

Chapter 3: Introduction to SQL

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use

Chapter 3: Introduction to SQL

- Overview of The SQL Query Language
- Data Definition
- Basic Query Structure
- Additional Basic Operations
- Set Operations
- Null Values
- Aggregate Functions
- Nested Subqueries
- Modification of the Database

History

- IBM Sequel language developed as part of System R project at the IBM San Jose Research Laboratory
- Renamed Structured Query Language (SQL)
- ANSI and ISO standard SQL:
 - SQL-86
 - SQL-89
 - SQL-92
 - SQL:1999 (language name became Y2K compliant!)
 - SQL:2003
- Commercial systems offer most, if not all, SQL-92 features, plus varying feature sets from later standards and special proprietary features.
 - Not all examples here may work on your particular system.

Domain Types in SQL

- **char(n).** Fixed length character string, with user-specified length *n*.
- varchar(n). Variable length character strings, with user-specified maximum length n.
- int. Integer (a finite subset of the integers that is machine-dependent).
- smallint. Small integer (a machine-dependent subset of the integer domain type).
- numeric(p,d). Fixed point number, with user-specified precision of p digits, with n digits to the right of decimal point.
- real, double precision. Floating point and double-precision floating point numbers, with machine-dependent precision.
- float(n). Floating point number, with user-specified precision of at least n digits.
- More are covered in Chapter 4.

Create Table Construct

An SQL relation is defined using the create table command:

```
create table r (A_1 D_1, A_2 D_2, ..., A_n D_n, (integrity-constraint<sub>1</sub>), ..., (integrity-constraint<sub>k</sub>))
```

- r is the name of the relation
- each A_i is an attribute name in the schema of relation r
- D_i is the data type of values in the domain of attribute A_i
- Example:

```
create table instructor (
ID char(5),
name varchar(20) not null,
dept_name varchar(20),
salary numeric(8,2))
```

- insert into instructor values ('10211', 'Smith', 'Biology', 66000);
- insert into instructor values ('10211', null, 'Biology', 66000);

Integrity Constraints in Create Table

- not null
- **primary key** $(A_1, ..., A_n)$
- foreign key $(A_m, ..., A_n)$ references r

Example: Declare *branch_name* as the primary key for *branch*

primary key declaration on an attribute automatically ensures not null

And a Few More Relation Definitions

create table student (

ID varchar(5) primary key,

name varchar(20) not null,

dept_name varchar(20),

tot_cred numeric(3,0),

foreign key (dept_name) references department));

create table takes (

```
// varchar(5) primary key,
// course_id varchar(8),
// sec_id varchar(8),
// semester varchar(6),
// year numeric(4,0),
// grade varchar(2),
// foreign key (/D) references student,
// foreign key (course_id, sec_id, semester, year) references section );
// course_id varchar(5) primary key,
// course_id varchar(8),
// sec_id varchar(8),
// sec_i
```


And more still

create table course (

```
course_id varchar(8) primary key,
title varchar(50),
dept_name varchar(20),
credits numeric(2,0),
foreign key (dept_name) references department) );
```


Drop and Alter Table Constructs

- drop table
- alter table
 - alter table r add A D
 - where A is the name of the attribute to be added to relation r and D is the domain of A.
 - All tuples in the relation are assigned *null* as the value for the new attribute.
 - alter table r drop A
 - where A is the name of an attribute of relation r
 - Dropping of attributes not supported by many databases.

Basic Query Structure

A typical SQL query has the form:

select
$$A_1$$
, A_2 , ..., A_n
from r_1 , r_2 , ..., r_m
where P

- A_i represents an attribute
- R_i represents a relation
- P is a predicate.
- The result of an SQL query is a relation.

The select Clause

- The **select** clause list the attributes desired in the result of a query
 - corresponds to the projection operation of the relational algebra
- Example: find the names of all instructors:

select name from instructor

- NOTE: SQL names are case insensitive (i.e., you may use upper- or lower-case letters.)
 - E.g., Name = NAME = name
 - Some people use upper case wherever we use bold font.

The select Clause (Cont.)

- SQL allows duplicates in relations as well as in query results.
- To force the elimination of duplicates, insert the keyword distinct after select.
- Find the names of all departments with instructor, and remove duplicates

select distinct *dept_name* **from** *instructor*

The keyword all specifies that duplicates not be removed.

select all dept_name **from** instructor

The select Clause (Cont.)

An asterisk in the select clause denotes "all attributes"

select *
from instructor

- The **select** clause can contain arithmetic expressions involving the operation, +, –, *, and /, and operating on constants or attributes of tuples.
- The query:

select ID, name, salary/12 from instructor

would return a relation that is the same as the *instructor* relation, except that the value of the attribute *salary* is divided by 12.

The where Clause

- The where clause specifies conditions that the result must satisfy
 - Corresponds to the selection predicate of the relational algebra.
- To find all instructors in Comp. Sci. dept with salary > 80000

```
select name
from instructor
where dept_name = 'Comp. Sci.' and salary > 80000
```

- Comparison results can be combined using the logical connectives and,
 or, and not.
- Comparisons can be applied to results of arithmetic expressions.

The from Clause

- The from clause lists the relations involved in the query
 - Corresponds to the Cartesian product operation of the relational algebra.
- Find the Cartesian product *instructor X teaches*

select *
from instructor, teaches

- generates every possible instructor teaches pair, with all attributes from both relations.
- Cartesian product not very useful directly, but useful combined with where-clause condition (selection operation in relational algebra).

Cartesian Product

instructor

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
1 00452		T31 ·	07000

teaches

ID	course_id	sec_id	semester	year
10101	CS-101	1	Fall	2009
10101	CS-315	1	Spring	2010
10101	CS-347	1	Fall	2009
12121	FIN-201	1	Spring	2010
15151	MU-199	1	Spring	2010
22222	PHY-101	1	Fall	2009

Inst.ID	name	dept_name	salary	teaches.ID	course_id	sec_id	semester	year
10101	Srinivasan	Physics	95000	10101	CS-101	1	Fall	2009
10101	Srinivasan	Physics	95000	10101	CS-315	1	Spring	2010
10101	Srinivasan	Physics	95000	10101	CS-347	1	Fall	2009
10101	Srinivasan	Physics	95000	10101	FIN-201	1	Spring	2010
10101	Srinivasan	Physics	95000	15151	MU-199	1	Spring	2010
10101	Srinivasan	Physics	95000	22222	PHY-101	1	Fall	2009
•••	•••	•••		• • •	•••	•••	•••	
	• • •	•••	•••	•••	•••		•••	• • •
12121	Wu	Physics	95000	10101	CS-101	1	Fall	2009
12121	Wu	Physics	95000	10101	CS-315	1	Spring	2010
12121	Wu	Physics	95000	10101	CS-347	1	Fall	2009
12121	Wu	Physics	95000	10101	FIN-201	1	Spring	2010
12121	Wu	Physics	95000	15151	MU-199	1	Spring	2010
12121	Wu	Physics	95000	22222	PHY-101	1	Fall	2009
• • •	•••		• • •	•••	***	• • •	•••	•••
Approximate		KN0003KN66						

Joins

For all instructors who have taught courses, find their names and the course ID of the courses they taught.

```
select name, course_id
from instructor, teaches
where instructor.ID = teaches.ID
```

Find the course ID, semester, year and title of each course offered by the Comp. Sci. department

Try Writing Some Queries in SQL

Suggest queries to be written.....

Natural Join

- Natural join matches tuples with the same values for all common attributes, and retains only one copy of each common column
- select * from instructor natural join teaches;

ID	name	dept_name	salary	course_id	sec_id	semester	year
10101	Srinivasan	Comp. Sci.	65000	CS-101	1	Fall	2009
10101		Comp. Sci.		CS-315	1	Spring	2010
10101	Srinivasan	Comp. Sci.	65000	CS-347	1	Fall	2009
12121	Wu	Finance	90000	FIN-201	1	Spring	2010
15151	Mozart	Music	40000	MU-199	1	Spring	2010
22222	Einstein	Physics	95000	PHY-101	1	Fall	2009
32343	El Said	History	60000	HIS-351	1	Spring	2010
45565	Katz	Comp. Sci.	75000	CS-101	1	Spring	2010
45565	Katz	Comp. Sci.	75000	CS-319	1	Spring	2010
76766	Crick	Biology	72000	BIO-101	1	Summer	2009
76766	Crick	Biology	72000	BIO-301	1	Summer	2010

Natural Join (Cont.)

- Danger in natural join: beware of unrelated attributes with same name which get equated incorrectly
- List the names of instructors along with the the titles of courses that they teach
- Incorrect version (equates course.dept_name with instructor.dept_name)
 - select name, title
 from instructor natural join teaches natural join course;
- Correct version
 - select name, title
 from instructor natural join teaches, course
 where teaches.course_id= course.course_id;
- Another correct version
 - select name, title
 from (instructor natural join teaches) join course using(course_id);

The Rename Operation

- The SQL allows renaming relations and attributes using the **as** clause: old-name **as** new-name
- E.g.,
 - select ID, name, salary/12 as monthly_salary
 from instructor
- Find the names of all instructors who have a higher salary than some instructor in 'Comp. Sci'.
 - select distinct T. name
 from instructor as T, instructor as S
 where T.salary > S.salary and S.dept_name = 'Comp. Sci.'
- Keyword as is optional and may be omitted instructor as T ≡ instructor T

String Operations

- SQL includes a string-matching operator for comparisons on character strings. The operator "like" uses patterns that are described using two special characters:
 - percent (%). The % character matches any substring.
 - underscore (_). The _ character matches any character.
- Find the names of all instructors whose name includes the substring "dar".

select name from instructor where name like '%dar%'

Match the string "100 %"

like '100 \%' escape '\'

- SQL supports a variety of string operations such as
 - concatenation (using "||")
 - converting from upper to lower case (and vice versa)
 - finding string length, extracting substrings, etc.

Ordering the Display of Tuples

- List in alphabetic order the names of all instructors select distinct name from instructor order by name
- We may specify desc for descending order or asc for ascending order, for each attribute; ascending order is the default.
 - Example: order by name desc
- Can sort on multiple attributes
 - Example: order by dept_name, name

Where Clause Predicates

- SQL includes a between comparison operator
- Example: Find the names of all instructors with salary between \$90,000 and \$100,000 (that is, \geq \$90,000 and \leq \$100,000)
 - select name
 from instructor
 where salary between 90000 and 100000
- Tuple comparison
 - select name, course_id
 from instructor, teaches
 where (instructor.ID, dept_name) = (teaches.ID, 'Biology');

Duplicates

- In relations with duplicates, SQL can define how many copies of tuples appear in the result.
- Multiset versions of some of the relational algebra operators given multiset relations r_1 and r_2 :
 - 1. $\sigma_{\theta}(r_1)$: If there are c_1 copies of tuple t_1 in r_1 , and t_1 satisfies selections σ_{θ} , then there are c_1 copies of t_1 in $\sigma_{\theta}(r_1)$.
 - 2. $\Pi_A(r)$: For each copy of tuple t_1 in r_1 , there is a copy of tuple $\Pi_A(t_1)$ in $\Pi_A(r_1)$ where $\Pi_A(t_1)$ denotes the projection of the single tuple t_1 .
 - 3. $r_1 \times r_2$: If there are c_1 copies of tuple t_1 in r_1 and c_2 copies of tuple t_2 in t_2 , there are $t_1 \times t_2$ copies of the tuple t_1 . t_2 in $t_3 \times t_4$

Duplicates (Cont.)

Example: Suppose multiset relations r_1 (A, B) and r_2 (C) are as follows:

$$r_1 = \{(1, a) (2,a)\}$$
 $r_2 = \{(2), (3), (3)\}$

- Then $\Pi_B(r_1)$ would be {(a), (a)}, while $\Pi_B(r_1)$ x r_2 would be {(a,2), (a,2), (a,3), (a,3), (a,3), (a,3)}
- SQL duplicate semantics:

select
$$A_1, A_2, ..., A_n$$
 from $r_1, r_2, ..., r_m$ **where** P

is equivalent to the *multiset* version of the expression:

$$\prod_{A_1,A_2,...,A_n} (\sigma_P(r_1 \times r_2 \times ... \times r_m))$$

Set Operations

■ Find courses that ran in Fall 2009 or in Spring 2010

```
(select course_id from section where sem = 'Fall' and year = 2009)
union
(select course_id from section where sem = 'Spring' and year = 2010)
```

Find courses that ran in Fall 2009 and in Spring 2010

```
(select course_id from section where sem = 'Fall' and year = 2009)
intersect
(select course id from section where sem = 'Spring' and year = 2010)
```

Find courses that ran in Fall 2009 but not in Spring 2010

```
(select course_id from section where sem = 'Fall' and year = 2009)
except
(select course_id from section where sem = 'Spring' and year = 2010)
```


Set Operations

- Set operations union, intersect, and except
 - Each of the above operations automatically eliminates duplicates
- To retain all duplicates use the corresponding multiset versions union all, intersect all and except all.
- Suppose a tuple occurs m times in r and n times in s, then, it occurs:
 - m + n times in r union all s
 - min(m,n) times in r intersect all s
 - max(0, m-n) times in r except all s

Null Values

- It is possible for tuples to have a null value, denoted by null, for some of their attributes
- null signifies an unknown value or that a value does not exist.
- The result of any arithmetic expression involving null is null
 - Example: 5 + null returns null
- The predicate is null can be used to check for null values.
 - Example: Find all instructors whose salary is null.

select name from instructor where salary is null

Null Values and Three Valued Logic

- Any comparison with *null* returns *unknown*
 - Example: 5 < null or null <> null or null = null
- Three-valued logic using the truth value *unknown*:
 - OR: (unknown or true) = true,
 (unknown or false) = unknown
 (unknown or unknown) = unknown
 - AND: (true and unknown) = unknown,
 (false and unknown) = false,
 (unknown and unknown) = unknown
 - NOT: (not unknown) = unknown
 - "P is unknown" evaluates to true if predicate P evaluates to unknown
- Result of where clause predicate is treated as false if it evaluates to unknown

Aggregate Functions

 These functions operate on the multiset of values of a column of a relation, and return a value

avg: average value

min: minimum value

max: maximum value

sum: sum of values

count: number of values

Aggregate Functions (Cont.)

- Find the average salary of instructors in the Computer Science department
 - select avg (salary)
 from instructor
 where dept_name= 'Comp. Sci.';
- Find the total number of instructors who teach a course in the Spring 2010 semester
 - select count (distinct ID)
 from teaches
 where semester = 'Spring' and year = 2010
- Find the number of tuples in the course relation
 - select count (*)from course;

Aggregate Functions – Group By

- Find the average salary of instructors in each department
 - select dept_name, avg (salary)from instructorgroup by dept_name;

ID	name	dept_name	salary
76766	Crick	Biology	72000
45565	Katz	Comp. Sci.	75000
10101	Srinivasan	Comp. Sci.	65000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000
12121	Wu	Finance	90000
76543	Singh	Finance	80000
32343	El Said	History	60000
58583	Califieri	History	62000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
22222	Einstein	Physics	95000

dept_name	avg_salary
Biology	72000
Comp. Sci.	77333
Elec. Eng.	80000
Finance	85000
History	61000
Music	40000
Physics	91000

Aggregation (Cont.)

- Attributes in select clause outside of aggregate functions must appear in group by list
 - /* erroneous query */
 select dept_name, ID, avg (salary)
 from instructor
 group by dept_name;

Aggregate Functions – Having Clause

Find the names and average salaries of all departments whose average salary is greater than 42000

select dept_name, avg (salary)
from instructor
group by dept_name
having avg (salary) > 42000;

Note: predicates in the **having** clause are applied after the formation of groups whereas predicates in the **where** clause are applied before forming groups

Null Values and Aggregates

Total all salaries

select sum (salary) **from** instructor

- Above statement ignores null amounts
- Result is null if there is no non-null amount.
- All aggregate operations except count(*) ignore tuples with null values on the aggregated attributes
- What if collection has only null values?
 - count returns 0
 - all other aggregates return null

Nested Subqueries

- SQL provides a mechanism for the nesting of subqueries.
- A subquery is a select-from-where expression that is nested within another query.
- A common use of subqueries is to perform tests for set membership, set comparisons, and set cardinality.

Example Query

Find courses offered in Fall 2009 and in Spring 2010

Find courses offered in Fall 2009 but not in Spring 2010

Example Query

■ Find the total number of (distinct) students who have taken course sections taught by the instructor with *ID* 10101

■ Note: Above query can be written in a much simpler manner. The formulation above is simply to illustrate SQL features.

Set Comparison

Find names of instructors with salary greater than that of some (at least one) instructor in the Biology department.

```
select distinct T.name
from instructor as T, instructor as S
where T.salary > S.salary and S.dept name = 'Biology';
```

Same query using > some clause

```
select name
from instructor
where salary > some (select salary
from instructor
where dept name = 'Biology');
```


Definition of Some Clause

F <comp> some $r \Leftrightarrow \exists t \in r$ such that (F <comp> t) Where <comp> can be: <, \le , >, =, \ne

Example Query

Find the names of all instructors whose salary is greater than the salary of all instructors in the Biology department.

Definition of all Clause

■ F <comp> all $r \Leftrightarrow \forall t \in r$ (F <comp> t)

$$(5 < \mathbf{all} \quad \begin{array}{c} 0 \\ 5 \\ \hline 6 \\ \end{array}) = \text{false}$$

$$(5 < \mathbf{all} \quad \begin{array}{c} 6 \\ 10 \\ \end{array}) = \text{true}$$

$$(5 = \mathbf{all} \quad \begin{array}{c} 4 \\ 5 \\ \end{array}) = \text{false}$$

$$(5 \neq \mathbf{all} \quad \begin{array}{c} 4 \\ \hline 6 \\ \end{array}) = \text{true (since } 5 \neq 4 \text{ and } 5 \neq 6)$$

$$(\neq \mathbf{all}) \equiv \mathbf{not in}$$
However, $(= \mathbf{all}) \neq \mathbf{in}$

Test for Empty Relations

- The **exists** construct returns the value **true** if the argument subquery is nonempty.
- **exists** $r \Leftrightarrow r \neq \emptyset$
- **not exists** $r \Leftrightarrow r = \emptyset$

Correlation Variables

Yet another way of specifying the query "Find all courses taught in both the Fall 2009 semester and in the Spring 2010 semester"

- Correlated subquery
- Correlation name or correlation variable

Not Exists

Find all studentswho have taken all courses offered in the Biology department.

- Note that $X Y = \emptyset \iff X \subseteq Y$
- Note: Cannot write this query using = all and its variants

Test for Absence of Duplicate Tuples

- The **unique** construct tests whether a subquery has any duplicate tuples in its result.
- Find all courses that were offered at most once in 2009

```
select T.course_id

from course as T

where unique (select R.course_id

from section as R

where T.course_id= R.course_id

and R.year = 2009);
```


Derived Relations

- SQL allows a subquery expression to be used in the from clause
- Find the average instructors' salaries of those departments where the average salary is greater than \$42,000."

- Note that we do not need to use the having clause
- Another way to write above query

Derived Relations (Cont.)

And yet another way to write it: lateral clause

With Clause

- The with clause provides a way of defining a temporary view whose definition is available only to the query in which the with clause occurs.
- Find all departments with the maximum budget

```
with max_budget (value) as
    (select max(budget)
    from department)
select budget
from department, max_budget
where department.budget = max_budget.value;
```


Complex Queries using With Clause

Find all departments where the total salary is greater than the average of the total salary at all departments

```
with dept_total (dept_name, value) as
          (select dept_name, sum(salary)
          from instructor
          group by dept_name),
dept_total_avg(value) as
          (select avg(value)
          from dept_total)
select dept_name
from dept_total, dept_total_avg
where dept_total.value >= dept_total_avg.value;
```


Scalar Subquery

Modification of the Database – Deletion

Delete all instructors

delete from instructor

- Delete all instructors from the Finance department delete from instructor where dept_name= 'Finance';
- Delete all tuples in the instructor relation for those instructors associated with a department located in the Watson building.

Example Query

Delete all instructors whose salary is less than the average salary of instructors

delete from instructor
where salary< (select avg (salary) from instructor);</pre>

- Problem: as we delete tuples from deposit, the average salary changes
- Solution used in SQL:
 - 1. First, compute **avg** salary and find all tuples to delete
 - 2. Next, delete all tuples found above (without recomputing **avg** or retesting the tuples)

Modification of the Database – Insertion

Add a new tuple to course

```
insert into course
    values ('CS-437', 'Database Systems', 'Comp. Sci.', 4);
```

or equivalently

```
insert into course (course_id, title, dept_name, credits)
  values ('CS-437', 'Database Systems', 'Comp. Sci.', 4);
```

Add a new tuple to student with tot_creds set to null

```
insert into student
    values ('3003', 'Green', 'Finance', null);
```


Modification of the Database – Insertion

Add all instructors to the student relation with tot_creds set to 0

```
insert into student
    select ID, name, dept_name, 0
from instructor
```

The select from where statement is evaluated fully before any of its results are inserted into the relation (otherwise queries like insert into table1 select * from table1 would cause problems)

Modification of the Database – Updates

- Increase salaries of instructors whose salary is over \$100,000 by 3%, and all others receive a 5% raise
 - Write two update statements:

```
update instructor
set salary = salary * 1.03
where salary > 100000;
update instructor
set salary = salary * 1.05
where salary <= 100000;</pre>
```

- The order is important
- Can be done better using the case statement (next slide)

Case Statement for Conditional Updates

Same query as before but with case statement

```
update instructor
set salary = case
     when salary <= 100000 then salary * 1.05
     else salary * 1.03
     end</pre>
```


Updates with Scalar Subqueries

Recompute and update tot_creds value for all students

- Sets tot_creds to null for students who have not taken any course
- Instead of sum(credits), use:

```
case
    when sum(credits) is not null then sum(credits)
    else 0
end
```


End of Chapter 3

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use

Advanced SQL Features**

Create a table with the same schema as an existing table:
create table temp_account like account

name

Srinivasan

Wu

Mozart

Einstein

El Said

Gold

Katz

Califieri

Singh

Crick

Brandt

Kim

dept_name

Comp. Sci.

Finance

Music

Physics

History

Physics

Comp. Sci.

History

Finance

Biology

Comp. Sci.

Elec. Eng.

name

Katz Brandt

name	dept_name	building
Srinivasan	Comp. Sci.	Taylor
Wu	Finance	Painter
Mozart	Music	Packard
Einstein	Physics	Watson
El Said	History	Painter
Gold	Physics	Watson
Katz	Comp. Sci.	Taylor
Califieri	History	Painter
Singh	Finance	Painter
Crick	Biology	Watson
Brandt	Comp. Sci.	Taylor
Kim	Elec. Eng.	Taylor

Inst.ID	name	dept_name	salary	teaches.ID	course_id	sec_id	semester	year
10101	Srinivasan	Physics	95000	10101	CS-101	1	Fall	2009
10101	Srinivasan	Physics	95000	10101	CS-315	1	Spring	2010
10101	Srinivasan	Physics	95000	10101	CS-347	1	Fall	2009
10101	Srinivasan	Physics	95000	10101	FIN-201	1	Spring	2010
10101	Srinivasan	Physics	95000	15151	MU-199	1	Spring	2010
10101	Srinivasan	Physics	95000	22222	PHY-101	1	Fall	2009
	•••			•••			•••	
		***		•••	•••		•••	
12121	Wu	Physics	95000	10101	CS-101	1	Fall	2009
12121	Wu	Physics	95000	10101	CS-315	1	Spring	2010
12121	Wu	Physics	95000	10101	CS-347	1	Fall	2009
12121	Wu	Physics	95000	10101	FIN-201	1	Spring	2010
12121	Wu	Physics	95000	15151	MU-199	1	Spring	2010
12121	Wu	Physics	95000	22222	PHY-101	1	Fall	2009
			•••		•••	***	•••	***
	,						 E. 11	2000
15151	Mozart	Physics	95000	10101	CS-101	1	Fall	2009
15151	Mozart	Physics	95000	10101	CS-315	1	Spring	2010
15151	Mozart	Physics	95000	10101	CS-347	1	Fall	2009
15151	Mozart	Physics	95000	10101	FIN-201	1	Spring	2010
15151	Mozart	Physics	95000	15151	MU-199	1	Spring	2010
15151	Mozart	Physics	95000	22222	PHY-101	1	Fall	2009
	***		•••	•••	***		***	•••
	Firm to in			10101	 CC 101	1	 T-11	2000
22222	Einstein	Physics	95000	10101	CS-101	1	Fall	2009
22222	Einstein	Physics	95000	10101	CS-315	1	Spring	2010
22222	Einstein	Physics	95000	10101	CS-347	1	Fall	2009
22222	Einstein	Physics	95000	10101	FIN-201	1	Spring	2010
22222	Einstein	Physics	95000	15151	MU-199	1	Spring	2010
22222	Einstein	Physics	95000	22222	PHY-101	1	Fall	2009
***		•••	***	•••	•••		****	••••
		***	•••	•••	***	***	•••	****

name	Course_id
Srinivasan	CS-101
Srinivasan	CS-315
Srinivasan	CS-347
Wu	FIN-201
Mozart	MU-199
Einstein	PHY-101
El Said	HIS-351
Katz	CS-101
Katz	CS-319
Crick	BIO-101
Crick	BIO-301
Brandt	CS-190
Brandt	CS-190
Brandt	CS-319
Kim	EE-181

ID	name	dept_name	salary	course_id	sec_id	semester	year
10101	Srinivasan	Comp. Sci.	65000	CS-101	1	Fall	2009
10101	Srinivasan	Comp. Sci.	65000	CS-315	1	Spring	2010
10101	Srinivasan	Comp. Sci.	65000	CS-347	1	Fall	2009
12121	Wu	Finance	90000	FIN-201	1	Spring	2010
15151	Mozart	Music	40000	MU-199	1	Spring	2010
22222	Einstein	Physics	95000	PHY-101	1	Fall	2009
32343	El Said	History	60000	HIS-351	1	Spring	2010
45565	Katz	Comp. Sci.	75000	CS-101	1	Spring	2010
45565	Katz	Comp. Sci.	75000	CS-319	1	Spring	2010
76766	Crick	Biology	72000	BIO-101	1	Summer	2009
76766	Crick	Biology	72000	BIO-301	1	Summer	2010
83821	Brandt	Comp. Sci.	92000	CS-190	1	Spring	2009
83821	Brandt	Comp. Sci.	92000	CS-190	2	Spring	2009
83821	Brandt	Comp. Sci.	92000	CS-319	2	Spring	2010
98345	Kim	Elec. Eng.	80000	EE-181	1	Spring	2009

course_id

CS-101

PHY-101

course_id

CS-101

CS-315

CS-319

CS-319

FIN-201

HIS-351

MU-199

course_id

CS-101

CS-315

CS-319

CS-347

FIN-201

HIS-351

MU-199

PHY-101

course_id

CS-101

course_id

CS-347

ID	пате	dept_name	salary
76766	Crick	Biology	72000
45565	Katz	Comp. Sci.	75000
10101	Srinivasan	Comp. Sci.	65000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000
12121	Wu	Finance	90000
76543	Singh	Finance	80000
32343	El Said	History	60000
58583	Califieri	History	62000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
22222	Einstein	Physics	95000

dept_name	salary
Biology	72000
Comp. Sci.	77333
Elec. Eng.	80000
Finance	85000
History	61000
Music	40000
Physics	91000

dept_name	count
Comp. Sci.	3
Finance	1
History	1
Music	1

dept_name	avg(salary)
Physics	91000
Elec. Eng.	80000
Finance	85000
Comp. Sci.	77333
Biology	72000
History	61000

Data Definition Language

Allows the specification of not only a set of relations but also information about each relation, including:

- The schema for each relation.
- The domain of values associated with each attribute.
- Integrity constraints
- The set of indices to be maintained for each relations.
- Security and authorization information for each relation.
- The physical storage structure of each relation on disk.