \Rightarrow{ }^{*} \varepsilon$
Follow(A)
For some $\mathrm{A} \in N T$, define Follow(A) as the set of symbols that can occur immediately after A in a valid sentence.
Follow $(G)=\{E O F\}$, where G is the start symbol

Computing First sets

- Idea:

Use FIRST sets of the right side of production

$$
\mathrm{A} \rightarrow \mathrm{~B}_{1} \quad \mathrm{~B}_{2} \quad \mathrm{~B}_{3} \ldots
$$

- Cases:
- $\operatorname{First}(\mathrm{A} \rightarrow \mathrm{B})=\operatorname{First}\left(\mathrm{B}_{1}\right)$
- What does FIRST $\left(\mathrm{B}_{1}\right)$ mean?

$$
\text { Why } \cup=\text { ? }
$$

- Union of $\operatorname{FIRST}\left(\mathrm{B}_{1} \rightarrow \gamma\right)$ for all γ
- What if ε in $\operatorname{FIRST}\left(\mathrm{B}_{1}\right)$?
$\Rightarrow \operatorname{FIRST}(\mathrm{A} \rightarrow \mathrm{B}) \cup=\operatorname{FIRST}\left(\mathrm{B}_{2}\right) \quad$ repeat as needed
- What if ε in $\operatorname{FIRST}\left(\mathrm{B}_{\mathrm{i}}\right)$ for all i ?
$\Rightarrow \operatorname{FIRST}(A \rightarrow B) \cup=\{\varepsilon\}$
leave $\{\varepsilon\}$ for later

Algorithm

- For one production: $p=A \rightarrow \beta$

Algorithm

- For one production:
- Given $\mathbf{A} \rightarrow \mathrm{B}_{1} \mathrm{~B}_{2} \mathrm{~B}_{3} \mathrm{~B}_{4} \mathrm{~B}_{5}$
- Compute FIRST($\mathbf{A} \rightarrow \mathbf{B}$) using FIRST(B)
- How do we get FIRST(B)?
- What kind of algorithm does this suggest?
- Recursive?
- Like a depth-first search of the productions
- Problem:
- What about recursion in the grammar?
- $\mathbf{A} \rightarrow \mathbf{x B y}$ and $\mathbf{B} \rightarrow \mathbf{z A w}$

Algorithm

- Solution
- Start with FIRST(B) empty
- Compute FIRST(A) using empty FIRST(B)
- Now go back and compute FIRST(B)
- What if it's no longer empty?
- Then we recompute FIRST(A)
- What if new $\operatorname{FIRST}(\mathrm{A})$ is different from old FIRST(A)?
- Then we recompute FIRST(B) again...
- When do we stop?
- When no more changes occur - we reach convergence
- FIRST(A) and FIRST(B) both satisfy equations

This is another fixpoint algorithm

Algorithm

- Using fixpoints:

```
forall p FIRST(p)={}
while (FIRST sets are changing)
    pick a random p
    compute FIRST(p)
```

- Can we be smarter?
- Yes, visit in special order
- Reverse post-order depth first search Visit all children (all right-hand sides) before visiting the lefthand side, whenever possible

Example

\#	Production rule
$\begin{gathered} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \end{gathered}$	goal \rightarrow expr expr \rightarrow term expr2 expr2 \rightarrow + term expr2 \mid - term expr2 $\mid \varepsilon$ term \rightarrow factor term2 term2 \rightarrow * factor term2 $\mid /$ factor term2 $\mid \varepsilon$ factor \rightarrow number $\mid \underline{\text { identifier }}$

```
\(\operatorname{FIRST}(3)=\{ \pm\}\)
\(\operatorname{FIRST}(4)=\left\{\frac{ \pm}{\text { ニ }}\right\}\)
FIRST(5) \(=\{\bar{\varepsilon}\}\)
\(\operatorname{FIRST}(7)=\{\underline{\star}\}\)
\(\operatorname{FIRST}(8)=\{\underline{/}\}\)
\(\operatorname{FIRST}(9)=\{\varepsilon\}\)
FIRST(1) = ?
FIRST(1) = FIRST(2)
    = FIRST(6)
    \(=\) FIRST(10) \(\cup\) FIRST(11)
    \(=\{\) number, identifier \(\}\)
```


Computing Follow sets

- Idea:

Push FOLLOW sets down, use FIRST where needed

$$
A \rightarrow B_{1} \quad B_{2} \quad B_{3} \quad B_{4} \quad \ldots B_{k}
$$

- Cases:
- What is FOLLOW $\left(\mathrm{B}_{1}\right)$?
- $\operatorname{FoLLOw}\left(\mathrm{B}_{1}\right)=\operatorname{FIRSt}\left(\mathrm{B}_{2}\right)$
- In general: Follow $\left(\mathrm{B}_{\mathrm{i}}\right)=\operatorname{FIRST}\left(\mathrm{B}_{\mathrm{i}+1}\right)$
- What about Follow $\left(\mathrm{B}_{\mathrm{k}}\right)$?
- $\operatorname{FolLow}\left(\mathrm{B}_{\mathrm{k}}\right)=\operatorname{Follow}(\mathrm{A})$
- What if $\varepsilon \in \operatorname{FIRST}\left(\mathrm{B}_{\mathrm{k}}\right)$?
$\Rightarrow \operatorname{FOLLOW}\left(\mathrm{B}_{\mathrm{k}-1}\right) \cup=\operatorname{FOLLOW}(\mathrm{A}) \quad$ extends to $k-2$, etc.

Example

\#	Production rule
1	goal \rightarrow expr
2	expr \rightarrow term expr2
3	expr2 \rightarrow + term expr2
4	\| - term expr2
5	$1 \quad \varepsilon$
6	term \rightarrow factor term2
7	term2 \rightarrow * factor term2
8	/ / factor term2
9	1 E
10	factor \rightarrow number
11	\| identifier

$$
\begin{aligned}
& \text { FOLLOW }(\text { goal })=\{\text { EOF }\} \\
& \text { FOLLOW(expr) }=\text { FOLLOW(goal) }=\{\text { EOF }\} \\
& \text { FOLLOW(expr2) }=\text { FOLLOW(expr) }=\{\text { EOF }\} \\
& \begin{aligned}
\text { FOLLOW(term) } & =? \\
\text { FOLLOW(term) } & +=\text { FIRST(expr2) } \\
& +=\{+,-, \varepsilon\} \\
& +=\{+,-, \text { FOLLOW(expr) }\} \\
& +=\{+,-, \text { EOF }\}
\end{aligned}
\end{aligned}
$$

Example

\#	Production rule
1	goal \rightarrow expr
2	expr \rightarrow term expr2
3	expr2 \rightarrow + term expr2
4	/ - term expr2
5	1 ¢
6	term \rightarrow factor term2
7	term2 \rightarrow * factor term2
8	\| / factor term2
9	1ε
10	factor \rightarrow number
11	\| identifier

$$
\begin{aligned}
& \text { FOLLOW(term2) }+=\text { FOLLOW(term) } \\
& \begin{aligned}
\text { FOLLOW(factor) } & =? \\
\text { FOLLOW(factor) } & +=\text { FIRST(term2) } \\
& +=\left\{{ }^{*}, /, \varepsilon\right\} \\
& +=\left\{{ }^{*}, /, \text { FOLLOW(term) }\right\} \\
& +=\left\{{ }^{*}, /,+,-, \text { EOF }\right\}
\end{aligned}
\end{aligned}
$$

Computing FOLLOW Sets

```
FOLLOW(G) \leftarrow {EOF }
for each A\inNT, FOLLOW(A)}\leftarrow
while (FOLLOW sets are still changing)
    for each p }\inP\mathrm{ , of the form A}->\ldots\mp@subsup{B}{1}{}\mp@subsup{B}{2}{}\ldots\mp@subsup{B}{k}{
        FOLLOW (B
        TRAILER \leftarrowFOLLOW(A)
        fori}\leftarrowk\mathrm{ down to 2
            if }\varepsilon\in\operatorname{FIRST}(\mp@subsup{B}{i}{})\mathrm{ then
            FOLLOW(B}\mp@subsup{B}{i-1}{})\leftarrow\operatorname{FOLLOW}(\mp@subsup{B}{i-1}{})\cup{\operatorname{FIRST}(\mp@subsup{B}{i}{})-{\varepsilon}
                                    ~TRAILER
            else
                FOLLOW(B}\mp@subsup{B}{i-1}{})\leftarrow\operatorname{FOLLOW}(\mp@subsup{B}{i-1}{})\cup\operatorname{FIRST}(\mp@subsup{B}{i}{}
                TRAILER }\leftarrow
```


LL(1) property

- Def: a grammar is $\mathrm{LL}(1)$ iff

$$
\begin{aligned}
& \mathrm{A} \rightarrow \alpha \text { and } \mathrm{A} \rightarrow \beta \text { and } \\
& \quad \text { FIRST }+(\mathrm{A} \rightarrow \alpha) \cap \mathrm{FIRST}+(\mathrm{A} \rightarrow \beta)=\varnothing
\end{aligned}
$$

- Problem
- What if my grammar is not $\mathrm{LL}(1)$?
- May be able to fix it, with transformations
- Example:

$\#$	Production rule	
$\mathbf{1}$	$A \rightarrow$	$\underline{\alpha}$
2	β_{1}	
$\mathbf{2}$	1	$\underline{\alpha}$
	β_{2}	

\square| $\#$ | Production rule |
| :---: | :--- |
| $\mathbf{1}$ | $A \rightarrow \underline{\alpha} Z$ |
| 2 | $Z \rightarrow \beta_{1}$ |
| $\mathbf{3}$ | $1 \beta_{2}$ |
| 4 | $1 \beta_{3}$ |

Left factoring

- Graphically

$\#$	Production rule		
$\mathbf{1}$	$A \rightarrow$	α	β_{1}
2		$/$	α
		β_{2}	
3		α	β_{3}

$\#$	Production rule
$\mathbf{1}$	$A \rightarrow \alpha Z$
2	$Z \rightarrow \beta_{1}$
3	$I \beta_{2}$
	$1 \beta_{3}$

Expression example

$\#$	Production rule
1	factor \rightarrow identifier
2	I identifier [expr]
3	I identifier (expr)

> First+(1) $=\{$ identifier $\}$
> First+(2) $=\{$ identifier $\}$
> First+(3) $=\{$ identifier $\}$

After left factoring:

\#	Production rule
1	factor \rightarrow identifier post
2	post \rightarrow [expr]
3	/ (expr)
4	$\mid \varepsilon$

First+(1) = \{identifier $\}$
First $+(2)=\{\underline{[}\}$
First $+(3)=\{$ ($\}$
First+(4) = ?
\Rightarrow In this form, it has $\operatorname{LL}(1)$ property
= Follow(post)

$$
=\text { \{operators }\}
$$

Left factoring

- Graphically

Left factoring

- Question

Using left factoring and left recursion elimination, can we turn an arbitrary CFG to a form where it meets the $\mathrm{LL}(1)$ condition?

- Answer

Given a CFG that does not meet LL(1) condition, it is undecidable whether or not an $\mathrm{LL}(1)$ grammar exists

- Example
$\left\{\mathrm{a}^{n} 0 \mathrm{~b}^{n} \mid n \geq 1\right\} \cup\left\{\mathrm{a}^{n} 1 \mathrm{~b}^{2 n} \mid n \geq 1\right\}$ has no $L L(1)$ grammar

```
aaa0bbb
```

aaa1bbbbbb

Limits of LL(1)

- No LL(1) grammar for this language: $\left\{a^{n} 0 b^{n} \mid n \geq 1\right\} \cup\left\{a^{n} 1 b^{2 n} \mid n \geq 1\right\}$ has no $L L(1)$ grammar

Predictive parsing

- Predictive parsing
- The parser can "predict" the correct expansion
- Using lookahead and FIRST and FOLLOW sets
- Two kinds of predictive parsers
- Recursive descent

Often hand-written

- Table-driven

Generate tables from First and Follow sets

Recursive descent

\#	Production rule
1	goal \rightarrow expr
2	expr \rightarrow term expr2
3	expr2 \rightarrow + term expr2
4	\| - term expr2
5	1 ¢
6	term \rightarrow factor term2
7	term2 \rightarrow * factor term2
8	/ / factor term2
9	1ε
10	factor \rightarrow number
11	\| identifier
12	\| (expr)

- This produces a parser with six mutually recursive routines:
- Goal
- Expr
- Expr2
- Term
- Term2
- Factor
- Each recognizes one NT or T
- The term descent refers to the direction in which the parse tree is built.

Example code

- Goal symbol:

```
main()
    /* Match goal --> expr */
    tok = nextToken();
    if (expr() && tok == EOF)
        then proceed to next step;
        else return false;
```

- Top-level expression

```
expr()
    /* Match expr - term expr2 */
    if (term() && expr2());
        return true;
    else return false;
```


Example code

- Match expr2

```
expr2()
```

 /* Match expr2 \(->+\) term expr2 */
 /* Match expr2 \(->\) - term expr2 */
 if (tok == '+' or tok == '-')
 tok \(=\) nextToken ();
 if (term())
 then if (expr2())
 return true;
 else return false;
 /* Match expr2 --> empty */
 return true;

Example code

```
factor()
    /* Match factor --> ( expr ) */
    if (tok == '(`)
        tok = nextToken();
        if (expr() && tok == ')')
            return true;
        else
            syntax error: expecting )
            return false
    /* Match factor --> num */
    if (tok is a num)
        return true
    /* Match factor --> id */
    if (tok is an id)
        return true;
```


Top-down parsing

- So far:
- Gives us a yes or no answer
- Is that all we want?
- We want to build the parse tree
- How?
- Add actions to matching routines
- Create a node for each production
- How do we assemble the tree?

Building a parse tree

- Notice:
- Recursive calls match the shape of the tree
- Idea: use a stack
- Each routine:

```
main
    expr
    term
        factor
    expr2
    term
```

- Pops off the children it needs
- Creates its own node
- Pushes that node back on the stack

Building a parse tree

- With stack operations

```
expr()
    /* Match expr -> term expr2 */
    if (term() && expr2())
        expr2_node = pop();
        term_node = pop();
        expr_node = new exprNode (term_node,
                expr2_node)
        push(expr_node);
        return true;
    else return false;
```


Generating (automatically) a top-down parser

\#	Production rule
1	goal \rightarrow expr
2	expr \rightarrow term expr2
3	expr2 \rightarrow + term expr2
4	\| - term expr2
5	$1 \quad \varepsilon$
6	term \rightarrow factor term2
7	term2 \rightarrow * factor term2
8	/ / factor term2
9	1ε
10	factor \rightarrow number
11	\| identifier

- Two pieces:
- Select the right RHS
- Satisfy each part
- First piece:
- FIRST+() for each rule
- Mapping:

$$
\mathrm{NT} \times \Sigma \rightarrow \text { rule\# }
$$

Look familiar? Automata?

Generating (automatically) a top-down parser

\#	Production rule
$\begin{gathered} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \end{gathered}$	goal \rightarrow expr expr \rightarrow term expr2 expr2 \rightarrow + term expr2 I - term expr2 term \rightarrow factor term2 term2 \rightarrow * factor term2 $\mid /$ factor term2 $I \varepsilon$ factor $\rightarrow \underline{\text { number }}$ $\underline{\text { identifier }}$

- Second piece
- Keep track of progress
- Like a depth-first search
- Use a stack
- Idea:
- Push Goal on stack
- Pop stack:
- Match terminal symbol, or
- Apply NT mapping, push RHS on stack

This will be clearer once we see the algorithm

Table-driven approach

- Encode mapping in a table
- Row for each non-terminal
- Column for each terminal symbol

Table[NT, symbol] = rule\#
if symbol \in FIRST+(NT -> rhs(\#))

	,+-	*, l	id, num
expr2	term expr2	error	error
term2	ह	factor term2	error
factor	error	error	(do nothing)

Code

push the start symbol, G, onto Stack

top \leftarrow top of Stack
loop forever
if top = EOF and token = EOF then break \& report success
if top is a terminal then
if top matches token then
pop Stack // recognized top
token \leftarrow next_token()
else
if TABLE[top,token] is $A \rightarrow B_{1} B_{2} \ldots B_{k}$ then pop Stack // get rid of A push Bk, Bk-1, ..., B1 // in that order
top \leftarrow top of Stack
Missing else's for error conditions

