ΥΠΟΔΕΙΓΜΑΤΙΚΗ ΕΦΑΡΜΟΓΗ ΓΡΑΜΜΙΚΗΣ ΚΑΜΠΥΛΗΣ ΑΝΑΦΟΡΑΣ ΜΕ ΤΗ ΒΟΗΘΕΙΑ ΤΟΥ EXCEL

Κατά τον φλογοφωτομετρικό προσδιορισμό ασβεστίου σε δύο δείγματα φυσικού ύδατος ελήφθησαν τα ακόλουθα αποτελέσματα:

[Ca ²⁺], mg/L	Ένταση ακτινοβολίας Ca
Πρότυπα διαλύματα	
0,0	1,2
10,0	22,1
20,0	39,4
30,0	60,8
40,0	82,3
Δείγμα 1	28,6
Δείγμα 2	35,5

Για τη λύση να χρησιμοποιηθεί η μέθοδος ελάχιστων τετραγώνων. Υποτίθεται ότι υφίσταται γραμμική σχέση μεταξύ έντασης ακτινοβολίας (P) και συγκέντρωσης ασβεστίου (C), δηλ. P = aC + b. Η μέθοδος ελάχιστων τετραγώνων θα μας δώσει τις στατιστικώς ορθότερες τιμές a και b της εξίσωσης

ΛΥΣΗ

BHMA 1: Περνάμε τα δεδομένα σε δύο στήλες του Excel. Προσέχουμε οι τιμές C (άξονας X) να είναι αριστερά και οι τιμές P (άξονας Y) να είναι δεξιά.

🔀 Microsoft Excel - Book1				
:	<u>File E</u> dit	<u>V</u> iew <u>I</u> nse		
8 🗋	💕 🛃 🕻) 🔒 i 🔒 i		
	K10	→ <i>f</i>		
	А	В		
1	С	Р		
2	0	1,2		
3	10	22,1		
4	20	39,4		
5	30	60,8		
6	40	82,3		
7				

BHMA 2: Με πατημένο το αριστερό πλήκτρο του ποντικιού επιλέγουμε όλα τα ζεύγη C - P

Microsoft Excel - Book1				
:	<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>I</u> nse		
1	💕 🛃 🕻	3 🔒 🛯 🕹 🕻		
	A2	▼ 1		
	А	В		
1	С	Р		
2	0	1,2		
3	10	22,1		
4	20	39,4		
5	30	60,8		
6	40	82,3		
7				

BHMA 3: Πατάμε αριστερό κλικ στο Chart Wizard...

BHMA 4: Επιλέγουμε τον τύπο διαγράμματος **XY (Scatter)**, δηλ. XY-σκορποδιάγραμμα:

και εμφανίζεται το παράθυρο με ένα διάγραμμα, πατάμε NEXT και FINISH και έχουμε το διάγραμμα XY των σημείων:

BHMA 5: Κάνουμε οπτικό έλεγχο στα σημεία, αν όλα λίγο-πολύ βρίσκονται σε μια ευθεία. Στη συγκεκριμένη περίπτωση βλέπουμε ότι όλα βρίσκονται σε μια ευθεία (μικρές αποκλίσεις δεν ενοχλούν), οπότε τα κρατάμε όλα. Αν κάποιο ή κάποια εμφανώς ξέφευγαν θα έπρεπε <u>να μην τα</u> <u>περιλάβουμε</u> στο excel και να αρχίσουμε από την αρχή με τα υπόλοιπα.

BHMA 6: Κάνουμε δεξί κλικ πάνω σε οποιοδήποτε από τα σημεία (π.χ. το μεσαίο) και εμφανίζονται οι επιλογές:

Διαλέγουμε το "Add Trendline" (δηλαδή του ζητάμε να μας δώσεις μια γραμμή που περιγράφει την "τάση" των σημείων (δηλ. περίπου "που το πάνε" τα σημεία). Αυτή θα είναι η γραμμή που

προσαρμόζεται στα σημεία και υπολογίζεται με τη μέθοδο ελάχιστων τετραγώνων από τον υπολογιστή. Διαλέγουμε το Linear (γραμμική):

Add Trendline			
Type Opt	tions		
Trend/Regres	sion type		
Linear	Logarithmic	Polynomial Order:	
Dewer	·/	Period:	4 - 1 7 - 1
Power	Exponential	Moving Average	
Based on series	s:		
Series1	<u> </u>		
	-		

και μετά πατώντας το tab "Options" "τσεκάρουμε" το "Display equation on chart" (παρουσίασε την εξίσωση στο διάγραμμα)

Add Trendline	×
Add Trendline Type Options Trendline name Automatic: Linear (Series1) Qustom: Forecast Eorward: Quits Backward: Quits 	
Set intercept = 0 ✓ Display equation on chart ✓ Display <u>R</u> -squared value on chart	
OK	Cancel

Πατάμε ΟΚ και η γραμμή εμφανίζεται να περνάει μέσα από τα σημεία, ενώ συγχρόνως εμφανίζεται η μαθηματική εξίσωση που περιγράφει την ευθεία πάνω στο διάγραμμα.

Επομένως η εξίσωση ελάχιστων τετραγώνων που περιγράφει την εξάρτηση της έντασης της ακτινοβολίας από τη συγκέντρωση Ca^{2+} είναι:

P = 2,009 C + 0,98

Σημείωση: Αν για κάποιο λόγο θέλουμε περισσότερα δεκαδικά στις τιμές **a** και **b**, κάνουμε δεξί κλικ πάνω στην εξίσωση και ακολουθούμε την διαδρομή: Δεξί κλικ στην εξίσωση \rightarrow Format Data Labels \rightarrow Number \rightarrow Decimal Places = π.χ. 5 (για πέντε δεκαδικά)

Οπότε το δείγμα 1 έχει συγκέντρωση:

 $[Ca^{2+}] = (P - b) / a = (28, 6 - 0, 98) / 2,009 = 13,2 \text{ mg/L}$

και το δείγμα 2 έχει συγκέντρωση:

 $[Ca^{2+}] = (P - b) / a = (35, 5 - 0, 98) / 2,009 = 17,2 \text{ mg/L}$

ΓΙΑ ΟΠΟΙΟΝ ΕΝΔΙΑΦΕΡΕΤΑΙ ΝΑ ΔΕΙ ΤΙ ΘΑ ΣΥΝΕΒΑΙΝΕ ΑΝ ΚΑΠΟΙΟ ΣΗΜΕΙΟ ΑΠΟ ΤΑ ΠΡΟΤΥΠΑ ΕΚΤΡΕΠΟΤΑΝ ΣΗΜΑΝΤΙΚΑ ΚΑΙ ΔΕΝ ΤΟ ΑΠΟΡΡΙΠΤΑΜΕ

Αν η μέτρηση του προτύπου 10 mg/L ήταν π.χ. 32,5, τότε το σημείο αυτό θα εκτρεπόταν σημαντικά. Το διάγραμμα και η εξίσωση θα ήταν όπως παρακάτω:

και οι τιμές που θα βρίσκαμε για τα 2 δείγματα θα ήταν

 $[Ca^{2+}] = (P - b) / a = (28, 6 - 5, 14) / 1,9050 = 12,3 mg/L (δηλ. σφάλμα: -6,8%)$

 $[Ca^{2+}] = (P - b) / a = (35, 5 - 5, 14) / 1,9050 = 15,9 \text{ mg/L} (\delta\eta\lambda, \sigma\phi\dot{\alpha}\lambda\mu\alpha; -7,6\%)$

Βλέπουμε δηλ. ότι εξαιτίας της απροσεξίας μας (της μη απόρριψης του εκτρεπόμενου σημείου) εμφανίζεται σημαντικό αναλυτικό σφάλμα.

ΣΥΣΤΑΣΗ:

Να «παίξετε» με το applet:

http://www.chem.uoa.gr/applets/AppletPoly/Appl_Poly1.html

για να δείτε πόσο «άγρια» αλλάζει η θέση της γραμμής που προσαρμόζεται στα δεδομένα, όταν βάλετε 1 ή 2 σημεία που εκτρέπονται υπερβολικά από τη γραμμικότητα

Κώστας Ευσταθίου, 17/10/2012